WIFS'13 The Watchful Forensic Analyst: Multi-Clue Information Fusion with Background Knowledge

<u>Marco Fontani[#], Enrique Argones-Rúa^{*}, Carmela Troncoso^{*}, Mauro Barni[#]</u>

[#] University of Siena (IT)

* GRADIANT: Galician R&D Center for Advanced Telecomm. (ES)

Multimedia Forensics

Creating forged contents is nowaday easy...

□ And also cheap!

Addressed Problem

- More and more multimedia forensics algorithms
- Based on different footprints:
 - Different detection capabilities
 - Sensitive to different characteristics of analyzed content

Goal: to fuse all the available information

Contribution

- □ We focus on image forensics, and investigate:
 - What background information can serve
 - How to fruitfully exploit it to improve overall performance of decision fusion systems
- We provide:
 - 1. An evidence-based approach to quantify the influence of a given characteristic
 - 2. A way to include such information in
 - A Dempster-Shafer based decision fusion system
 - A SVM based decision fusion system

Case Study 1/2

JPEG Image Forgery Detection:
 Many possible kinds of splicing

Case Study 1/2

JPEG Image Forgery Detection:

Many possible kinds of splicing

Plenty of tools, based on complementary footprints

Aligned Double JPEG compr.

- Z. Lin, J. He, X. Tang, and C. Tang. Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis. Pattern Recognition, 42(11):2492–2501, 2009.
- T. Bianchi, A. De Rosa, and A. Piva. Improved DCT coefficient analysis for forgery localization in jpeg images. In ICASSP, pp 2444–2447. IEEE, 2011.

Non – Aligned Double JPEG compr.

- W. Luo, Z. Qu, J. Huang, and G. Qiu. A novel method for detecting cropped and recompressed image blocks. In IEEE Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2007.
- T. Bianchi and A. Piva. Detection of non-aligned double jpeg compression with estimation of primary compression parameters. In ICIP, 2011.

JPEG Ghost Effect

• H. Farid. Exposing digital forgeries from JPEG ghosts. IEEE Transaction on Information Forensics and Security, 4:154–160, 2009.

Case Study 2/2

- We generated a dataset of 50600 spliced images
 - Four different cut-&-paste procedures
 - Various size for the spliced region (64x64, 128x128, ... 1024x1024)
 - Various combinations of compression quality
 - Heterogeneous contents

Background Information

- Tools search for footprints left by processing
- \Box Footprint less detectable \rightarrow tool less reliable
- Defining the "detectability" of a footprint in general is hard to do
- □ We propose an evidence-based approach:

 $\mathcal{P} = \mathcal{P}_1 imes \mathcal{P}_2 imes \cdots imes \mathcal{P}_P$ Set of analyzed properties

$$\mathcal{R}_j = \mathcal{P}_1 imes \dots \mathcal{P}_{j-1} imes \{\mathcal{P}_j \cap \mathcal{R}\} imes \dots \mathcal{P}_P$$

Restricted set for the j-th
property

Background Information

- Algorithms search for footprints left by processing
- \Box Footprint less detectable \rightarrow tool less reliable
- Defining the "detectability" of a footprint in general is hard to do
- We propose an evidence-based approach:

$$P_D^f(\mathcal{R}_j) = \int_{\Lambda_1(\tau)\cap\mathcal{R}_j} p(x|\mathcal{H}_1) \, \mathrm{d}x$$
$$P_{FA}^f(\mathcal{R}_j) = \int_{\Lambda_1(\tau)\cap\mathcal{R}_j} p(x|\mathcal{H}_0) \, \mathrm{d}x$$
(Restricted)
Acceptance Region

of the lool

Influence of Image Properties

Application to our Case Study

	Tool	$\mathbf{R}_{\mathrm{Z}}^{1}$:	$\mathbf{R}_{\mathbf{Z}}^{2}$:	$\mathbf{R}_{\mathbf{Z}}^{3}$:	$\mathbf{R}_{\mathbf{Z}}^4$:	$\mathbf{R}_{\mathbf{Z}}^{5}$:
Size	1001	(0,64]	(64,128]	(128,256]	(256,512]	(512,1024]
	JPGH	0.63	0.67	0.71	0.75	0.80
	JPDQ	0.37	0.62	0.72	0.75	0.78
	JPLC	040	0.39	0.36	0.31	0.21
	JPNA	0.74	0.75	0.74	0.73	0.72
	JPBM	0	0.08	0.21	0.31	0.40

		\mathbf{R}^1 .	\mathbf{R}^2 .	R 3.	\mathbf{R}^4 .	R 5.
		(0.30)	(30,60)	(60.150)	(150, 230)	(230, 255)
	IPGH	$\frac{(0,30)}{0.49}$	0.68	$\frac{(00,130)}{0.73}$	$\frac{(130,230)}{0.62}$	$\frac{(230,233)}{0.20}$
	IPDO	0.42	0.63	0.75	0.02	0.20
Aveluge		0.00	0.03	0.70	0.34	0.04
	JPLC	0.09	0.55	0.38	0.23	0.19
	JPNA	0.58	0.78	0.80	0.60	0.36
	JPBM	0.15	0.19	0.23	0.14	-0.23
		R ¹ _S :	$\mathbf{R}_{\mathbf{S}}^{2}$:	$\mathbf{R}_{\mathbf{S}}^{3}$:	$\mathbf{R}_{\mathbf{S}}^{4}$:	$\mathbf{R}_{\mathbf{S}}^{5}$:
		(0,5]	(5,10]	(10,15]	(20,40]	(40,60]
	JPGH	0.51	0.69	0.70	0.73	0.74
Std. Dev.	JPDQ	0.31	0.60	0.65	0.71	0.73
	JPLC	0.28	0.28	0.34	0.38	0.33
	JPNA	0.46	0.65	0.76	0.79	0.80

Dempster-Shafer Theory

- Alternative to classical Bayesian theory
 - Good for modeling missing information
 - No need for prior probabilities
- Information is represented through belief assignments
- Dempster's Combination Rule: fuse information from multiple sources
- See the paper for more details and references

Dempster's Combination Rule

- A rule to combine two BBAs coming from independent sources into a single one.
- □ Given m₁ and m₂ two BBAs defined over the same frame, their orthogonal sum m₁₂ is defined as:

$$m_{12}(X) = m_1(X) \oplus m_2(X) = \frac{1}{1-K} \cdot \sum_{\substack{A,B \subseteq \Theta:\\A \cap B = X}} m_1(A)m_2(B)$$

Notice

- Can be used directly only for tool looking for the same trace
- Merging heterogeneous tools requires more theoretical steps...

Embedding Background Information: DST fusion framework

Starting point: DST fusion framework for image forensic:

Embedding Background Information: DST fusion framework

Starting point: DST fusion framework for image forensic:

Interpretation of Tools Output (mapping to BBA) Combine BBAs from different tools

Account for traces compatibility

Multi-Clue Belief Assignment

T.Denoeux, A k-nearest neighbor classification rule based on Dempster-Shafer theory - Systems, Man and Cybernetics, IEEE Transactions on, vol. 25, no. 5, pp. 804–813, 1995.

Formally

- Each training sample works as an expert about his class
- We use Dempster-Shafer Theory to model its information
 - A labeled training set is created, where each element is the concatenation of tool output and observed parameters

$$\mathcal{T} = \{t^i = (o^i, p_1^i, \dots, p_P^i) : i = 1 \dots N\}$$

2. For an unseen sample $u = (o^u, p_1^u, \dots, p_P^u)$, each element in T provides a belief about u belonging to its class

$$m_i^u(X) = \begin{cases} & \beta e^{-\gamma d(u,t_i)} \\ & 1 - \beta e^{-\gamma d(u,t_i)} \end{cases}$$

3. These mass assignments are combined with Dempster's rule

$$m^u(X) = \bigoplus_{i=1}^k m^u_i(X)$$

Embedding Background Information: SVM

□ We start from the Q-stack classifier idea [K07]

- Give to the classifier a measure of the quality of the signal that originated the features
- Instead of quality of the signal, we provide influencing properties to the classifier

[K07] K. Kryszczuk and A. Drygajlo, Q-stack: Uni- and multimodal classifier stacking with quality measures, in Proc. of the 7th International Workshop on Multiple Classifier Systems, MCS, 2007, pp. 367–376.

Experimental Results 1/2

Compare performance of:

- DST and SVM frameworks endowed with background information
- The same frameworks without such information
- Dataset: the set of images in our Case Study
 - 50600 JPEG images (synthetically generated)
 - Half tampered, half original
 - Several kinds of splicing

Experimental Results 2/2

- DST framework: +11%
 SVM framework: +14%
- Pros and Cons:
 - SVM:
 - 🙂 Ready-to-use
 - Requires joint training of all tools (huge datasets)
 - DST:
 - Explicitly models traces relationship
 - Exponential complexity in the number of traces

Concluding Remarks

- Background information valuable for forensics
- Especially important when different tools are available
 - Different frameworks, comparable performance gain
- Future work:
 - Widen the theoretical perspective
 - Consider more heterogeneous sets of tools
 - Extend to fusion of probability maps

Acknowledgments

Lifting Up the Potential of the Galician Telecomms Center

Thanks for your attention! Questions?

