

Cybersecurity

Machine Learning Security

Mauro Barni University of Siena

Machine Learning and Security

- The use of ML techniques (noticeably DL) for security applications has been rapidly increasing
 - Malware detection, Multimedia forensics, Biometric-based authentication, Traffic analysis, Steganalysis, Network intrusion detection, Detection of DoS, Data mining for intelligence applications, Cyberphysical security ...
- Little attention has been given to the security of machine learning
 - Yet fooling a ML system turns out to be an easy task

Striking examples

Magnified noise

Adversarial Machine Learninig

Striking examples: one pixel attack

AllConv

SHIP CAR(99.7%)

HORSE DOG(70.7%)

CAR AIRPLANE(82.4%)

NiN

HORSE FROG(99.9%)

DOG CAT(75.5%)

DEER DOG(86.4%)

VGG

DEER AIRPLANE(85.3%)

BIRD FROG(86.5%)

CAT BIRD(66.2%)

DEER AIRPLANE(49.8%)

HORSE

BIRD FROG(88.8%)

SHIP AIRPLANE(62.7%)

SHIP AIRPLANE(88.2%)

CAT DOG(78、?% }子位

Adversarial Machine Learninig

Striking examples: not only digital

Security OF Machine Learning

The basic assumptions behind ML

- Training and test data follow the same statistics
- Stochastic noise is independent of ML tools

Malicious setting

- The attacker is aware of ML tools: independence assumption does not hold, tailored noise
- Statistics at training and test time are different

Tailored vs random noise (security vs robustness)

- Inducing an error by adding random noise may be difficult since the direction of useful attacks may be very narrow
- This property is more pronounced in high dimensional spaces
- However, the attack is NOT random

The curse of dimensionality

• The case of linear classifier is easy to understand (back to watermarking)

$$\phi(\mathbf{x}) = \sum_{i} x_{i} w_{i} = T - \Delta$$

$$\phi(\mathbf{x} + z) = \sum_{i} x_{i} w_{i} + \sum_{i} z_{i} w_{i}$$

$$z = N(0, \sigma) \rightarrow \mathbb{E}[\sum_{i} z_{i} w_{i}] = 0$$
$$z = \alpha w \rightarrow \sum_{i} z_{i} w_{i} = \alpha ||w||^{2} = \alpha n \mathbb{E}[w^{2}]$$

• Extension to (amost) any (regular) function possible

Exploitation of empty regions

 Regions of the feature space for which no examples are provided are classified randomly and can be exploited by the attacker (again by adding a tailored noise)

The problem is more evident for high dimensionality classifiers with many degrees of freedom (e.g. CNN)

Exploitation of empty regions

Label poisoning

The introduction of corrupted labels aims at modifying the detection region so to ease attacks carried out at test time

Label poisoning

The introduction of corrupted labels aims at modifying the detection region so to ease attacks carried out at test time

Label poisoning

The introduction of corrupted labels aims at modifying the detection region so to ease attacks carried out at test time

A guided tour to Adv-ML

- Attacker's point of view
- Defender's point of view
- A joint perspective
 - Game-theoretic approach
- Looking ahead

Attacker's viewpoint: taxonomy

- Focus on binary detection
- In most cases (not always though) the system must detect the presence of an anomalous or dangerous situation, say H1

Decision → Truth ↓	HO	H1
HO	ОК	Denial of Service
H1	Evasion	ОК

• Attacks can be carried out at test time, training time or both

The importance of knowledge

"Knowledge is a weapon. Arm yourself before you ride forth to battle" (George R.R. Martin, A dance with dragons)

"If you know the enemy and know yourself, you need not fear the result of a hundred battles"

(Sun Tzu, The art of war)

Attacks with Perfect Knowledge (PK) vs attacks with Limited Knowledge (LK)

 $\phi(\mathcal{L},\mathcal{F};\mathcal{D})$

 $\mathcal{L} = hyperameters$ $\mathcal{F} = feature space$ $\mathcal{D} = training data$

Attacks with perfect knowledge (PK)

- The attacker knows the decision function exactly
 - white box attack
 - targeted attack
- Goal: exit (or enter) the decision region subject to a fidelity criterion
 - Closed form solution
 - Gradient descent and oracle attacks (also possible in blackor gray-box modality)

Gradient descent attack

• Two formulations

$$x^* = \arg\min_{x':d(x,x')} \Phi(x')$$
 $x^* = \arg\min_{x':\Phi(x')<0} d(x,x')$

• Solution based on gradient computation

The SVM case

$$\Phi(x) = \sum_{i} \alpha_{i} y_{i} k(x, x_{i}) + b$$

$$\nabla \Phi(x) = \sum_{i} \alpha_{i} y_{i} \nabla k(x, x_{i})$$

$$\nabla k(x, x_{i}) = -2\gamma (x - x_{i}) e^{-\gamma ||x - x_{i}||^{2}} \text{ RBF kernel}$$

• Easy solutions available also for CNN

HS image

Attacked image

.

M. Barni, Cybersecurity

Adversarial Machine Learninig

MF3 image

Attacked image

Gradient-based attacks against DL

Highly magnified attack

Classified as a *dog*

Classified as a *cat*

Attack domain

- Bringing back the attack in the pixel domain may be a difficult task
- Controlling distortion in the feature domain is also difficult
- Easier with DCT, wavelet and histogram-based features
- Not a problem with DL

Attacks in real world

• Carrying out the attack in the real world (analog domain) is challenging, but still possible

Attacks with limited knowledge

- When only the feature space (F^{*}) is known, the attacker may try to devise a Universal Attack
- The attack is effective against

 $\phi(\mathcal{L}, \mathcal{F}^*; \mathcal{D}) \quad \forall \mathcal{L}, \forall \mathcal{D}$

Attacks with limited knowledge (LK)

 The most common approach consists in attacking a surrogate detector (attack transferability)

 $\widehat{\phi} = \phi(\widehat{\mathcal{L}}, \mathcal{F}; \widehat{\mathcal{D}})$

Examples:

• N. Papernot, P. McDaniel, I. Goodfellow. "Transferability in machine learning: from phenomena to black-box attacks using adversarial samples." arXiv preprint arXiv:1605.07277 (2016).

Example

- To account for mismatch in training data a stronger attack must be applied
- Results regarding SVM-based detection of histogram stretching*

	ν	$\mathbf{P}_{\mathbf{e}}(\hat{\phi})$	$\mathbf{P}_{\mathbf{e}}(\phi)$	Mean SSIM	Mean PSNR
	0	100%	53%	0.99996	73.9766
	0.2	100	80.5	0.99995	72.6223
	0.4	100	100	0.99994	71.2038
		1	Ť		
Surrogate detector F			Real de	etector	

* Z. Chen, B. Tondi, X. Li, R. Ni, Y. Zhao, and M. Barni, "A gradient-based pixel-domain attack against SVM detection of global image manipulations", WIFS 2017, IEEE Int. Workshop, Rennes, France

Defender's viewpoint

"Knowledge is a weapon. Arm yourself before you ride forth to battle" (George R.R. Martin, A dance with dragons)

"If you know the enemy and know yourself, you need not fear the result of a hundred battles"

(Sun Tzu, The art of war)

- Adversary-aware detectors
 - Look for attack traces
 - Adversary aware training (detection vs resilience)

Adversary aware - informed - defenses

- The analyst looks for the traces left by the CF algorithm
- Build a new detector ϕ_{aw} using the same or a new set of features
- Most common case: retrain an ML detector
 - Rich enough feature space needed

 $\phi_{aw} = \phi(\mathcal{L}, \mathcal{F}; \mathcal{D} \cup \mathcal{D}_{aw})$

A way to exit the PK scenario or disinform the attacker Cat & mouse otherwise

 $\phi \rightarrow$ PK or LK attack to $\phi \rightarrow \phi_{aw}$

- Intrinsically (more) secure detectors
 - Feature choice

University of Siena

- Simple detection boundaries (possibly at the expense of robustness)
- 1-class detectors
- Multiple classifiers
- Randomized detectors

Detector architecture

1-class classifiers are intrinsically more robust against unknown attacks due to their close decision boundary

Knoweldge is a weapon ... for who?

If you know the enemy and know yourself, you need not fear the result of a hundred battles

If you know the enemy and know yourself, you need not fear the result of a hundred battles

Classical attack-defense cycle

- Avoid entering a never-ending cat & mouse loop
- Worst case assumption is often too pessimistic and does not say much about actual security

Adversarial machine learning and game theory: a perfect fit

Game Theory in a nutshell

D	4 S _{A,1}		S _{A,2}		S _{A,3}		S _{A,4}		S _{A,5}				S _{A,n}	
S _{D,1}	1	3	3	1	4	1	3	2	3	0			30	2
S _{D,2}	3	1	2	2	2	0	1	3	2	1			1	3
S _{D,3}	4	2	6	0	7	0	30	6	6	0			2	5
$S_{D,4}$	2	6	0	4	-3	-5	4	-8	0	0			1	9
S _{D,5}	7	-4	0	0	0	20	4	0	-1	0			0	12
$S_{D,m}$	0	0	25	0	30	15	12	0	17	0			11	16

Competitive (zero-sum) games

D	4 S _{A,1}		S _{A,2}		S _{A,3}		S _{A,4}		S _{A,5}				S _{A,n}	
S _{D,1}	1	-1	3	-3	4	-4	3	-3	3	-3			30	-30
S _{D,2}	3	-3	2	-3	2	-2	1	-1	2	-2			1	-1
$S_{D,3}$	4	-4	6	-6	7	-7	30	-30	6	-6			2	-2
$S_{D,4}$	2	-2	0	0	-3	3	4	-4	0	0			1	-1
$S_{D,5}$	7	-7	0	0	0	0	4	-4	-1	1			0	0
S _{D,m}	0	0	25	-25	30	-30	12	-12	17	-17			11	-11

Choice of strategies: worst case

- Players choose the strategy which results in the maximum of the minimum payoff
- This may result in a too pessimistic approach

Choice of strategies: worst case

- Players choose the strategy which results in the maximum of the minimum payoff
- This may result in a too pessimistic approach

Choice of strategies: worst case

- Players choose the strategy which results in the maximum of the minimum payoff
- This may result in a too pessimistic approach

Dominant strategy

When a dominant strategy exists a rationale player will surely play it

Nash equilibrium

No player gets an advantage by changing his strategy assuming the other does not change his own

$$u_1(s_1^*, s_2^*) \ge u_1(s_1, s_2^*)$$
 ∀ $s_1 \in S_1$
 $u_2(s_1^*, s_2^*) \ge u_2(s_1^*, s_2)$ ∀ $s_2 \in S_2$

... and many others

Examples (few available)

- D develops a detector
- A develops an attack \mathcal{A} againts ϕ
- D develops an algorithm ϕ_a to detect the traces left by \mathcal{A}
- Eventually D builds a combined detector $\phi' = \phi \circ \phi_a$

GAME

- A chooses the strength of the attack
- D decides how to combine ϕ and ϕ_a (e.g. $\alpha \phi + \beta \phi_a$)

M.C.Stamm, W.S.Lin, K.J.R.Liu, "Temporal forensics and anti-forensics for motion compensated video," IEEE TIFS, vol. 7, no. 4, pp. 1315–1329, Aug. 2012.

- Keep running around
- Model the arms race as a game
- Attackers:
 - split the payload between flat and textured areas
- Defender
 - Look at both flat an textured areas with different confidence

P. Schöttle, R. Böhme, "A Game-Theoretic Approach to Content-Adaptive Steganography", *in M. Kirchner, D. Ghosal (eds) Information Hiding. IH 2012.* Lecture Notes in Computer Science, vol 7692. Springer, Berlin, Heidelberg

Peculiarities of DL

Peculiarities of DL

- Investigating the security of Deep Learning techniques is particularly important
 - attacks carried out directly in the sample domain
 - the huge dimensionality of the input and the parameter space eases the attacks
 - adversarial examples
 - attack transferability (?)
 - opacity / presence of confounding factors
 - huge dimension of training set

GAN and game theory

- GANs and other generative models proved to be able to generate visually plausible fakes
 - AI-generated fakes raise the alarm about fake media to a unprecedented level
 - Game-theoretic formulation involving two CNNs !!!!

Looking ahead

Who's going to win

- The struggle between attackers and defenders is going on
- In many applications, the scale needle hangs on the side of attacker
- Yet as research goes on the task of the attacker is getting more and more difficult

Looking ahead: new security threats

- Training poisoning
 - Backdoor attacks
 - C. Liao, H. Zhong, A. Squicciarini, S. Zhu, D. Miller, "Backdoor Embedding in Convolutional Neural Network Models via Invisible Perturbation" arXiv preprint arXiv:1808.10307 (August 2018)
- Network protection
 - CNN-Watermarking through proper training
 - Anti-piracy transformation
 - M. Chen, M. Wu, "Protect Your Deep Neural Networks from Piracy", WIFS 2018, Hong-Kong
- Privacy preserving CNN
 - Homomorpich encryption, MPC
 - Differential privacy (GAN-based)

•