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Private-Key Cryptography
• Traditional secret key cryptography uses one key 

– shared by both sender and receiver 
– if this key is disclosed communication secrecy is 

compromised 
• Traditional crypto is symmetric, parties are equal 

– hence does not protect sender from receiver forging a 
message & claiming it was sent by the sender 
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Public-Key Cryptography
• Probably most significant advance in the 3000 

years history of cryptography 
• Based on number theoretic concepts rather than 

on substitutions and permutations
• Uses two keys – a public & a private key
• It is asymmetric since parties are not equal 
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Public-Key Cryptography
• Public-key schemes are typically slower than 

symmetric-key algorithms 
– most commonly used in practice for the transport of 

keys used for data encryption by symmetric 
algorithms 

– for encrypting small data items such as credit card 
numbers and PINs.

• Complements rather than replaces private key 
crypto

• It is not intrinsically more secure than private key 
crypto



University of Siena

Public-Key Cryptography M. Barni, University of Siena4-4

Public-Key Cryptography
• Public-key/asymmetric cryptography involves the use of 

two keys: 
– a public-key, distributed by the owner to anybody, 
– a private-key, known only to the owner.

• Each user will thus have a collection of public keys of all 
the other users.

• It is asymmetric because
– keys used to encrypt messages cannot be used to 

decrypt them
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DecryptionEncryption

“The quick 
brown fox 
jumps over 
the lazy dog”

Plain-text input

“The quick 
brown fox 
jumps over 
the lazy dog”

Plain-text output

“AxCv;bmEseTfid3)fGsmW
e#4^,sdgfMwir3:dkJeTsY
8R\s@!q3%”

Cipher-text

Asymmetric Cryptography

Different 
keysRecipient’s 

public key
Recipient’s 
private key
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Why Public-Key Crypto?
• It was developed to address two key issues:

– key distribution
• how to communicate securely without trusting a KDC

– digital signatures
• verify that a message is intact and comes from the 

claimed sender
• Public invention due to Diffie & Hellman at Stanford 

University in 1976
– The concept had been previously described in a classified 

report in 1970 by James Ellis (UK CESG) - and 
subsequently declassified in 1987
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Public-Key Applications
We can classify its uses into 3 categories:
• encryption/decryption (secrecy)

– sender encrypts the msg with recipient’s public key
• digital signatures (authentication & data integrity)

– sender encrypts msg with his/her private key
• key exchange (of session keys)

– several approaches, using one or two private keys .
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Confidentiality, key distribution

Y=EKUb(X)
X=DKRb(Y)

To decrypt the current msg

To decrypt all msg

KUb = public key, KRb = secret key
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Authentication, without confidentiality

Y=EKRa(X)

X=DKUa(Y)

KUa = public key, KRa = secret key
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Confidentiality and authentication

Z=EKUb [EKRa(X)] X= DKUa [DKRb (Z)]

Computationally expensive (4 operations of enc./dec.)
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Public-Key Applications
Some algorithms are suitable for all uses, others are 
specific to one
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Requirements of Pub. Key Algorithms (DH)
1. Computationally easy to generate a key pair 
2. Computationally easy for sender A to generate the 

encrypted msg Y=EKUb(X)
3. Computationally easy for recipient B to decrypt the 

encrypted msg X=DKRb(Y)
4. Computationally impossible for an intruder, by knowing

KUb, to determine the key KRb
5. Computationally impossible for an intruder, by knowing

KUb and Y, to determine msg X
6. It should be possible to apply encryption/decryption in 

whatever order
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• These requirements are very difficult to be satisfied: only 
elliptic curves and RSA have been accepted !

• These reqs can be satisfied if we can find a 
monodirectional “trapdoor function” f.

Requirements of Pub. Key Algorithms (DH)
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Trapdoor function
• A trapdoor function is a function easy to compute in 

one direction, yet believed to be difficult to compute in the 
opposite direction (finding its inverse) without special 
information, called the "trapdoor". 
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Trapdoor function
• In mathematical terms, f is a trapdoor function if there 

exists some secret information K, such that given f(x) and 
K it is easy to compute x. 
– Consider taking an engine apart: not very easy to put it 

together again unless you had the assembly instructions 
(the trapdoor). 

– A mathematical example: the multiplication of two large 
prime numbers. Multiplication is easy; but factoring the 
resultant product can be very difficult.
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Trapdoor function
• This monodirectional “trap function” f maps a domain into 

an interval such that each function value has an 
unambiguous inverse, and such that:
– Y= fk (X)    easy;
– X= fk-1 (Y)  easy if k and Y are known;
– X= fk-1 (Y)  hard if Y is known, but k unknown ;

• The precise meanings of "easy" and "hard" can be 
specified mathematically:
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Trapdoor function
• easy: a problem that we can solve within a polynomial 

time with respect to the input length: if input is n bits, the 
time to compute a function is proportional to na where a
is a fixed constant (Class P problems);

• hard: a problem that we can solve only within a time 
larger than polynomial (hopefully exponential): if input is 
n bits, the time to compute a function is proportional to 
2an.

• To determine the level of complexity of a problem is 
extremely complicated !!!!
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Security of Public Key Schemes
• Security relies on a large enough difference in difficulty 

between easy (en/decrypt) and hard (cryptanalysis) 
problems

• The hard problem is known, it’s just made too hard to 
solve it in practice 
– requires the use of very large numbers
– hence public key crypto is slower than secret key schemes 

• Like secret key schemes brute force attack is always 
theoretically possible, but keys used are too large 
(>= 1024bits) 



University of Siena

Public-Key Cryptography M. Barni, University of Siena

From a trapdoor to a cryptosystem

• Construct public-key cryptosystem from trapdoor-
one way function f:

– Encryption requires evaluation of f
– Decryption uses trapdoor to invert f

– Trapdoor is secret key
– Attacker has to invert f
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• Examples of potential trapdoor one-way functions
– f(x,a,n) = y =  xa mod n

• Hard problem: compute x = f-1(y,a,n)
• Trapdoor: factors of n=pq
• Basis for RSA encryption

– f(g,x,p) = y = gx mod p
• Hard problem: x = logg(y)
• Basis for ElGamal encryption, and DH key 

exchange

In search for a trapdoor
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RSA algorithm
• Invented by Rivest, Shamir & Adleman at MIT in 1977 
• Best known & widely used public-key scheme 
• Security based on the intractability of the integer 

factorization problem. 
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RSA algorithm

• Currently used in a wide variety of products, 
platforms, and industries around the world. 
– RSA is built into current operating systems by Microsoft, 

Apple, Sun, and Novell. 
– In hardware, RSA can be found in secure telephones, on 

Ethernet network cards, and on smart cards. 
– RSA is incorporated into all of the major protocols for 

secure Internet communications, including S/MIME, SSL, 
and S/WAN. 
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RSA algorithm
• RSA is a block cipher:
• The plaintext is divided into blocks, where each 

block is represented as an integer value between 
0 and n-1, n being the modulus.
– n is a very big number, represented with k bits, i.e.  

2k-1 < n < 2k

– Usually k=1024 bits, i.e. n is composed by 309
decimal figures (n < 21024).

• The ciphertext is obtained by a proper exponentiation 
of the plaintext modulo n.
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RSA Key Setup

Each user generates a public/private key pair by: 
– selecting two large primes at random: p,q
– computing the system modulus n=pq
– compute Euler totient function ø(n)=(p-1)(q-1)
– selecting at random a value e

• where 1 < e < ø(n), gcd(e, ø(n))=1
– solving the following equation to find a value d:

• ed = 1 mod ø(n)  <=> d = e-1 mod ø(n), 0<d<n 
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RSA Key Setup

• e is called the encryption exponent, d the decryption 
exponent, n the modulus.

• Each user:
– publishes the public key: KU={e,n}
– keeps secret the private key: KR={d,n}

• So if we encrypt with the recipient’s public key:
– Sender will know e and n
– Recipient will know d and n
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RSA encryption/decryption

• To encrypt a message block m (0<m<n), the sender:
– obtains public key of recipient KU={e,n}
– computes: c =me mod n

• To decrypt the ciphertext c the owner:
– uses his private key KR={d,n} 
– computes: m=cd mod n

• Remember: message block is represented as an 
integer m smaller than the modulus n and 
relatively prime with n (for security reason) !
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Why does RSA work ?

Because of Euler's Theorem in number theory:
• given two prime numbers p and q, n and m integers 

such that n=pq, and m<n:
• mkø(n)+1 = m mod n, where ø(n) is the Euler totient

function, 
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Why does RSA work ?
In RSA we have:

– n = pq
– ø(n) = (p-1)(q-1) 
– Integers e and d are chosen to be inverse mod ø(n)
– Then ed=1+kø(n) for some k

Hence :
cd = (me)d = m1+kø(n) = m mod n = m
since 0<m<n 
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RSA - toy example
• Select primes: p =17, q =11
• Compute n = pq =17×11=187
• Compute ø(n)=(p–1)(q-1)=16×10=160

• Select e : 1< e <160, gcd(e,160)=1; choose e = 7
• Determine d: de=1 mod 160 and d < 160

– d = 23 since 23×7=161 = 1 mod 160 
• Publish public key: KU= {7,187}
• Keep secret private key: KR= {23,187}
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RSA – toy example
• given message m = 88  (n.b. 88 < 187)
• encryption:

c = 887 mod 187 = 11 
• decryption:

m = 1123 mod 187 = 88 
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Computational aspects: enc/dec
• Encryption/decryption require the computation of 

exponentiation between large integers mod n. 
• A fast, efficient algorithm for exponentiation exists
• Due to the modular operator properties, we can compute 

((a x b) mod n) as  [(a mod n ) x ( b mod n )] mod n 

• Example: 75 mod 11 = 7471 mod 11 =  (7272)71 mod 11 = 
[((7272) mod 11) x 7mod11] mod 11 = [(49 mod 11)(49 
mod 11) mod 11 x7 ] mod 11 = [((5x5)mod11)x7] mod 11 
= 3x7 mod 11 = 10

• Exercise: compute 3129 mod 11 = 3128x31 mod 11 = 5x3 
mod 11 = 4



University of Siena

Public-Key Cryptography M. Barni, University of Siena

Computational aspects: Key Generation

• Users of RSA must:
– determine two primes at random p,q
– select either e or d and compute the other

• Primes p,q must be secure, i.e. not easily 
recoverable from modulus n=pq
– Prime numbers must be sufficiently large
– An efficient method to obtain big prime numbers does 

not exist  
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Computational aspects: Key Generation

• Exponents e, d are inverse each other, so, 
chosen e value, it is possible to use the extended 
Euclidean algorithm to compute d:

• e: gcd(e,ø(n)) = 1 (randomly generated)
• d = e-1 mod ø(n) (ext. Euclidean alg.)

• Possible (easy) iff p and q are known
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Euclidean GCD algorithm
• Let a and b be two integers (a > b)
• If q is a divisor of a and b it also divides r = a mod b
• The we can proceed as follows

r1 = a mod b
if r1= 0 MCD = b
else (a,b) -> (b,r1)
…
rn = rn-2 mod rn-1

if rn= 0 MCD = rn

else (rn-2, rn-1) -> (rn-1, rn)

• Convergence is ensured
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Extended euclidean GCD algorithm
• Going backword it is always possible to write MCD as an 

integer linear combination of a and b, that is:
MCD = s·a + t·b

• We can find s and t proceeding as fgollows:
rn-1 = rn-3 - qn-2 rn-2 = rn-3 - qn-2 (rn-4 - qn-3 rn-3)
= (1+ qn-2qn-3) rn-3 - qn-2 rn-4

= (1+ qn-2qn-3)(rn-5 – qn-4 rn-4) - qn-2 rn-4 …
• The extended Euclidean GCD can be used to find the 

modular inverse for coprime numbers
GCD(a,n) = 1 -> 1 = sa-tn -> sa = tn +1
sa mod n = 1 -> s = a-1 mod n
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RSA example: key generation
• Let the primes 5 and 11 to be our p and q. 
• n = 55, and ø(55) = (5-1)(11-1) = 4x10 = 40.
• Now, we need to find e, d such that: ed = 1 (mod 40). 

– There are many pairs fitting this equation. We need to find 
one of them. 

– Our only constraint is that e and d are both relatively prime 
to ø(55) = 40. So, we can't use numbers that are multiples 
of 2 and/or 5. Ideally, in fact, we'd prefer that e and d be 
relatively prime to each other. Let us try with e = 7
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RSA example: key generation
• Now we need to find d such that 7d = 1 (mod 40). This 

means find d and K such that : 
– 7d = 40K + 1.
– The first value for d that works is 23 
– 7 * 23 = 161 = 4 * 40 + 1. So we have e = 7 for d = 23

• Publish public key: KU = {7,55}
• Keep secret private key: KR = {23,55}
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RSA example: the plaintext
• To put the cipher at work, we must recall that the values 

we use for the plaintext m must be less than n=55, and 
also relatively prime to 55. 

• We also do not want to use m = 1, because 1 raised to 
any power whatsoever is going to remain 1. 

• Finally, the same holds true for n - 1, because n - 1 is 
congruent to -1 mod n. 

• Then the valid messages are the numbers m such that:
– 1 < m < 54
– Not multiple of 5,11.
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RSA example: the plaintext
• So, we'll take what's left and create the following 

character set: 
– 2 3 4 6 7 8 9 12 13 14 16 17 18
– A B C D E F G H I J K L M
– 19 21 23 24 26 27 28 29 31 32 34 36 37
– N O P Q R S T U V W X Y Z
– 38 39 41 42 43 46 47 48 49 51  52  53
– sp 0 1 2 3 4 5 6 7 8 9 *
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RSA example: encryption

• The message we will encrypt is VENIO : 
• VENIO = 31, 7, 19, 13, 21
• To encode it, we simply need to raise each number to 

the power of e modulo n.
• V = 317 (mod 55) = 27512614111 (mod 55) =26
• E = 77 (mod 55) = 823543 (mod 55) =28
• N = 197 (mod 55) = 893871739 (mod 55) =24
• I = 137 (mod 55) = 62748517 (mod 55) = 7
• O = 217 (mod 55) = 1801088541 (mod 55) = 21
• The encrypted message is 26, 28, 24, 7, 21 = RTQEO
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RSA example: decryption
• To decrypt the message RTQEO we repeat the same

process using d instead than e
• R = 2623 (mod 55) 

= 350257144982200575261531309080576 (mod 55) = 31
• T = 2823 (mod 55) = 

1925904380037276068854119113162752 (mod 55) = 7
• Q = 2423 (mod 55) 

= 55572324035428505185378394701824 (mod 55) = 19
• E = 723 (mod 55) = 27368747340080916343 (mod 55) = 13
• O = 2123 (mod 55) 

= 2576580875108218291929075869661 (mod 55) = 21
• Yielding: 31, 7, 19, 13, 21 = VENIO
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A not-so-simple example
• This time, to make life slightly less easy, we group the 

characters into blocks of three and compute a 
representative integer for each block. 

• ATTACKxATxSEVEN = ATT ACK XAT XSE VEN
• We could represent our blocks of three characters in base 

26 using A=0, B=1, C=2, ..., Z=25 
– ATT = 0 x 26^2 + 19 x 26^1 + 19 = 513 

ACK = 0 x 26^2 + 2 x 26^1 + 10 = 62 
XAT = 23 x 26^2 + 0 x 26^1 + 19 = 15567 
XSE = 23 x 26^2 + 18 x 26^1 + 4 = 16020 
VEN = 21 x 26^2 + 4 x 26^1 + 13 = 14313 
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A not-so-simple example
• In this system of encoding, the maximum value of a group 

(ZZZ) would be 263-1 = 17575, so we require a modulus n
greater than this value. 

• We can use p=137 and q=131 (we cheated by looking for 
suitable primes around √n, which is not good for security 
reasons) 

• n = pq = 137x131 = 17947
ø(n) = (p-1)(q-1) = 136x130 = 17680 

• Select e = 3
check gcd(e, p-1) = gcd(3, 136) = 1, OK and
check gcd(e, q-1) = gcd(3, 130) = 1, OK. 

• Compute d = e-1 mod ø(n) = 3-1 mod 17680 = 11787. 
• Hence public key = (17947, 3), private key = (17947, 11787). 
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A not-so-simple example
• To encrypt the first integer representing ATT, we 

have c = me mod n = 5133 mod 17947 = 8363.
• We can verify that our private key is valid by 

computing
m' = cd mod n = 836311787 mod 17947 = 513. 

• Overall, our plaintext is represented by the set of 
integers m = {513, 62, 15567, 16020, 14313} 

• Yielding c = me mod n = {8363, 5017, 11884, 9546, 
13366} 

• You are welcome to compute the inverse of these 
integers using m = cd mod n to verify that RSA works
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Practical considerations

• If we know only the public key, how can we be sure
that GCD(m,n) = 1?
– Use Euclide’s algorithm…
– Note that Pr{GCD(m,n) = 1} = ø(n)/n = (p-1)(q-1)/pq
– Pr{GCD(m,n) ≠ 1} = 1 - (p-1)(q-1)/pq = (p+q-1)/pq
– If p,q have 512 bits, Pr{GCD(m,n) ≠ 1} ~ 2-511 !!
– The probability of picking a wrong message is almost

zero, so usually we do not care
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How fast is RSA algorithm ?

• It is common to choose a small public exponent for 
the public key
– This makes encryption faster than decryption and 

verification faster than signing 
• DES and other block ciphers are much faster than 

the RSA algorithm. 
– DES is generally at least 100 times faster in sw and 

1,000 ÷10,000 times faster in hw
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RSA Security
Theorem: Computing the secret key from the public key is 
computationally equivalent to factoring n.

No efficient factorization algorithms is known
– general number field sieve (GNFS) algorithm:
– O(exp(k1/3(log k)2/3) complexity
– k is the number of bits of n

Exact security of RSA is unknown
– more efficient factorization algorithms may be found
– pay attention to choose secure primes 
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RSA Security
• Three approaches to attack RSA

– brute force key search (difficult given key size)
– mathematical attacks (it is difficult to compute 

ø(n), by factoring modulus n)
– timing attacks (based on measuring the time to 

run the decryption)
• Yet, care must be taken to use RSA properly
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Common Modulus attack
• Suppose that RSA is used by several parties who 

share a common modulus (but different e and d) 
• We can show that if the public exponents of the 

participants are relatively prime, an attacker can 
recover the message sent to at least two parties.
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Common Modulus attack
• Assume Alice and Bob generated keys using the same 

modulus n: (e1, d1) and (e2, d2)
• Also suppose that GCD(e1,e2)=1
• Assume a third user sends to Alice and Bob the same 

message m:
– c1 = me1 mod n,
– c2 = me2 mod n
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Common Modulus attack
• c1 = me1 mod n,
• c2 = me2 mod n
• if gcd(e1,e2)=1, then it is possible to compute a,b so 

that (e1) a + (e2) b = 1 mod n (extended Euclidean 
algorithm)

• then
• c1

a c2
b = me1 a + e2 b mod n= m mod n = m

Never send identical messages to receivers with the 
same modulus and relatively prime encryption exponents
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Adaptive chosen-ciphertext attack
• Suppose that an active adversary wishes to 

decrypt c=me mod n intended for the user A. 
• Suppose that A is available to decrypt an arbitrary 

ciphertext for the adversary, other than c itself. 
• The adversary can select a random integer x and 

compute  c’= cxe mod n = (mx)e mod n. 
• Upon presentation of c’, A will compute for the adversary 

m’= mx mod n. 
• The adversary can then compute m=m’x-1 mod n .
• This attack can be circumvented by imposing some 

structural constraints on plaintext messages.
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El Gamal
• El Gamal encryption system is based on the 

discrete logarithm problem, 
• Described by Taher El Gamal in 1984.
• Implemented in GnuPG. A similar signature scheme 

is used in DSA (Digital Signature Algorithm, 
standardized in 1993).
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El Gamal
• Let G be a cyclic group of order q, with generator g 
• Usually G is Zp*, the multiplicative group of integers 

modulo p, where p is a big prime (q=p-1)
• Let x be a random number taken in {2 ... p-2}, compute 

h=gx mod p
• Public key: (g,h,p)
• Private key: x
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El Gamal Encryption
• To encrypt a message m under Alice’s public key 

(g,h,p),
• Bob converts m into an integer in G={1 … p-1}
• Then he chooses a random y in {2 … p-2}, and 

computes c1 = gy mod p and c2 = mhy mod p . 
• Bob sends the ciphertext (c1,c2) to Alice. 

– E(m)= (c1,c2) := (gy mod p ,mhy mod p)
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El Gamal Encryption
• Encryption is probabilistic !!!
• This means that a single plaintext can be encrypted to 

many possible ciphertexts: for same m and different y, 
E(m) is different !

• So we should write E(m,y)
• A general ElGamal encryption produces a 2:1 expansion 

in size from plaintext to ciphertext.
• Encryption requires 2 exponentiations (slow!) 
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El Gamal Decryption
• To decrypt a ciphertext (c1,c2) with her private key x, 

Alice computes: 
• D(c1,c2)=c2(c1)-x mod p 

• Remark: knowledge of the random number y is not 
needed !

c2 (c1)
−x =mhy ⋅ (gy )−x =mhy ⋅ g−xy =mgxy ⋅ g−xy =m
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El gamal: toy example
Key generation:
Choose prime number p = 2357, g = 2, private key x = 1751 
and compute: h = gx mod p = 21751 mod 2357 = 1185.
Encryption:
to encrypt the message m = 2035, choose y = 1520 and 
compute:
c1 = gy mod p = 21520 mod 2357 = 1430
c2 = m hy mod p = 2035x11851520 mod 2357 = 697
Decryption. Compute
c1

-x = c1
p−1−x = 1430605 mod 2357 = 872

m = c1
-x c2 = 872 * 697 mod 2357 = 2035



University of Siena

Public-Key Cryptography M. Barni, University of Siena

Key Management
• Public-key encryption helps addressing secret key 

distribution problems
• Two aspects of public key methods used in key 

distribution applications:
– distribution of public keys
– use of public-key encryption to distribute secret keys
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Distribution of Public Keys

• All proposed solutions can be classified as belonging 
to one of the following classes:
– Public announcement
– Publicly available directory
– Public-key distribution authority
– Public-key certificates
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Public Announcement
• Users distribute public keys to recipients or broadcast to 

all the community
– Append Pretty Good Privacy (PGP) keys to email 

messages or post to news groups or mailing lists
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Public Announcement
• Major weakness is forgery

– anyone can create a key claiming to be someone else 
and broadcast it

– until forgery is discovered can masquerade as claimed 
user
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Publicly available directory

• A dynamic and public directory of keys, managed by a 
trusted organization.

• Properties:
– it contains  {name, public-key} entries
– participants register securely the public 

key with directory
– participants can replace key at any time
– directory is periodically published
– directory can be accessed also 

electronically
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Publicly available directory
• Greater security by registering 

keys with a public directory 
than with announcement

• Still vulnerable to tampering or 
forgery: 
– if someone can violate the db, 

can distribute fake public keys
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Public-Key Authority
• Improves security by tightening control over distribution 

of keys from directory: an authority manages the 
directory.

• Requires users to know public key of the authority
• Then users interact with directory to obtain any desired 

public key securely
– does require real-time access to directory when keys 

are needed
– Secure interaction with authority can be complicated
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Public-Key Certificates

• Certificates allow key exchange without real-time 
access to public-key authority, but with same 
reliability

• A certificate binds identity to public key
– usually with other info such as period of validity, rights 

of use, etc
• Created and signed by a trusted Certificate 

Authority (CA), delivered to the user 
• To distribute his/her public key, a user sends the 

certificate
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Public-Key Certificates
In this a way:
• each user can read a certificate to determine the name 

& public key of certificate’s owner;
• every user can verify that the certificate has been 

created by the CA, if he knows the CA public-key 
• only the CA can create or update a certificate.
• every participant can verify that his/her own certificate 

is updated.
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Public-Key Certificates Exchange

Through secure 
channel or 
personally

Through secure 
channel or personally

Decrypting CA, B obtains KUA and 
the identity of A, certified by CA 
through its key
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Use of Public-Key to share Secret Keys

• Public-key, obtained with previous methods, can be 
used for secrecy or authentication

• Public-key algorithms are slow, so usually users prefer 
to use secret-key encryption.

• A session key is exchanged through a public key 
protocol.
– several alternatives for negotiating a suitable 

session
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Simple Secret Key Distribution

• A generates a temporary key pair (KUa, KRa)
• A sends to B his public key and his identity
• B generates a session key K, sends it to A encrypted 

using the supplied public key
• A decrypts the session key KS and both can use it
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Simple Secret Key Distribution
• Vulnerable to man in the middle attack: an 

opponent can intercept and impersonate both 
users:
– E can intercept (1), create keys {KUe,KRe} and send KUe

|| IDA to B
– B generates Ks, and send EKUe [Ks]  to A
– E intercepts the message and decrypts it obtaining Ks .

– E transmits EKUa [Ks] to A
– Now A and B have Ks, but they don’t know that also E 

knows it, and that he can intercept their messages.

E
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Diffie-Hellman Key Exchange
• First public-key type scheme proposed by Diffie & 

Hellman in 1976 along with the exposition of public 
key concepts
– note: now known that James Ellis (UK CESG) 

secretly proposed the concept in 1970 
• It is a practical method for public exchange of a 

secret key
• It is used in several commercial products
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Diffie-Hellman Key Exchange
• It is a public-key based key distribution scheme 

– cannot be used to exchange an arbitrary message 
– rather it can establish a common key known only to 

the two participants 
• It is based on exponentiation modulo a prime - easy 

to do
• Security relies on the difficulty of computing discrete 

logarithms
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Discrete Logarithm
• Given a prime number p: 

– Primitive root of p = a number whose powers (mod p) 
generate all the integers between 1 and p-1:

– a mod p, a2 mod p, a3 mod p, …, ap-1 mod p are 
distinct and are a permutation of all the integers 1 ... 
p-1 

• Given an integer b, and a primitive root of p, we 
define discrete logarithm of b for the base a mod p, 
the unique number i such that
b = ai mod p,  0 ≤ i ≤ p-1 
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Diffie-Hellman Setup
• All users agree on global public parameters:

– q: large prime integer 
– a: primitive root mod q

• Each user generates his/her pair of keys:
– A randomly chooses a private key (integer 

number): xA < q 
– Computes the public key: yA = axA mod q
– A makes yA public and keeps xA secret
– B does the same obtaining xB and yB
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Diffie-Hellman Key Exchange
• Shared session key for users A & B is KAB: 

KAB = axAxB mod q
= yA

xB mod q (which B can compute by himself) 
= yB

xA mod q (which A can compute by herself) 

• KAB is used as session key in a secret-key encryption 
scheme between Alice and Bob

• if Alice and Bob subsequently communicate, they will 
have the same key as before, unless they choose new 
public-keys.

• Attacker needs to know one between xA or xB, but this 
implies solving a discrete log problem
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Diffie-Hellman Example 
• Alice & Bob wish to share a secret key:
• They agree on prime q=353 and a=3
• Select random secret keys:

– A chooses xA=97, B chooses xB=233
• Then compute public keys:

– yA=397 mod 353 = 40 (Alice)
– yB=3233 mod 353 = 248 (Bob)

• Compute shared session key as:
– KAB= yB

xA mod 353 = 24897 = 160 (Alice)
– KAB= yA

xB mod 353 = 40233 = 160 (Bob)



University of Siena

Public-Key Cryptography M. Barni, University of Siena

Diffie-Hellman Example 
• An attacker knows q=353, a=3, yA=40, yB=248
• The brute force attack consists in computing the 

exponentiation 3x mod 353, stopping when the result is 
40 or 248 .

• The first result is x = 97
• The complexity is linear in the size of q (exponential in 

the number of bits k)
• With very big numbers (k = 1024) it is difficult!
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