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Machine Learning and Security
• The use of ML techniques (noticeably DL) for security 

applications has been rapidly increasing
– Malware detection, Multimedia forensics, Biometric-based 

authentication, Traffic analysis, Steganalysis, Network 
intrusion detection, Detection of DoS, Data mining for 
intelligence applications, Cyberphysical security …

• Little attention has been given to the security of machine 
learning
– Yet fooling a ML system turns out to be an easy task
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Striking examples

Classified 
as a toaster

Magnified noise

Classified 
as a 
Gibbon
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Striking examples: one pixel attack
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Striking examples: not only digital
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Security OF Machine Learning

Machine Learning 
FOR

security

Security
OF

Machine Learning
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The basic assumptions behind ML

• Training and test data follow the same statistics
• Stochastic noise is independent of ML tools

Data 
acquisition

Observed 
system

Feature 
extraction

Training 
algorithm

Classifier 
Detector

Natural
intra- and inter-class 

randomness

Measurement 
noise

DL route
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Malicious setting
• The attacker is aware of ML tools: independence assumption does 

not hold, tailored noise
• Statistics at training and test time are different

Data 
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Tailored vs random noise
(security vs robustness)

C1

C2

Tailored 
attack

Random 
noise

• Inducing an error by 
adding random 
noise may be 
difficult since the 
direction of useful 
attacks may be very 
narrow

• This property is 
more pronounced in 
high dimensional 
spaces

• However, the 
attack is NOT 
random 
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The curse of dimensionality

• The case of linear classifier is easy to understand 
(back to watermarking)

𝜙 𝒙 = ∑ 𝑥&& 𝑤&	= T -	∆

𝜙 𝒙 + 𝑧 = ∑ 𝑥&& 𝑤& + ∑ 𝑧&& 𝑤&

z = 𝑁 0, 𝜎 →	E[∑ 𝑧&& 𝑤&] = 0

z = 𝛼𝑤 → ∑ 𝑧&& 𝑤& = 𝛼 𝑤 2 = 𝛼𝑛𝐸[𝑤2]

• Extension to (amost) any (regular) function possible
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Exploitation of empty regions
• Regions of the feature space for which no examples are 

provided are classified randomly and can be exploited by the 
attacker (again by adding a tailored noise)

• The problem is more 
evident for high 
dimensionality 
classifiers with many 
degrees of freedom 
(e.g. CNN)
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Exploitation of empty regions

Face 
detection

Is this
Mr Barni ?

NO

YES
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Label poisoning

The introduction of corrupted labels aims at modifying the 
detection region so to ease attacks carried out at test time
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Label poisoning

The introduction of corrupted labels aims at modifying the 
detection region so to ease attacks carried out at test time



University of Siena

Adversarial Machine Learninìg M. Barni, Cybersecurity

A guided tour to Adv-ML

• Attacker’s point of view
• Defender’s point of view
• A joint perspective

– Game-theoretic approach
• Looking ahead
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Attacker’s viewpoint: taxonomy

• Focus on binary
detection

• In most cases (not
always though) the 
system must detect the 
presence of an 
anomalous or 
dangerous situation, 
say H1

Decision →
H0 H1

Truth ↓

H0 OK Denial of 
Service

H1 Evasion OK

• Attacks can be carried out at test time, training time or both
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“Knowledge is a weapon. Arm yourself before you ride forth to battle” 
(George R.R. Martin, A dance with dragons)

“If you know the enemy and know yourself, you need not fear the result of 
a hundred battles”
(Sun Tzu, The art of war)

Attacks with Perfect Knowledge (PK) vs attacks with 
Limited Knowledge (LK)

𝜙(ℒ,ℱ;𝒟) ℒ = ℎ𝑦𝑝𝑒𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
ℱ = 𝑓𝑒𝑎𝑡𝑢𝑟𝑒	𝑠𝑝𝑎𝑐𝑒
𝒟 = 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔	𝑑𝑎𝑡𝑎

The importance of knowledge
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Attacks with perfect knowledge (PK)
• The attacker knows the decision function exactly

– white box attack
– targeted attack

Λ0

X

Y

• Goal: exit (or enter) the 
decision region subject to a 
fidelity criterion
– Closed form solution
– Gradient descent and oracle 

attacks (also possible in black-
or gray-box modality)
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Gradient descent attack
• Two formulations

x⇤ = arg min
x0:d(x,x0)

�(x0) x⇤ = arg min
x0:�(x0)<0

d(x, x0)

• Solution based on gradient computation
The SVM case
�(x) =

P
i ↵iyik(x, xi) + b

r�(x) =
P

i ↵iyirk(x, xi)

rk(x, xi) = �2�(x� xi)e��kx�xik2

RBF kernel

• Easy solutions available also for CNN
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HS image Attacked image

PSNR = 82dB
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MF3 image Attacked image

PSNR = 56dB
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Gradient-based attacks against DL

Classified 
as a dog

Highly magnified attack

Classified 
as a cat
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Attack domain
• Bringing back the attack in the pixel domain may 

be a difficult task

Pixel domain

Feature 
domain

Complex,  
non-invertible 

transformation

X

Y

• Controlling distortion in the 
feature domain is also difficult

• Easier with DCT, 
wavelet and 
histogram-based 
features

• Not a problem 
with DL
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• Carrying out the attack in the real world (analog domain) 
is challenging, but still possible

Attacks in real world
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Attacks with limited knowledge
• When only the feature space (F	*) is known, the attacker 

may try to devise a Universal Attack
• The attack is effective against

𝜙(ℒ,ℱ*;𝒟)				∀ℒ, ∀𝒟	
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Attacks with limited knowledge (LK)
• The most common approach consists in attacking a 

surrogate detector (attack transferability)

Examples:
• N. Papernot, P. McDaniel, I. Goodfellow. "Transferability in machine 

learning: from phenomena to black-box attacks using adversarial 
samples." arXiv preprint arXiv:1605.07277 (2016).

𝜙M = 𝜙(ℒN, ℱ; 𝒟O)
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Example

* Z. Chen, B. Tondi, X. Li, R. Ni, Y. Zhao, and M. Barni, “A gradient-based pixel-domain 
attack against SVM detection of global image manipulations”,WIFS 2017, IEEE Int. 
Workshop, Rennes, France

• To account for mismatch in training data a stronger
attack must be applied

• Results regarding SVM-based detection of histogram 
stretching*

Surrogate detector Real detector
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Defender’s viewpoint

• Adversary-aware detectors
– Look for attack traces
– Adversary aware training (detection vs resilience)

“Knowledge is a weapon. Arm yourself before you ride forth to battle” 
(George R.R. Martin, A dance with dragons)

“If you know the enemy and know yourself, you need not fear the result of 
a hundred battles”
(Sun Tzu, The art of war)
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Adversary aware - informed - defenses

• The analyst looks for the traces left by the CF 
algorithm

• Build a new detector φaw using the same or a new set 
of features

• Most common case: retrain an ML detector
– Rich enough feature space needed
𝜙PQ = 𝜙(ℒ, ℱ;𝒟⋃𝒟𝑎𝑤)

𝝓	⟶ ⟶𝝓𝒂𝒘PK or LK attack to φ

A way to exit the PK 
scenario or disinform

the attacker Cat & 
mouse otherwise



University of Siena

Adversarial Machine Learninìg M. Barni, Cybersecurity

If you miss knowledge: building a BIG WALL 
may help

• Intrinsically (more) secure detectors
– Feature choice
– Simple detection boundaries (possibly at the expense 

of robustness)
– 1-class detectors
– Multiple classifiers
– Randomized detectors



University of Siena

Adversarial Machine Learninìg M. Barni, Cybersecurity

Detector architecture

• 1-class classifiers are intrinsically more robust against unknown 
attacks due to their close decision boundary

1-class 
classifier

2-class classifier
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Knoweldge is a weapon … for who?

If you know the enemy and know yourself, you 
need not fear the result of a hundred battles

If you know the enemy and know yourself, you 
need not fear the result of a hundred battles
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Classical attack-defense cycle

• Avoid entering a never-ending cat & mouse loop
• Worst case assumption is often too pessimistic and 

does not say much about actual security

Analyze 
classifier

Attack 
classifier

Analyze 
attack

Design 
defense
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Adversarial machine 
learning and game theory: 

a perfect fit
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1 3 3 1 4 1 3 2 3 0 … … 30 2

3 1 2 2 2 0 1 3 2 1 … … 1 3

4 2 6 0 7 0 30 6 6 0 … … 2 5

2 6 0 4 -3 -5 4 -8 0 0 … … 1 9

7 -4 0 0 0 20 4 0 -1 0 … … 0 12

… … … … … … … … … … … … … …

0 0 25 0 30 15 12 0 17 0 … … 11 16

A
D
SD,1

SA,3 SA,4 SA,5 … SA,n

SD,2

SD,3

SD,4

SD,5

…

SD,m

SA,2SA,1

Game Theory in a nutshell
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Competitive (zero-sum) games

1 -1 3 -3 4 -4 3 -3 3 -3 … … 30 -30

3 -3 2 -3 2 -2 1 -1 2 -2 … … 1 -1

4 -4 6 -6 7 -7 30 -30 6 -6 … … 2 -2

2 -2 0 0 -3 3 4 -4 0 0 … … 1 -1

7 -7 0 0 0 0 4 -4 -1 1 … … 0 0

… … … … … … … … … … … … … …

0 0 25 -25 30 -30 12 -12 17 -17 … … 11 -11

A
D

SD,1

SA,3 SA,4 SA,5 … SA,n

SD,2

SD,3

SD,4

SD,5

…

SD,m

SA,2SA,1
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Choice of strategies: worst case
• Players choose the strategy which results in the 

maximum of the minimum payoff
• This may result in a too pessimistic approach

10 3 1 4 0 2

3 5 5 0 2 -2

4 1 6 -5 1 -7

A
D

SD,1

SA,3

SD,2

SD,3

SA,2SA,1
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Choice of strategies: worst case
• Players choose the strategy which results in the 

maximum of the minimum payoff
• This may result in a too pessimistic approach

10 3 1 4 0 2

3 5 5 0 2 -2

4 1 6 -5 1 -7

A
D

SD,1

SA,3

SD,2

SD,3

SA,2SA,1



University of Siena

Adversarial Machine Learninìg M. Barni, Cybersecurity

Dominant strategy
When a dominant strategy exists a rationale player will 
surely play it

1 3 3 1 4 1 3 2 3 0 … … 10 0

3 1 2 2 2 0 1 3 2 1 … … 1 3

4 2 6 0 7 0 30 6 6 0 … … 1 5

2 6 0 4 -3 -5 4 -8 0 0 … … 1 9

7 -4 0 0 0 20 4 0 -1 0 … … 0 12

… … … … … … … … … … … … … …

8 0 25 0 30 15 90 0 17 0 … … 11 16

A
FA

SFA,1

SA,3 SA,4 SA,5 … SA,n

SFA,2

SFA,3

SFA,4

SFA,5

…

SFA,m

SA,2SA,1
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Nash equilibrium
No player gets an advantage by changing his strategy 
assuming the other does not change his own

u1(s1
*, s2

* ) ≥ u1(s1 , s2
* ) ∀s1 ∈ S1

u2 (s1
*, s2

* ) ≥ u2(s1
*, s2 ) ∀s2 ∈ S2

... and many others
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Examples (few available)

M.C.Stamm, W.S.Lin, K.J.R.Liu,“Temporal forensics and anti-forensics for motion 
compensated video,” IEEE TIFS, vol. 7, no. 4, pp. 1315–1329, Aug. 2012.

• D develops a detector φ
• A develops an attack A againts φ
• D develops an algorithm φa to detect the traces left by A
• Eventually D builds a combined detector φ’ = φ ○ φa

GAME
- A chooses the strength of the attack
- D decides how to combine φ and φa (e.g. αφ + βφa)



University of Siena

Adversarial Machine Learninìg M. Barni, Cybersecurity

Steganography and steganalysis

Stego message is more 
easily detected in flat 
regions

Know that 
message is never 
hidden in flat 
areas

Hide the 
stego
message in 
textured 
areas

Look for the 
message in 
textured 
regions 
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Steganography and steganalysis

The detector 
does not look at 
flat areas

Look for the 
message in 
textured 
regions 
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Steganography and steganalysis

The detector 
does not look at 
flat areas

Know that 
message is 
hidden in flat 
areas

Hide the 
stego
message in 
flat areas

Look for the 
message in 
flat areas
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Steganography and steganalysis

…

…
…

…
• Keep running around
• Model the arms race as a 

game
• Attackers:

• split the payload between 
flat and textured areas

• Defender
• Look at both flat an textured 

areas with different 
confidence

P. Schöttle, R. Böhme, “A Game-Theoretic Approach to Content-Adaptive Steganography”, in M. 
Kirchner, D. Ghosal (eds) Information Hiding. IH 2012. Lecture Notes in Computer Science, vol 7692. 
Springer, Berlin, Heidelberg
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Peculiarities of DL
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Peculiarities of DL

• Investigating the security of Deep Learning 
techniques is particularly important
– attacks carried out directly in the sample domain
– the huge dimensionality of the input and the 

parameter space eases the attacks
• adversarial examples
• attack transferability (?)

– opacity / presence of confounding factors
– huge dimension of training set
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GAN and game theory
• GANs and other generative models proved to be able to 

generate visually plausible fakes
– AI-generated fakes raise the alarm about fake media to a 

unprecedented level
– Game-theoretic formulation involving two CNNs !!!!
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Looking ahead
Who’s going to win
• The struggle between attackers and defenders is 

going on
• In many applications, the scale needle hangs on the 

side of attacker
• Yet as research goes on the task of the attacker is 

getting more and more difficult
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Looking ahead: new security threats

• Training poisoning
– Backdoor attacks

• C. Liao, H. Zhong, A. Squicciarini, S. Zhu, D. Miller, “Backdoor Embedding in 
Convolutional Neural Network Models via Invisible Perturbation” arXiv
preprint arXiv:1808.10307 (August 2018)

• Network protection
– CNN-Watermarking through proper training
– Anti-piracy transformation

• M. Chen, M. Wu, “Protect Your Deep Neural Networks from Piracy”, WIFS 
2018, Hong-Kong

• Privacy preserving CNN
– Homomorpich encryption, MPC
– Differential privacy (GAN-based)

• ………..


