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Multimedia Forensics 

¨  Creating forged contents is nowaday easy… 

 
 
 
¨  And also cheap! 

~13$ 



Addressed Problem 

¨  More and more multimedia forensics algorithms 
¨  Based on different footprints: 

¤ Different detection capabilities 
¤  Sensitive to different 

characteristics of analyzed content 
 

¨  The analyst may have knowledge of: 
¤  Relationships between examined traces 
¤  Background information 

on the reliability of each tool 
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RQ: (65 70] − ρ: 0.65

RQ: (70 80] − ρ: 0.80

RQ: (80 90] − ρ: 0.95

RQ: (90 95] − ρ: 1.00

RQ: (95 100] − ρ: 0.72

Goal:  
to fuse all the available information  



Contribution 

¨  We focus on image forensics, and investigate: 
¤  What background information can serve 
¤  How to fruitfully exploit it to improve overall performance 

of decision fusion systems 

¨  We provide: 
1.  An evidence-based approach to quantify the influence of 

a given characteristic 
2.  A way to include such information in  

n A Dempster-Shafer based decision fusion system 
n A SVM based decision fusion system 



Case Study 1/2 

¨  JPEG Image Forgery Detection: 
¤ Many possible kinds of splicing 
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Case Study 1/2 

¨  JPEG Image Forgery Detection: 
¤ Many possible kinds of splicing 
¤  Plenty of tools, based on complementary footprints 

•  Z. Lin, J. He, X. Tang, and C. Tang. Fast, automatic and fine-grained tampered JPEG image detection via DCT 
coefficient analysis. Pattern Recognition, 42(11):2492–2501, 2009. 

•  T. Bianchi, A. De Rosa, and A. Piva. Improved DCT coefficient analysis for forgery localization in jpeg 
images. In ICASSP, pp 2444–2447. IEEE, 2011. 

Aligned Double JPEG compr. 

• W. Luo, Z. Qu, J. Huang, and G. Qiu.  A novel method for detecting cropped and recompressed image 
blocks. In IEEE Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2007. 

•  T. Bianchi and A. Piva. Detection of non-aligned double jpeg compression with estimation of primary 
compression parameters. In ICIP, 2011. 

Non – Aligned Double JPEG compr. 

• H. Farid. Exposing digital forgeries from JPEG ghosts. IEEE Transaction on Information Forensics and 
Security, 4:154–160, 2009. 

JPEG Ghost Effect 



Case Study 2/2 

¨  We generated a dataset of 50600 spliced images 
¤  Four different cut-&-paste procedures 
¤ Various size for the spliced region (64x64, 128x128, … 

1024x1024) 
¤ Various combinations of compression quality 
¤ Heterogeneous contents 



Background Information 

¨  Tools search for footprints left by processing 
¨  Footprint less detectable è tool less reliable 

¨  Defining the “detectability” of a footprint in general is hard to 
do 

¨  We propose an evidence-based approach: 

interest in the image forensics community: given a suspect region, the
goal is to understand whether the region has been manipulated (e.g.,
it has been copy-pasted from another image) or not. Since a great
deal of images in the world are stored in JPEG format, we consider
the task of fusing the information coming from tools for splicing
detection in JPEG images. As explained in [1], a significant amount
of tools have been proposed for this task, based on the analysis of
different traces. With the aim of fusing algorithms that: i) search for
complementary traces, and ii) work in different domains (DCT- versus
pixel- domain), we select the following 5 tools from the state of the
art: the algorithm by Farid et al. based on JPEG-ghosts [8] (termed
JPGH from now on); the tool by Bianchi et al [9] and the one by Lin
et al. for detecting aligned double JPEG artifacts (JPDQ and LPLC,
respectively); the tool described in [10] and the one proposed by Luo
in [11] for detecting non aligned double JPEG artifacts (JPNA and
JPBM, respectively).

During the creation of a splicing, different kinds of traces may
be left into the image, depending on the processing steps applied
by the forger. When dealing with JPEG splicings, the four kinds of
forgery procedures described in Table I cover the vast majority of
combination of traces. The rightmost column of the table makes it
clear that most kinds of tampering are detected only by a subset of
the available tools.

TABLE I
PROCEDURE FOR THE CREATION OF DIFFERENT CLASSES OF TAMPERING.

Class Procedure

Detected

by

Class 1
Region is cut from a JPEG image and pasted,
breaking the 8x8 grid, into an uncompressed
one; the result is saved as JPEG.

JPNA
JPBM

Class 2
Region is taken from an uncompressed image
and pasted into a JPEG one; the result is
saved as JPEG.

JPGH
JPDQ
JPLC

Class 3

Region is cut from a JPEG image and pasted
into an uncompressed one in a position
multiple of the 8x8 grid; result is saved as
JPEG.

JPGH

Class 4
Region is cut from a JPEG image and pasted
(without respecting the original 8x8 grid) into
a JPEG image; the result is saved as JPEG.

JPGH
JPDQ
JPLC
JPNA
JPBM

In order to generate a sufficiently large dataset, we collected a total
of 630 uncompressed images representing a variety of scenes (indoor,
outdoor, people, landscapes, etc.), all cropped to size 1536⇥1536
pixels. We considered as possible values for the size of the tampering:
{64 ⇥ 64, 128 ⇥ 128, 256 ⇥ 256, 512 ⇥ 512, 1024 ⇥ 1024} pixels.
Each tampering is created by pasting, in the center of the image, a
region cut from another version (e.g., uncompressed or compressed
differently, see Table I) of the same image. This tampering strategy
creates forgeries that are virtually undetectable to the eye. For
tampered images we let the quality of the first JPEG compression
(Q

1

) take values in the set {40, 45, . . . , 100}, and the quality of
the final compression is chosen as Q

2

= Q

1

+ �, where � is
chosen at random from the set {5, 10, 15, 20}. Untouched images are
compressed only once with Q = {65, 70, . . . , 100}. By combining
the above settings, from each uncompressed image the following files
have been created:

• 40 non-tampered JPEG images, by using all possible values for
QF

1

, and taking all possible sizes for the suspect (although not
tampered) region;

• 40 forged images, by using all of the 5 possible sizes of the tam-
pering and two random coupling for Q

1

and Q

2

, thus obtaining
10 images forged according to each different procedure.

The dataset therefore consists of a total of 50400 JPEG images,
half of them tampered. Each different class of splicing consists of
25200/4 = 6300 sample images. During the creation of the dataset,
we annotated both the average value and the standard deviation of
pixels in the suspect region (in the case of a color image, the image
is converted to the YCbCr space and the Y channel is considered).
The resulting dataset can be downloaded1, together with the output
obtained from the 5 considered tools.

III. BACKGROUND PARAMETERS AND THEIR INFLUENCE

The idea behind image forensics is that when a digital image is
processed some traces are left in it, that depend both on the kind of
processing and on the type of image (e.g., JPEG or uncompressed).
By searching for appropriate footprints, many different algorithms
have been developed to investigate the processing history of images;
for example, some algorithms work directly in the pixel domain,
while others work in a transformed domain like the DCT. A common
feature of all detectors is that when a footprint becomes “less
detectable”, forensic algorithms relying on that footprint become
less reliable, meaning that they do not discriminate well between
presence and absence of the trace. Giving a formal definition of
the detectability of a generic footprint is beyond the scope of this
paper. Besides, the detectability of different footprints is affected by
different parameters, and a golden rule seems hard to derive.

These considerations suggest that the reliability of a given tool
can be better investigated by using a sound experimental approach,
that is, by conveniently testing the tool. To this end, we propose a
possible procedure that the analyst may use to validate the reliability
of the various tools as a function of a set of measurable parameters,
so to establish if they actually impact the performance of the tools.

Suppose we have a set F of forensic tools whose goal is to tell,
for a given image, whether it contains a specific trace of forgery
(we denote this hypothesis with H

1

) or not (H
0

). For the case study
defined in Section II, we can write:

F = {JPGH, JPDQ, JPLC, JPNA, JPBM}.
For simplicity, we assume that each tool f 2 F outputs a score
s

f

(x) (that may be, for example, a probability for the presence of
the tampering trace the tool is looking for), and decides for H

0

for
the images such that s

f

(x)  ⌧ . In this way, the tool partitions the
space of possible images X in two regions: ⇤

0

, containing images for
which H

0

is accepted, and ⇤

1

, defined similarly for H
1

. According
to classical detection theory, the probability of detection and false
alarm for the specific tool and a given ⌧ are defined, respectively, as:

P

f

D

=

Z

⇤1(⌧)

p(x|H
1

) dx and P

f

FA

=

Z

⇤1(⌧)

p(x|H
0

) dx,

where p(x|H
0

) denotes that the image does not contain the trace and
p(x|H

1

) denotes the opposite case.
Now, let us assume that the analyst has access to a vector of

independent parameters p 2 P , where P = P
1

⇥P
2

⇥ · · ·⇥P
P

. We
are interested in relating the performance of each tool to subsets of
P ; for simplicity, we restrict one parameter at a time to a subrange
of its possible values R ⇢ P

j

. To do that, we define

R
j

= P
1

⇥ . . .P
j�1

⇥ {P
j

\R}⇥ . . .P
P

. (1)

1http://clem.dii.unisi.it/⇠vipp/index.php/download/imagerepository
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Background Information 

¨  Algorithms search for footprints left by processing 
¨  Footprint less detectable è tool less reliable 

¨  Defining the “detectability” of a footprint in general is hard to 
do 

¨  We propose an evidence-based approach: 

(Restricted) 
Acceptance Region 

of the Tool 

Practically, R
j

denotes the set of images whose j-th parameter takes
value in R. Notice that the assumption of independent parameters was
made so to simplify the discussion; the framework can be adapted
to account for the presence of dependent parameters by choosing a
refined definition for the set P .

Using the above notation, we can write the probability of detection
and the probability of false alarm of f when the analysis is restricted
to a specific set of images (those for which the parameter j belongs
to R):

P

f

D

(R
j

) =

Z

⇤1(⌧)\Rj

p(x|H
1

) dx, (2)

P

f

FA

(R
j

) =

Z

⇤1(⌧)\Rj

p(x|H
0

) dx. (3)

Equations (2) and (3) give the probabilities for a given threshold ⌧ .
By varying ⌧ , a Receiver Operating Characteristic curve is generated,
that is commonly used to evaluate the discrimination capability of a
detector. By taking the integral of the ROC, the Area Under Curve
(AUC) is obtained and, finally, the Gini coefficient [12], denoted with
⇢, can be used to summarize the performance of the tool:

⇢ = 2⇥ AUC � 1. (4)

By varying R
j

in (1), the forensic analyst can investigate whether
the performance of a tool change significantly when different subsets
of X are considered.

Let us now apply this approach to the case study described in the
previous section. We define a product set of four possibly relevant
parameters

P = Q ⇥ Z ⇥ A ⇥ S,

defined as follows:
• Q - compression strength: lossy coding after the manipulation

process discards some information, thus concealing the al-
ready vanishing footprints left by the processing steps. Stronger
compressions are against the analyst, because they erase the
footprints more deeply.

• Z - size of the analysed region: most forensic tools rely either
on a statistical model or on the extraction and classification of
some features. In both cases, working with more data results in
a more reliable analysis.

• A - average value of pixels in the analysed region: many forensic
tools suffer from saturated regions (i.e., having very low or
very high luminance values). This holds especially for DCT-
based algorithms, where the truncation errors due to saturation
introduce anomalies in DCT coefficients.

• S - standard deviation of pixels in the analysed region: uniform
(i.e., having very low standard deviation) content yields an
extremely sparse DCT representation, that can hardly lead to
a reliable forensic analysis.

We use the dataset introduced in Section II to investigate the
dependency of the performance of tools on each of the above
parameters. Figure 1 shows the ROC curves obtained by each tool in
F for different ranges of the parameter Q, along with the value of ⇢
calculated for each curve. We can definitely state that this parameter
strongly influences the performance of tools in F and, noticeably,
some tools are more sensitive than others (compare, for example, the
variation of the ⇢ value for JPGH and JPDQ).

Plotting similar figures for each of the parameters is not possible
here, so we summarize with Table II the analysis for other parameters
in P . We see that all the parameters affect the performance of the
tools and, most noticeably, not all the tools are affected in the same

way, like, for instance, the size of the analyzed region (parameter Z),
that strongly affects the performance of JPGH and JPBM but does
not influence much JPNA. When performing a joint analysis, such an
information can greatly help the analyst in reaching a correct global
decision.

TABLE II
IMPACT OF PARAMETERS Z, A AND S ON THE PERFORMANCE OF FIVE
IMAGE FORENSIC TOOLS. INTERVALS ARE CHOSEN SO TO EMPHASIZE

EXTREME VALUES FOR EACH PARAMETER.

Tool

R

1

Z:
(0,64]

R

2

Z:
(64,128]

R

3

Z:
(128,256]

R

4

Z:
(256,512]

R

5

Z:
(512,1024]

JPGH 0.63 0.67 0.71 0.75 0.80
JPDQ 0.37 0.62 0.72 0.75 0.78
JPLC 040 0.39 0.36 0.31 0.21
JPNA 0.74 0.75 0.74 0.73 0.72
JPBM 0 0.08 0.21 0.31 0.40

R

1

A:
(0,30]

R

2

A:
(30,60]

R

3

A:
(60,150]

R

4

A:
(150,230]

R

5

A:
(230,255]

JPGH 0.49 0.68 0.73 0.62 0.20
JPDQ 0.50 0.63 0.70 0.54 0.04
JPLC 0.09 0.35 0.38 0.25 0.19
JPNA 0.58 0.78 0.80 0.60 0.36
JPBM 0.15 0.19 0.23 0.14 -0.23

R

1

S:
(0,5]

R

2

S:
(5,10]

R

3

S:
(10,15]

R

4

S:
(20,40]

R

5

S:
(40,60]

JPGH 0.51 0.69 0.70 0.73 0.74
JPDQ 0.31 0.60 0.65 0.71 0.73
JPLC 0.28 0.28 0.34 0.38 0.33
JPNA 0.46 0.65 0.76 0.79 0.80
JPBM 0.07 0.13 0.18 0.21 0.30

IV. EXPLOITING THE BACKGROUND INFORMATION

In this Section we describe two methods to endow multi-clue
information fusion for image forensics with background knowledge.
The first method is an extension of the framework in [4], while the
second one is a modification of a Q-stack SVM, as defined in [6].
We start by giving a brief introduction to Dempster-Shafer Theory
of Evidence.

A. Introduction to Dempster-Shafer Theory of Evidence

Dempster-Shafer Theory of Evidence (DST) [13] can be seen as
a generalization of the Bayesian theory of probability. Let the frame
⇥

x

= {x
1

, x

2

, . . . , x

n

} define a finite set of mutually exclusive and
exhaustive possible values of a variable x. A Basic Belief Assignment
(BBA) is a function m : 2

⇥ ! [0, 1] satisfying:

m(;) = 0;

X

A✓⇥

m(A) = 1 (5)

where 2

⇥ is the power set of ⇥, that is the set of all possible
propositions about x. Barely speaking, m(A) denotes the part of
belief that supports exactly A but, due to the lack of information,
does not support any strict subset of A.

A fundamental element of DST is Dempster’s combination rule,
that allows to combine several belief functions defined over the same
frame, provided that they are obtained from independent sources of
evidence.

Definition Let m

1

and m

2

be BBAs over the same frame ⇥. Let
us also assume that K, defined below, is positive. Then for all non-

Practically, R
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• Q - compression strength: lossy coding after the manipulation

process discards some information, thus concealing the al-
ready vanishing footprints left by the processing steps. Stronger
compressions are against the analyst, because they erase the
footprints more deeply.

• Z - size of the analysed region: most forensic tools rely either
on a statistical model or on the extraction and classification of
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a more reliable analysis.
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very high luminance values). This holds especially for DCT-
based algorithms, where the truncation errors due to saturation
introduce anomalies in DCT coefficients.
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a reliable forensic analysis.

We use the dataset introduced in Section II to investigate the
dependency of the performance of tools on each of the above
parameters. Figure 1 shows the ROC curves obtained by each tool in
F for different ranges of the parameter Q, along with the value of ⇢
calculated for each curve. We can definitely state that this parameter
strongly influences the performance of tools in F and, noticeably,
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Plotting similar figures for each of the parameters is not possible
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The first method is an extension of the framework in [4], while the
second one is a modification of a Q-stack SVM, as defined in [6].
We start by giving a brief introduction to Dempster-Shafer Theory
of Evidence.
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Dempster-Shafer Theory 

¨  Alternative to classical Bayesian theory 
¤  Good for modeling missing information 

¤  No need for prior probabilities 

¨  Information is represented through belief assignments 

¨  Dempster’s Combination Rule: fuse information from multiple 
sources 

¨  See the paper for more  
details and references 



Dempster’s Combination Rule 

¨  A rule to combine two BBAs coming from independent 
sources into a single one. 

¨  Given m1 and m2 two BBAs defined over the same frame, 
their orthogonal sum m12 is defined as: 

Notice 

•  Can be used directly only for tool looking for the same trace 

•  Merging heterogeneous tools requires more theoretical steps… 
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Given the BBA in ??, the Belief function Bel : 2Θ → [0, 1] is defined as
follows:

Bel(A) =
∑

B⊆A

m(B)

Bel(A) summarizes all our reasons to believe in A with the available
knowledge.

m(X) =

{

1 for X = {(tα, nβ) ∪ (nα, tβ) ∪ (nα, nβ)}
0 for X = {(tα, tβ)}

(1)

Θα ×Θβ

mΘα

ABtot
(X) =

1

1−K
·

{

AR·AT ·CB+CA·BR·BT+AR·AT ·BR·BT for X= {(tα)}

AN ·AR·CB+CA·BN ·BR+AN ·AR·BN ·BR for X= {(nα)}

CA·CB for X= {(tα) ∪ (nα)}

(2)

where K = AN · AR · BT · BR + AT · AR · BN ·BR

Θ = {tα, nα}

2Θ

Let Bel1 and Bel2 be belief functions over the same frame Θ with BBAs
m1 and m2. Let us also assume that K, defined below, is positive. Then for
all non-empty X ⊆ Θ the function m12 defined as:

m12(X) = m1(X)⊕m2(X) =
1

1−K
·

∑

A,B⊆Θ:
A∩B=X

m1(A)m2(B) (3)

where K =
∑

A,B:A∩B=∅m1(A)m2(B), is a BBA function defined over Θ and
is called the orthogonal sum of Bel1 and Bel2, denoted by Bel1 ⊕Bel2.

1
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T.Denoeux, A k-nearest neighbor classification rule based on Dempster-Shafer theory - Systems, Man and Cybernetics,  
IEEE Transactions on, vol. 25, no. 5, pp. 804–813, 1995. 
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Formally 

¨  Each training sample works as an expert about his class 
¨  We use Dempster-Shafer Theory to model its information 

1.  A labeled training set is created, where each element is the 
concatenation of tool output and observed parameters 

 
2.  For an unseen sample    , each element in T 

provides a belief about    belonging to its class 

3.  These mass assignments are combined with Dempster’s rule 
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Embedding Background Information: SVM 

¨  We start from the Q-stack classifier idea [K07] 
¤  Give to the classifier a measure of the quality of the signal that 

originated the features 

¨  Instead of quality of the signal, we provide influencing 
properties to the classifier 

SVM 
with prob. estimates 

Tool A output 

Tool B output 

Tool X output 

JPEG Quality 

Average value 

Fused probability 
of tampering 

[K07] K. Kryszczuk and A. Drygajlo, Q-stack: Uni- and multimodal classifier stacking with quality measures, in Proc. of the 7th International Workshop 
on Multiple Classifier Systems, MCS, 2007, pp. 367–376. 



Experimental Results 1/2 

¨  Compare performance of: 
¤ DST and SVM frameworks endowed with background 

information 
¤  The same frameworks without such information 

¨  Dataset: the set of images in our Case Study 
¤  50600 JPEG images (synthetically generated) 
¤ Half tampered, half original 
¤  Several kinds of splicing 



¨  DST framework: +11% 

¨  SVM framework: +14% 

¨  Pros and Cons: 
¤  SVM:  

J Ready-to-use 
L Requires joint training of all 

tools (huge datasets) 

¤  DST:  
J Explicitly models traces 

relationship 
L Exponential complexity in the 

number of traces 

Experimental Results 2/2 
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Background−aware SVM  ρ = 0.88
Background−aware DST  ρ = 0.82
Basic DST     ρ = 0.71
Basic SVM  ρ = 0.74

Fig. 2. ROC curves with error bars and averaged Gini coefficients for
background information aware methods and their counterparts.

the two methods are quite different: the SVM-based approach needs
a heavier training phase to produce the model, then classification is
performed at constant time; the DST-based method perform the k-NN
search and mass pooling at each query, but this computation can be
efficiently implemented to be linear in the size of the training dataset
(on a standard desktop computer, the two steps took 0.5 millisecond
per image on average). Finally we stress that, in addition to the
accuracy gain, both the proposed approaches greatly facilitate the
analyst’s task compared to those in [4] and [5], since the interpretation
of tool outputs and background information is learned automatically,
instead of being delegated to the analyst.

VI. CONCLUSION

In this paper we investigated the use of background informa-
tion to improve the performance of multi-clue information fusion
systems in image forensic scenarios. First, we proposed a way to
describe and quantify the influence of background parameters on
the performance of forensic tools; then we devised two methods
to perform multi-clue analysis while taking these parameters into
account. Both background-aware methods obtained a significant
and, interestingly, comparable performance gain compared to their
“fusion-only” counterpart. Future work will focus on: widening the
theoretical perspective of this framework; applying it under different
information fusion strategies, and test it when a more heterogeneous
set of tools is fused.
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VII. APPENDIX

Both the DST- and SVM- based approaches take a significant
advantage from normalization of feature vectors, so that they are
well distributed within a common interval. We choose this interval to
be [0,1], and show how we scaled the tool outputs and the considered
background parameters. In the following, W denotes the normalized
version of ˆW.

a) Normalization of tool outputs: Among the set of tools
described in Section II, those that are based on DCT coefficients
analysis tend to produce outputs that, despite being defined in [0,1],
are concentrated toward extremes. If we call x̂

W

the output of tool
W , its normalization x

W

is obtained as follows:
• JPLC: x

L

= (log

10

(x̂

L

)/15) + 1;
• JPNA: x

N

=

log2(x̂N )

20 log2(1.5)
+ 1;

• JPBM: x
B

= log

10

(x̂

B

)/6 + 1;
Outputs from tools JPGH and JPDQ are well-distributed in the
interval [0,1], so they do not need any processing.

b) Normalization of reliability parameters: Reliability param-
eters can be very different in nature, so we used different order-
preserving functions to normalize them in the interval [0,1].

• Size of the suspect region: denote with X and Y the height and
width of the image, then:

S =

log

2

(

p
X ⇤ Y )� 3

6

.

• Compression Quality Factor: QF =

ˆQF/100.
• Average pixel value: AVG =

ˆAVG/255.
• Standard deviation (STD): for natural images, the standard de-

viation will unlikely assume values higher than 100. Therefore,
the scaled parameter is obtained as: STD =

ˆSTD/100.
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Concluding Remarks 

¨  Background information valuable for forensics 
¨  Especially important when different tools are available 

¤  Different frameworks, comparable performance gain  

¨  Future work: 
¤  Widen the theoretical perspective 
¤  Consider more heterogeneous sets of tools 

¤  Extend to fusion of probability maps 
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