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Beyond confidentiality
• Up to now, we have been concerned with protecting 

message content (i.e. confidentiality) by means of 
encryption. 

• Will now consider how to protect message integrity
(i.e. protection from modification by unauthorized 
parties), and how to confirm the identity of the 
sender

• Sometimes these problems are more important than 
confidentiality
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Authentication

• Authentication mechanisms consist of 2 levels:
– low level: a function produces an authenticator, i.e. 

a value to be used for message authentication;
– high level: an authentication protocol uses the low 

level function to allow the recipient to verify the 
authenticity of the message. 
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The authenticator

• 3 alternative low level functions can be used:
– message encryption: the authenticator is the 

encryption of the whole message;
– message authentication code (MAC): the 

authenticator is the output (of fixed length) of a 
public function having as input the message and 
a secret key.

– hash function: the authenticator is the output (of 
fixed length) of a public function having as input 
the message. 
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Encryption

• Encryption
transforms data from a 
cleartext to ciphertext
and back

• Big plaintext yields big 
ciphertext, and so on. 

• "Encryption" is a two-
way operation. 
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Hash/MAC Functions

• Hashes/MACs, on the 
other hand, transform
a stream of data into
a small digest (a 
summarized form), 
and are strictly one
way operation. 

• Outputs have the 
same size no matter
how big the inputs are 
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Message Encryption

• Encryption by itself provides a way to 
authenticate a message

• The authenticator is the encrypted full message.
• It can be obtained through:

– Secret-key encryption 
– Public-key encryption
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Message Encryption
• If symmetric encryption is used
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Message Encryption

– Only A and B know the key: confidentiality
– Receiver knows the sender must have created the 

message: sender authentication
– Receiver knows the content has not been altered: 

message integrity
• Any modification by an attacker without key produces 

evident alteration
– Drawbacks 

• It is difficult to determine in an automatic way if the 
decrypted message is intelligible

• Non-repudiability is not granted



University of Siena

Authentication, digital signatures, PRNG M. Barni, University of Siena

Message Encryption
• If public-key encryption is used: 

– sender encrypts message using his/her private-key
– then encrypts with recipients public key
– achieves both secrecy and authentication

• Two public-key encryptions used on the entire message 
• Need to recognize corrupted messages
• Non-repudiability achieved
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Message Authentication Code
• A MAC is a cryptographic checksum of the message M, 

generated by means of a public function C:

MAC = CK(M)

• It condenses a variable-length message M into a fixed-
sized authenticator MAC (length n bits) by using a secret 
key K

• The output depends on input M and K, that must be 
shared by A and B !!!
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Message Authentication Code (MAC)
• The function C is not invertible (unlike a cryptographic 

function)
• Usually it is a many-to-one function: potentially many 

messages can have same MAC:
– Given N messages, and MAC length = n bits, we have 

2n possible MACs, but usually N >> 2n

– Finding two messages with the same MAC must be very 
difficult
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Message Authentication Code (MAC)
• The MAC is appended by the sender to the message 

before its transmission
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Message Authentication Code (MAC)
• The receiver performs the same computation on the 

received message and checks if it matches the received 
MAC:
– It ensures message integrity (through MAC)
– It ensures that the message comes from the sender 

(through K)
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Message Authentication Code (MAC)
• In the previous protocol, the MAC does not provide 

secrecy, since the message is transmitted unprotected.
• It is possible to add encryption to achieve secrecy

– generally different keys for each process are used
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Symmetric Ciphers for MACs

• We can obtain a MAC with any cipher block chaining 
mode and use final block as a MAC

• Data Authentication Algorithm (DAA) is a widely 
used MAC based on DES-CBC

ci = Ek(mi ⊕ ci-1)
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Message Authentication Code (MAC)

• Why using a MAC instead of symmetric 
crypto?
– In some applications only authentication is needed;
– Some applications need authentication to persist 

longer than encryption (eg. archival use);
– In a flexible protocol confidentiality and 

authentication functionalities need to be separated.
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Hash Function
• A hash function is a computationally efficient function 

mapping binary strings of arbitrary length to binary 
strings of some fixed length, called hash-values or 
message digests.

• The hash function is public and not keyed 
– output depends only on input, (cf. MAC is keyed)

• Hash is used to detect changes to message: a change 
in 1 or more bits in M produces a different hash.
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Requirements for Hash Functions

• It can be applied to any sized message M
• It produces fixed-length output h
• h=H(M) is easy to compute for any 

message M
• Strong one-way property: it exhibits 

collision resistance
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Collision resistance
• It is infeasible to find any x,y s.t. H(y) = H(x)

– strong collision resistance

x

y
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Collision resistance

• Given x it is infeasible to find y s.t. H(y)=H(x)
– weak collision resistance

• Here the adversary has a more difficult time finding 
collisions since it must collide on a particular input 
rather than any input 

• It is possible to demonstrate that:
– Strong CR => Weak CR
– Weak CR does not imply Strong CR

SCR

WCR
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Block Ciphers as Hash Functions
• We can use block ciphers as hash functions

– using H0=0 and zero-pad of final block
– compute: Hi = EMi [Hi-1]
– use final block as the hash value
– similar to CBC but without a key

• A problem if we use DES is that the resulting 
hash is too small (64-bit)
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A zoo of hash functions
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MD5

• Designed by Ronald Rivest (the R in 
RSA)

• Latest in a series of MD2, MD4 
• It works on input blocks of 512 bits, and it 

produces a 128-bit hash value
• Until recently was the most widely used 

hash algorithm in various standards and 
applications
– recently security flaws were identified

and SHA-2 is preferred now
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MD5 Overview
• Pad message so that its length is 448 mod 512 bits 

– if length already ok, 512 bits added (padding = 1÷512 bits)

• Append 64-bit representing original message length value 
(before padding, the value is mod 264 )

• The obtained message has a length = L x 512
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MD5 Overview
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MD5 Overview

• Initialize 128-bit buffer 
– intermediate results stored in a 128 bits buffer, represented as 4 

registers of 32 bits (A,B,C,D), initialised with fixed 32 bits 
integer numbers

• Process message in 512-bit blocks: 
– the core of the algorithm is a compression function (HMD5) 

composed by 4 rounds on input message block & buffer;
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HMD5 Compression Function

• Given by 4 rounds

• Each round has as input 
the block Yq and the 
buffer value CVq;

• The final output is added 
to the buffer value, to 
obtain the new value of 
the buffer CVq+1

• Each round involves 16 
subrounds

Y



University of Siena

Authentication, digital signatures, PRNG M. Barni, University of Siena

Subround example

• Mi = 32 bits from Y

• Ki = 32 bit constant (different for 
each round)

• Four functions F used in different 
rounds

• F(B,C,D) = (B∧C)∨(notB∧ D)

• G(B,C,D) = (B∧D)∨(C∧notD)

• H(B,C,D) = B ⊕ C ⊕ D

• I(B,C,D) = C ⊕ (B∨notD)
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Uses of MD5

• Many Unix and Linux 
systems provide the 
md5sum program; 
here, the "streams of 
data" are "files“

• This shows that all
input streams yield 
hashes of the same 
length
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Strength of MD5
• Try changing just one character of a small test file: even

very small changes to the input yields sweeping changes
in the value of the hash (avalanche effect). 

• MD5 hash is dependent on all message bits
• Computational complexity of brute force attacks

– to obtain 2 messages with same digest is 264 op.
– to find a message with a given digest is 2128 op. 
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Limits of MD5

• We now know that MD5 is 
vulnerable

– On March 2006, V. Klima
published an algorithm that can 
find a collision within one 
minute on a single notebook 
computer 

– On the right, two strings 
producing an MD5 collision, 
that is the same MD5 hash 
79054025255fb1a26e4bc422aef54
eb4

– http://www.mscs.dal.ca/~seling
er/md5collision/

• d131dd02c5e6eec4693d9a0698aff95c
2fcab58712467eab4004583eb8fb7f89
55ad340609f4b30283e488832571415a
085125e8f7cdc99fd91dbdf280373c5b
d8823e3156348f5bae6dacd436c919c6
dd53e2b487da03fd02396306d248cda0
e99f33420f577ee8ce54b67080a80d1e
c69821bcb6a8839396f9652b6ff72a70

• d131dd02c5e6eec4693d9a0698aff95c
2fcab50712467eab4004583eb8fb7f89
55ad340609f4b30283e4888325f1415a
085125e8f7cdc99fd91dbd7280373c5b
d8823e3156348f5bae6dacd436c919c6
dd53e23487da03fd02396306d248cda0
e99f33420f577ee8ce54b67080280d1e
c69821bcb6a8839396f965ab6ff72a70
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Uses of Hash Function / 1
• The hash code gives redundancy to check message 

authentication
• The encryption of M and hash gives secrecy and source 

authentication:
– e.g.: the use of a symmetric key K allows sender 

identification
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Uses of Hash Function / 2
• The hash code gives message authentication
• The encryption of the hash only allows sender 

authentication and fast computation
• EK[H(M)] is nothing but a MAC
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Digital Signatures
• Message authentication does not tackle with the lack of 

trust between sender and recipient
• if John sends to Mary an authenticated msg, following 

disputes can arise: 
– Mary can generate a message & claim it was sent by John 

since she has the authentication key shared with John
– John can deny to be the sender of a message since Mary 

can create a fake message, there is no way to 
demonstrate that the sender was really John

• Digital signatures have been proposed to avoid these 
kind of problems
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Digital Signatures
• The purpose of a digital signature is to provide a 

means for an entity to bind its identity to a piece of 
digital information. 

• The process of signing entails transforming the 
message and some secret information held by the 
entity into a tag called a signature.
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Digital Signatures
• Similar to the manual signatures
• Digital signatures provide the ability to: 

– verify author & time of signature
– authenticate message contents 
– can be verified by third parties to resolve disputes

• They include authentication functionalities plus 
additional features
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Digital Signature Properties
• Must depend on the message signed
• Must use information specific of sender

– to prevent message forgery and repudiation
• Must be relatively easy to produce
• Must be relatively easy to recognize & verify
• Must be computationally infeasible to forge

– a new message for existing digital signature
– a fraudulent digital signature for given message

• Storing a copy of a digital signature should be practical
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Signatures with Hash Function
• Relies on Public-key cryptographic
• The hash code gives message authentication
• E KRa [H(M)]  is a digital signature, assuring that the msg

comes only from A
• No secrecy
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Signature with Hash Function
• Like the previous method, with the addition of secrecy 

through symmetric algorithm
• Most used approach
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Signature with Hash Function
• There are several reasons to sign the hash instead of 

the whole document
• Efficiency

– In this way the signature is much shorter. In addition hashing 
is generally much faster than encrypting.

• Integrity
– Without the hash function, the text "to be signed" may have to 

be split (separated) in blocks small enough for the signature 
scheme to act on them directly.

– However, the receiver of the signed blocks is not able to 
recognize if all the blocks are present and in the appropriate 
order.
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Digital Signature Scheme
• It consists of 3 algorithms:
• A CA uses a key generation algorithm G to produce a 

"key pair" (PK, SK) for the signer.
• PK is the verifying key, which is to be public, and SK 

is the signing key, to be kept private.
• Authenticity of the key is ensured by a certificate
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Digital Signature Scheme
A signing
algorithm S, 

• Upon inputting
a message m 
and a signing
key SK

• It produces a 
signature σ. 
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Digital Signature Scheme
A signature verifying

algorithm V, that
• Given a message m, 

a verifying key PK, 
and a signature σ, 

• Accepts or reject the 
signed document
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Digital Signature Scheme 
• In the famous paper "New Directions in Cryptography", 

Diffie and Hellman first described the notion of a digital 
signature scheme, although they only conjectured that 
such schemes existed.

• Soon afterwards, Rivest, Shamir, and Adleman invented 
the RSA algorithm that could be used for primitive digital 
signatures. 

• The first widely marketed software package to offer 
digital signature was Lotus Notes 1.0, released in 1989, 
which used the RSA algorithm.
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Digital Signature Scheme with RSA
• In RSA the d.s. is the hash of M, encrypted with the 

sender’s private key
• The signer computes σ = H(M)d mod n. 
• To verify, the receiver checks that σe = H(M) mod n. 
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Digital Signature Standard (DSS)
• The National Institute of Standards and Technology 

(NIST) in 1993 adopted their Digital Signature 
Standard (DSS). 

• It uses the SHA (Secure Hash Algorithm) to generate a 
hash, and a new digital signature algorithm, DSA 
(Digital Signature Algorithm).

• DSS is the standard, DSA is the algorithm

• DSS designed only for digital signatures, not for 
cryptography or key exchange.
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DSS 
• In DSS H(M) and a random number k are signed with 

sender’s private key + a global public key.
• The d.s. is given by two components, s and r.
• Result of verification is compared only with r.

DSA DSA
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Digital Signature Algorithm (DSA)
• DSA creates a 320 bit signature, consisting of two 160-

bit integers r and s.
– The integer r is a function of a 160-bit random 

number k (ephemeral key) that changes with every 
message

– The integer s is a function of: message, signer’s 
private key x, integer r and ephemeral key k

• Security depends on difficulty of solving the discrete 
logarithm problem
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DSA Key generation
• Choose a 160-bit prime q.
• Choose an L-bit prime p, such that p=qz+1 for some 

integer z, 512≤L≤2048, and L divisible by 64.
• Choose h, where 1< h < p−1 and let g = hz mod p > 1. 
• Randomly choose the private key x, 0 <x <q. 
• Calculate the public key y = gx = hzx mod p. 

• KRa= x
• KUa= y = hzx

• KUG= (p, q, g) can be shared between different users 
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DSA Signing
• Generate a random value k where 0 < k < q

– k is kept secret

• Calculate r = (gk mod p) mod q 
• Calculate s = (k-1(H(M) + xr)) mod q

– H(M) is the SHA-1 hash function applied to message M

• Recalculate signature in the case that r =0 or s =0 
• The signature is (r,s)

DSA
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DSA Signature Verification
• To verify the signature, the receiver needs (p, q, g) 

and the sender's public key y.
• The parameters p, q, and g can be shared by many 

users.

KRa= x

KUa= y

KUG= p,g,q
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DSA Signature Verification
• Reject the signature if 0<r<q or 0<s <q not 

satisfied. 
• Calculate w = (s)-1 mod q
• Calculate u1 = (H(M)*w) mod q 
• Calculate u2 = (rw) mod q 
• Calculate v = ((gu1yu2) mod p) mod q 
• The signature is valid if v = r
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DSA Signature Verification
• If v = r, then the signature is verified and the verifier 

can have high confidence that the received 
message was sent by the party holding the secret 
key x corresponding to y. 

• If v does not equal r, the message is considered 
invalid.
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Correctness of DSA
• From g = hz mod p it follows:
• gq ≡ hqz ≡ hp-1 ≡ 1 (mod p) by Fermat's little theorem 

(p prime, 1<h<p−1 , gcd(h,p)=1). 

• Now let m mod q = n mod q, i.e. m = n + kq for some 
integer k. Then:

• gm mod p = gn+kq mod p = (gn gkq) mod p =
((gn mod p )(gq mod p )k) mod p = gn mod p
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Correctness of DSA

We want to verify that:
v = ((gu1*yu2) mod p) mod q = r;

(g (H(M)*w) mod q *y (r*w) mod q) mod p =
= (g (H(M)*w) mod q *g x(r*w) mod q) mod p =
= (g (H(M)*w) *g x(r*w) ) mod p =
= (g (H(M)+ xr)*w ) mod p = (gk ) mod p

-> since (g(a) mod q) mod p= (g a+kq) 
mod p = (ga) mod p for previous 
slide

-> it follows from the defining 
equation of s:
s  = (k-1(H(M) + x*r))
k  = (H(M) + x*r)*(s-1)                  = 

(H(M) + x*r)*w
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Correctness of DSA
We want to verify that:
v = ((gu1*yu2) mod p) mod q = r;

(g (H(M)*w) mod q *y (r*w) mod q) mod p = (gk) mod p

So v = ((gk) mod p) mod q 
r = (gk mod p) mod q 
Then v=r
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Random Numbers
• Random number generation is an important primitive 

in many cryptographic mechanisms.
• It has many uses in cryptography:

– Session keys
– Public key generation
– Keystream for a one-time pad

• In all cases it is critical that these values be 
– Statistically random with uniform distribution, statistically 

independent
– Unpredictable, cannot infer future sequence on previous 

values
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Natural Random Noise
• Getting good random numbers is important but 

difficult !
• Best source is natural randomness in real world 

– find a regular but random event and monitor it 
– do generally need special hw to do this 
– e.g. radiation counters, radio noise, audio noise, 

thermal noise in diodes, etc
• Starting to see such hw in new CPU's 
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Natural Random Noise
• Since most true sources of random sequences (if 

there is such a thing) come from physical means, 
they tend to be either costly or slow in their 
generation. 

• To overcome these problems, methods have been 
devised to construct pseudorandom sequences in a 
deterministic manner from a shorter random 
sequence called a seed. 
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Pseudorandom Number Generators
• Pseudorandom sequences appear to be generated by 

a truly random source to those who do not know how 
they are generated 

• The generation algorithm is known, but the seed is not
• Many algorithms have been developed to generate 

pseudorandom bit sequences of various types. 
– Most of them are completely unsuitable for cryptographic 

purposes !
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Pseudorandom Number Generators
• Minimum security requirement for a PRNG is that the 

random seed length k should be sufficiently large so 
that a search over 2k possible seeds is infeasible

• Two general requirements: 
– the output sequences should be statistically 

indistinguishable from truly random sequences, 
– the output values should be unpredictable to an 

adversary with limited computational resources
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Linear Congruential Generator
• The principle of a LCG is simple: a new pseudo random 

number Xn is generated on the basis of the previous one 
by adding a certain offset and wrapping the result if it 
exceeds a certain limit

• Xn+1 = (a+ bXn) mod c

• where:
– c  (modulus) c > 0
– b  (multiplier) 0 < b <c
– a  (increase) 0 ≤ a < c
– X0 (seed) 0 ≤ X0 < c
– if params are integers, Xn is an integer 0 ≤ Xn < c.
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Linear Congruential Generator
• Randomness depends on the chosen values.
• The period of a general LCG is at most c, usually 

less. 
• The LCG has a full period if and only if:

– a and c are relatively prime,
– (b-1) is divisible by all prime factors of c
– (b-1) is a multiple of 4 if c is a multiple of 4.
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Linear Congruential Generator
• While LCG are commonly used for simulation 

purposes and probabilistic algorithms, they are 
predictable and hence entirely insecure:

• Given a partial output sequence, the remainder of the 
sequence can be reconstructed even if the 
parameters a, b, and c are unknown.
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Blum Blum Shub Generator
• The Blum-Blum-Shub pseudorandom bit generator is 

a cryptographically secure pseudorandom bit 
generator (CSPRBG) under the assumption that 
integer factorization is intractable. 

• It forms the basis for the Blum-Goldwasser
probabilistic public-key encryption scheme
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Blum Blum Shub Generator

p mod 4 = q mod 4 = 3 ensures that the cycle length is large
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Blum Blum Shub Generator
• Based on public key algorithms
• Unpredictable, passes next-bit test
• Security rests on difficulty of factoring n
• Slow, since very large numbers must be used
• Too slow for cipher use, good for key generation 
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