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Abstract—Image Forensics (IF) is a challenging research topic, that
suffers from strong limitations when facing with real world applications.
A possible way to cope with these limitations is to resort to data fusion,
whereby the outputs of different forensic tools are used to reach a final
decision about the analyzed image. Nevertheless, existing schemes do not
take full advantage of all the information available to the analyst, like the
knowledge of the dependence of the performance of forensic tools on side
conditions. Specifically, in this paper we show how the performance of
forensic tools varies according to a number of parameters, most of which
are directly observable by the analyst. After showing some practical
examples, we propose a method to cast this background information
into two multi-clue information fusion frameworks, yielding a significant
improvement of the overall performance at virtually no cost.

I. INTRODUCTION

Nowadays the majority of images are created, stored and dis-
tributed in a digital format that is fairly easy to edit and tamper
with. As a result, digital image forensics has become an important
research field, that aims at proving the authenticity and integrity
of digital images. Many algorithms have been proposed to tackle
this problem [1], especially focusing on JPEG images. In general,
however, forensics algorithms are presented as stand alone tools,
focusing on the detection of the trace of a particular kind of forgery;
for instance, some techniques are applicable only if the image has
been compressed twice, while others require that the image has never
been compressed.

Since the forensic analyst does not know in advance which kind of
processing may have been applied to produce a forgery, a scrupulous
analysis requires the use of several tools, in order to detect as many
different traces as possible. This fact fostered the development of
information fusion systems tailored for image forensics, that allow
to merge the results stemming from different analysis tools. Some
of these systems fuse the information at the so-called feature level,
that is, by devising a complex classifier that accounts for multiple
footprints [2] [3]. Recently, two approaches have been proposed
working at the score level, meaning that the scalar output of the
tools is considered during fusion [4], [5].

When performing information fusion, quantifying the reliability of
each tool is a crucial need, especially in situations where conflicts
between the output of the tools arise. It may be the case, for example,
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that one specific tool is reliable when the analyzed image has been
compressed only slightly, while another tool may be more robust
to compression, and so on. When the analyst has access to some
background information that sheds some light on the reliability of
each tool, he can potentially improve the performance by a great
amount. This fact has been investigated in the biometric research
field: Kryszczuk and Drygajlo proposed to use a so-called “Q-
stack” classifier, that takes into account quality measures of the input
signal to improve the classification performance [6]; more recently,
Argones-Rúa et al. derived a necessary and sufficient condition for re-
ducing error when introducing quality-based score normalisation, and
presented a score normalising technique for the speaker identification
problem [7]. If we turn to image forensics, and to the best of our
knowledge, [4] and [5] are the only works containing a first intuition
of this issue, since the analyst can specify a “reliability score” for
each algorithm of the pool of tools at his disposal. However, both in
[4] and [5], such a score is chosen empirically, based on reported
results and experiments, and we lack from an automatic method
to infer this score from the information available to the analyst;
furthermore, the score is incorporated within the system in a rather
ad-hoc, non structured way. Currently, two interesting questions need
to be faced in image forensics: how to understand which background
information can help detection, by establishing its impact on the
performance of forensic tools, and how to fruitfully exploit such a
background information.

This paper deals with both the questions: in Section II we introduce
a case study, that will be used as reference in the rest of the paper;
then in Section III we propose a methodology to investigate the im-
pact of background parameters on the performance of forensic tools.
As a key contribution, in Section IV, we investigate two methods
to endow multi-clue analysis with this background information: the
former builds on the framework presented in [4]; while the latter,
based on SVMs, is inspired by the idea of Q-stack classifiers [6].
Finally, in Section V we show that a significant improvement on
performance can be obtained by taking into account background
information.

II. A REFERENCE CASE STUDY

Without limiting the generality of our analysis, the topic addressed
in this paper is more easily defined and treated by relying on a
case study. We choose the splicing detection task because of its vast



interest in the image forensics community: given a suspect region, the
goal is to understand whether the region has been manipulated (e.g.,
it has been copy-pasted from another image) or not. Since a great
deal of images in the world are stored in JPEG format, we consider
the task of fusing the information coming from tools for splicing
detection in JPEG images. As explained in [1], a significant amount
of tools have been proposed for this task, based on the analysis of
different traces. With the aim of fusing algorithms that: i) search for
complementary traces, and ii) work in different domains (DCT- versus
pixel- domain), we select the following 5 tools from the state of the
art: the algorithm by Farid et al. based on JPEG-ghosts [8] (termed
JPGH from now on); the tool by Bianchi et al [9] and the one by Lin
et al. for detecting aligned double JPEG artifacts (JPDQ and LPLC,
respectively); the tool described in [10] and the one proposed by Luo
in [11] for detecting non aligned double JPEG artifacts (JPNA and
JPBM, respectively).

During the creation of a splicing, different kinds of traces may
be left into the image, depending on the processing steps applied
by the forger. When dealing with JPEG splicings, the four kinds of
forgery procedures described in Table I cover the vast majority of
combination of traces. The rightmost column of the table makes it
clear that most kinds of tampering are detected only by a subset of
the available tools.

TABLE I
PROCEDURE FOR THE CREATION OF DIFFERENT CLASSES OF TAMPERING.

Class Procedure Detected
by

Class 1
Region is cut from a JPEG image and pasted,
breaking the 8x8 grid, into an uncompressed
one; the result is saved as JPEG.

JPNA
JPBM

Class 2
Region is taken from an uncompressed image
and pasted into a JPEG one; the result is
saved as JPEG.

JPGH
JPDQ
JPLC

Class 3

Region is cut from a JPEG image and pasted
into an uncompressed one in a position
multiple of the 8x8 grid; result is saved as
JPEG.

JPGH

Class 4
Region is cut from a JPEG image and pasted
(without respecting the original 8x8 grid) into
a JPEG image; the result is saved as JPEG.

JPGH
JPDQ
JPLC
JPNA
JPBM

In order to generate a sufficiently large dataset, we collected a total
of 630 uncompressed images representing a variety of scenes (indoor,
outdoor, people, landscapes, etc.), all cropped to size 1536×1536
pixels. We considered as possible values for the size of the tampering:
{64 × 64, 128 × 128, 256 × 256, 512 × 512, 1024 × 1024} pixels.
Each tampering is created by pasting, in the center of the image, a
region cut from another version (e.g., uncompressed or compressed
differently, see Table I) of the same image. This tampering strategy
creates forgeries that are virtually undetectable to the eye. For
tampered images we let the quality of the first JPEG compression
(Q1) take values in the set {40, 45, . . . , 100}, and the quality of
the final compression is chosen as Q2 = Q1 + δ, where δ is
chosen at random from the set {5, 10, 15, 20}. Untouched images are
compressed only once with Q = {65, 70, . . . , 100}. By combining
the above settings, from each uncompressed image the following files
have been created:
• 40 non-tampered JPEG images, by using all possible values for
QF1, and taking all possible sizes for the suspect (although not
tampered) region;

• 40 forged images, by using all of the 5 possible sizes of the tam-
pering and two random coupling for Q1 and Q2, thus obtaining
10 images forged according to each different procedure.

The dataset therefore consists of a total of 50400 JPEG images,
half of them tampered. Each different class of splicing consists of
25200/4 = 6300 sample images. During the creation of the dataset,
we annotated both the average value and the standard deviation of
pixels in the suspect region (in the case of a color image, the image
is converted to the YCbCr space and the Y channel is considered).
The resulting dataset can be downloaded1, together with the output
obtained from the 5 considered tools.

III. BACKGROUND PARAMETERS AND THEIR INFLUENCE

The idea behind image forensics is that when a digital image is
processed some traces are left in it, that depend both on the kind of
processing and on the type of image (e.g., JPEG or uncompressed).
By searching for appropriate footprints, many different algorithms
have been developed to investigate the processing history of images;
for example, some algorithms work directly in the pixel domain,
while others work in a transformed domain like the DCT. A common
feature of all detectors is that when a footprint becomes “less
detectable”, forensic algorithms relying on that footprint become
less reliable, meaning that they do not discriminate well between
presence and absence of the trace. Giving a formal definition of
the detectability of a generic footprint is beyond the scope of this
paper. Besides, the detectability of different footprints is affected by
different parameters, and a golden rule seems hard to derive.

These considerations suggest that the reliability of a given tool
can be better investigated by using a sound experimental approach,
that is, by conveniently testing the tool. To this end, we propose a
possible procedure that the analyst may use to validate the reliability
of the various tools as a function of a set of measurable parameters,
so to establish if they actually impact the performance of the tools.

Suppose we have a set F of forensic tools whose goal is to tell,
for a given image, whether it contains a specific trace of forgery
(we denote this hypothesis with H1) or not (H0). For the case study
defined in Section II, we can write:

F = {JPGH, JPDQ, JPLC, JPNA, JPBM}.

For simplicity, we assume that each tool f ∈ F outputs a score
sf (x) (that may be, for example, a probability for the presence of
the tampering trace the tool is looking for), and decides for H0 for
the images such that sf (x) ≤ τ . In this way, the tool partitions the
space of possible images X in two regions: Λ0, containing images for
which H0 is accepted, and Λ1, defined similarly for H1. According
to classical detection theory, the probability of detection and false
alarm for the specific tool and a given τ are defined, respectively, as:

P fD =

∫
Λ1(τ)

p(x|H1) dx and P fFA =

∫
Λ1(τ)

p(x|H0) dx,

where p(x|H0) denotes that the image does not contain the trace and
p(x|H1) denotes the opposite case.

Now, let us assume that the analyst has access to a vector of
independent parameters p ∈ P , where P = P1×P2×· · ·×PP . We
are interested in relating the performance of each tool to subsets of
P; for simplicity, we restrict one parameter at a time to a subrange
of its possible values R ⊂ Pj . To do that, we define

Rj = P1 × . . .Pj−1 × {Pj ∩R} × . . .PP . (1)

1http://clem.dii.unisi.it/∼vipp/index.php/download/imagerepository
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Practically, Rj denotes the set of images whose j-th parameter takes
value inR. Notice that the assumption of independent parameters was
made so to simplify the discussion; the framework can be adapted
to account for the presence of dependent parameters by choosing a
refined definition for the set P .

Using the above notation, we can write the probability of detection
and the probability of false alarm of f when the analysis is restricted
to a specific set of images (those for which the parameter j belongs
to R):

P fD(Rj) =

∫
Λ1(τ)∩Rj

p(x|H1) dx, (2)

P fFA(Rj) =

∫
Λ1(τ)∩Rj

p(x|H0) dx. (3)

Equations (2) and (3) give the probabilities for a given threshold τ .
By varying τ , a Receiver Operating Characteristic curve is generated,
that is commonly used to evaluate the discrimination capability of a
detector. By taking the integral of the ROC, the Area Under Curve
(AUC) is obtained and, finally, the Gini coefficient [12], denoted with
ρ, can be used to summarize the performance of the tool:

ρ = 2× AUC− 1. (4)

By varying Rj in (1), the forensic analyst can investigate whether
the performance of a tool change significantly when different subsets
of X are considered.

Let us now apply this approach to the case study described in the
previous section. We define a product set of four possibly relevant
parameters

P = Q× Z× A× S,

defined as follows:
• Q - compression strength: lossy coding after the manipulation

process discards some information, thus concealing the al-
ready vanishing footprints left by the processing steps. Stronger
compressions are against the analyst, because they erase the
footprints more deeply.

• Z - size of the analysed region: most forensic tools rely either
on a statistical model or on the extraction and classification of
some features. In both cases, working with more data results in
a more reliable analysis.

• A - average value of pixels in the analysed region: many forensic
tools suffer from saturated regions (i.e., having very low or
very high luminance values). This holds especially for DCT-
based algorithms, where the truncation errors due to saturation
introduce anomalies in DCT coefficients.

• S - standard deviation of pixels in the analysed region: uniform
(i.e., having very low standard deviation) content yields an
extremely sparse DCT representation, that can hardly lead to
a reliable forensic analysis.

We use the dataset introduced in Section II to investigate the
dependency of the performance of tools on each of the above
parameters. Figure 1 shows the ROC curves obtained by each tool in
F for different ranges of the parameter Q, along with the value of ρ
calculated for each curve. We can definitely state that this parameter
strongly influences the performance of tools in F and, noticeably,
some tools are more sensitive than others (compare, for example, the
variation of the ρ value for JPGH and JPDQ).

Plotting similar figures for each of the parameters is not possible
here, so we summarize with Table II the analysis for other parameters
in P . We see that all the parameters affect the performance of the
tools and, most noticeably, not all the tools are affected in the same

way, like, for instance, the size of the analyzed region (parameter Z),
that strongly affects the performance of JPGH and JPBM but does
not influence much JPNA. When performing a joint analysis, such an
information can greatly help the analyst in reaching a correct global
decision.

TABLE II
IMPACT OF PARAMETERS Z, A AND S ON THE PERFORMANCE OF FIVE
IMAGE FORENSIC TOOLS. INTERVALS ARE CHOSEN SO TO EMPHASIZE

EXTREME VALUES FOR EACH PARAMETER.

Tool R1
Z:

(0,64]
R2

Z:
(64,128]

R3
Z:

(128,256]
R4

Z:
(256,512]

R5
Z:

(512,1024]
JPGH 0.63 0.67 0.71 0.75 0.80
JPDQ 0.37 0.62 0.72 0.75 0.78
JPLC 040 0.39 0.36 0.31 0.21
JPNA 0.74 0.75 0.74 0.73 0.72
JPBM 0 0.08 0.21 0.31 0.40

R1
A:

(0,30]
R2

A:
(30,60]

R3
A:

(60,150]
R4

A:
(150,230]

R5
A:

(230,255]
JPGH 0.49 0.68 0.73 0.62 0.20
JPDQ 0.50 0.63 0.70 0.54 0.04
JPLC 0.09 0.35 0.38 0.25 0.19
JPNA 0.58 0.78 0.80 0.60 0.36
JPBM 0.15 0.19 0.23 0.14 -0.23

R1
S :

(0,5]
R2

S :
(5,10]

R3
S :

(10,15]
R4

S :
(20,40]

R5
S :

(40,60]
JPGH 0.51 0.69 0.70 0.73 0.74
JPDQ 0.31 0.60 0.65 0.71 0.73
JPLC 0.28 0.28 0.34 0.38 0.33
JPNA 0.46 0.65 0.76 0.79 0.80
JPBM 0.07 0.13 0.18 0.21 0.30

IV. EXPLOITING THE BACKGROUND INFORMATION

In this Section we describe two methods to endow multi-clue
information fusion for image forensics with background knowledge.
The first method is an extension of the framework in [4], while the
second one is a modification of a Q-stack SVM, as defined in [6].
We start by giving a brief introduction to Dempster-Shafer Theory
of Evidence.

A. Introduction to Dempster-Shafer Theory of Evidence

Dempster-Shafer Theory of Evidence (DST) [13] can be seen as
a generalization of the Bayesian theory of probability. Let the frame
Θx = {x1, x2, . . . , xn} define a finite set of mutually exclusive and
exhaustive possible values of a variable x. A Basic Belief Assignment
(BBA) is a function m : 2Θ → [0, 1] satisfying:

m(∅) = 0;
∑
A⊆Θ

m(A) = 1 (5)

where 2Θ is the power set of Θ, that is the set of all possible
propositions about x. Barely speaking, m(A) denotes the part of
belief that supports exactly A but, due to the lack of information,
does not support any strict subset of A.

A fundamental element of DST is Dempster’s combination rule,
that allows to combine several belief functions defined over the same
frame, provided that they are obtained from independent sources of
evidence.

Definition Let m1 and m2 be BBAs over the same frame Θ. Let
us also assume that K, defined below, is positive. Then for all non-
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Fig. 1. ROC curves for tools in F for different ranges of last JPEG compression quality factor: RQ(a, b] denotes the set of all images in the dataset whose
last compression quality factor falls within (a, b]. In each plot, the probability of detection P fD is plotted against the probability of false alarm P fFA.

empty A ⊆ Θ the function m12 defined as:

m12(A) =
1

1−K ·
∑
i,j:

Ai∩Bj=A

m1(Ai) ·m2(Bj) (6)

where K =
∑
i,j:Ai∩Bj=∅m1(Ai)m2(Bj), is a BBA function and

is called the orthogonal sum of m1 and m2, denoted by m1 ⊕m2.

B. Reference Multi-Clue Fusion Framework

A framework that exploits DST for combining the evidence coming
from several tools has recently been proposed in [4]; the framework
basically follows five steps:

1) outputs from each tool are separately mapped to a BBA about
the presence/absence of the searched trace;

2) the analyst provides, if possible, a reliability score for each tool
that discounts the certainty of the tool;

3) information from tools searching for the same trace is fused
using Dempster’s rule;

4) the obtained BBAs about different traces are adapted to a
common domain and fused together;

5) compatibility relationships between different traces (modelled
through a BBA) are introduced using Dempster’s rule.

We are mainly concerned about the first steps of the scheme, where
information coming from each tool is converted to a BBA about
the presence or absence of a trace. In [4], this mapping is totally
delegated to the analyst: in step 1, he uses three mapping functions,
that are considered as an input to the fusion framework, to map the
scalar output of the tool to a BBA over the frame Θα = {tα, nα},
where tα is the proposition “trace α is present”, nα is the proposition
“trace α is not present”, and {tα ∪ nα} is the doubtful proposition
“trace α may or may not be present”. In step 2, the analyst models
the reliability of the tool with a scalar number, obtained from exper-
imental results, and uses it as a weighting parameter to increase the
doubt that resulted from the first step. Hence, the task of interpreting
background information is also delegated to the analyst. Needless to
say, when the number of background parameters increases, such an
interpretation becomes very difficult.

C. A DST-based Method to Endow Multi-Clue Analysis with Back-
ground Information

We now introduce an alternative way to automatically interpret the
output of the tool and simultaneously account for the background
information, without any need for the analyst to interpret the latter.
Since in this preliminary phase of the framework tools are treated
separately, in the following we will refer to a single, generic tool.

The problem we are facing with can be formalized as follows:
after running the tool on a suspect image searching for a trace α, the
analyst obtains a scalar output o. He also extracts the background

information, yielding an array (p1, . . . , pP ) of parameter values. The
analyst wants to map this information to a BBA on the frame Θα,
that will be fused with those coming from other tools.

In accordance with the hypotheses of [4], let us suppose that the
analyst has a training set

T = {ti = (oi, pi1, . . . , p
i
P ) : i = 1 . . . N} (7)

of N training samples, where, for the i-th sample, oi denotes the
output obtained from the tool and pij denotes the value assumed by
the j-th background parameter, properly scaled and normalized (see
the Appendix of the paper for details). Each training sample belongs
to one of the possible classes in C = {C0, C1}, where C0 is the class
of images containing the searched trace, and C1 the class of images
without the trace.

As opposed to common classification problems, our goal here is
not to assign an unseen sample u = (ou, pu1 , . . . , p

u
P ) to one class in

C. Instead, we want to map it into a basic belief assignment over the
frame Θα, reflecting the confidence of the tool about the presence
of the looked-for trace. The key idea we build upon, that was first
introduced in [14], is to model the elements of T as a source of
evidence about u, and use Dempster’s rule to pool the evidence.
Intuitively, the closer a training sample is to u, the stronger will be
the supporting evidence it provides. Formally, let Tu,k ⊂ T be the
set of k training samples nearest to u according to some distance
d(·, ·). Then, an element ti ∈ Tu,k belonging to class C0 provides
the following BBA over Θα:

mu
i (X) =

{
βe−γd(u,ti) for X = {tα}

1− βe−γd(u,ti) for X = {tα ∪ nα} , (8)

where β ∈ (0, 1) denotes the maximum belief we commit to a
single training sample, and γ controls the width of the kernel. On
the contrary, an element ti belonging to class C1 provides:

mu
i (X) =

{
βe−γd(u,ti) for X = {nα}

1− βe−γd(u,ti) for X = {tα ∪ nα} . (9)

As to the distance function, a reasonable choice is

d(u, ti) = ||u− ti||2,

provided that values are well distributed within a common interval
(this issue is addressed in the Appendix of the paper).

Equations (8) and (9) deserve a comment: a sample belonging to
class C0 assigns some evidence to the proposition “u comes from
an image containing the searched trace” and the rest of the evidence
to the doubtful proposition “the image may or may not contain the
trace”. The same reasoning applies for samples belonging to class
C1, as in equation (9). Notice that, when the unseen sample u is
very far from ti, this training sample will provide a BBA that is
completely doubtful, instead of partitioning the mass between the two



propositions tα and nα. On the other hand, such a partitioning may
occur after evidence pooling, when some of the k nearest neighbours
belong to one class and some to the other, and they are all near to
u. This situation means that the unseen sample lays in a “confused”
part of the space (i.e., a region where the tool is less reliable): there
are training samples near to it, but they belong to different classes.

Once the BBA assigned by each element in Tu,k has been calcu-
lated, we can use Demspter’s combination rule to pool the evidence,
yielding:

mu(X) =

k⊕
i=1

mu
i (X), (10)

where ⊕ denotes the application of Dempster’s orthogonal sum
defined in (6) to all the mu

i . The pooled BBA in (10) summarizes
the belief of the analyst about presence of the trace after observing
the output of one tool and the background information. As desired,
this certainty is strongly influenced by background parameters: as
one or more parameters move towards unfavourable values, samples
in the dataset are likely to mix between the two classes, resulting
in a less informative pooled BBA. Moreover, the final BBA will be
increasingly doubtful as the unseen sample moves in unpopulated
parts of the space, where few training samples are available: this
perfectly models the fact that the analyst does not know how much
the tool can be trusted in such working conditions.

After obtaining mu(X) in (10) for each of the tools available to
the analyst, the framework in [4] can be used to fuse them together
and yield a global belief about the authenticity of the image.

D. SVM-based approach

Another solution to endow multi-clue information fusion with
reliability parameters is to train classifier that mixes outputs from
tools and background information, as proposed by authors of [6]
under the name of Q-stack classifier. Given a generic signal that
has to be classified and a set of classifiers, the Q-stack framework
basically follows two-steps:

1) Each classifier analyzes the signal and produces a test score;
2) A set of quality measures are extracted from the signal;
3) A second-phase classifier (this motivates the word “stack”) is

trained that jointly considers test scores and quality measures.
To cast our scenario into this framework, we can consider each
forensic tool as a classifier, and let each parameter in P play the role
of a “quality information”. Here lays the main conceptual difference
between the background information considered in this paper and the
one in [6]: parameters in P do not describe the quality of the analyzed
image, they rather describe the capability of the image of carrying
the searched trace of processing. This fact further motivates the need
for a methodological approach that helps the analyst in selecting the
proper background information, like the one we proposed in Section
III.

After running each forensic tool and obtaining a set of outputs oij ,
j = 1 . . . F , an evidence vector ei is created, by concatenating tools
outputs and background information (symbols are defined as in (7)):

ei = (oi1, o
i
2, . . . , o

i
F , p

i
1, p

i
2, . . . , p

i
P ),

and the training dataset is then defined as S = {si : i = 1 . . . N}.
Also in this case, evidence vectors are normalized to facilitate the
classifier (details are in the Appendix). Notice that, differently from
T in (7), each element of S contains the output from all the tools,
since the classifier has to simultaneously perform score fusion and
handle the background information. In view of fusing heterogeneous
forensic tools, this fact has an important impact on the scalability

of the framework; the main problem is not about the “curse of
dimensionality” (F and P will usually be small), it is rather about
generating a suitable training dataset for such a classifier, allowing it
to learn the relationship between traces searched by tools. As it has
been shown in [4], the training dataset must contain sample forgeries
for each of the possible combination of traces (e.g., the four “classes”
listed in Table I), and this number grows exponentially in the number
of traces. Not only, each kind of forgery must be represented with
a sufficient number of images, so to allow the system to exploit the
background information. These facts lead to huge training dataset,
that are not easy to generate and manage. A possible strategy to
reduce the complexity, that will be addressed in future work, could
be to design a hierarchical classifier: in a first stage, the output from
each tool is combined with the background information related to it;
then, outputs from the first stage are used to train a second classifier,
whose goal is to perform fusion. Nevertheless, this second stage
classifier would still need to be trained on a dataset spanning all
possible combination of forensic traces.

V. EXPERIMENTAL RESULTS

In this section we compare the proposed methods to their equiva-
lent implementations without background information, so to investi-
gate the impact of such information on classification accuracy. To
this end, we used the DST-based framework in [4] and a SVM
classifier trained only with tool outputs (properly normalized, see
the Appendix). Experiments were carried on the dataset described in
Section II, and ROC curves and their Gini coefficient (4) were used
to compare the detection performance.

In order to turn the output of DST-based frameworks to a binary
decision, we used the method suggested in [4]: an image is classified
as tampered when the belief for the presence of at least one trace
overcomes the belief about the absence of all traces by a factor δ.
By varying δ from -1 to 1, a ROC is obtained. We used a grid
search to determine the best values for the parameters that tune the
proposed BBA mapping method, yielding k = 4, β = 0.8 and γ =
10. As to the SVM classifiers, we adopted a RBF kernel, whose
C and γ parameters have been determined through a grid search in
C ∈ {2−1, 20, 21, . . . 216}, and γ ∈ {2−4, 2−3, . . . 26}, resulting
in {C = 215, γ = 2−4} for the proposed SVM and {C = 29,
γ = 21} for its fusion-only counterpart. A model providing posterior
probability estimates has been trained [15], allowing us to plot a ROC
curve also for this method.

The available dataset was split into two parts, one used for training
and the other for testing; this procedure was repeated 10 times to have
a statistically significant comparison (uncertainty bars are plotted to
account for the variability between different tests). Notice that the
dataset we are considering in this paper is even more challenging
than the one used in [4], e.g. due to the presence of small differences
between the quantization factors used in the first and the second
JPEG compression, and to the size of tampered areas, that can be
very small.

ROC curves are reported in Figure 2: we can definitely state that
the use of background information significantly improve performance,
with a +9% gain for the DST-based method and +14% gain for the
SVM-based method on their respective counterparts.

As a general comment, as opposed to higher performance the
SVM-based method has a weaker scalability, since huge datasets are
needed to fuse heterogeneous tools. As to the DST-based method,
the BBA mapping scales well because is performed separately for
each tool, and fusion rules are given by logical relationships between
forensic traces [4]. From the computational complexity point of view,
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Fig. 2. ROC curves with error bars and averaged Gini coefficients for
background information aware methods and their counterparts.

the two methods are quite different: the SVM-based approach needs
a heavier training phase to produce the model, then classification is
performed at constant time; the DST-based method perform the k-NN
search and mass pooling at each query, but this computation can be
efficiently implemented to be linear in the size of the training dataset
(on a standard desktop computer, the two steps took 0.5 millisecond
per image on average). Finally we stress that, in addition to the
accuracy gain, both the proposed approaches greatly facilitate the
analyst’s task compared to those in [4] and [5], since the interpretation
of tool outputs and background information is learned automatically,
instead of being delegated to the analyst.

VI. CONCLUSION

In this paper we investigated the use of background informa-
tion to improve the performance of multi-clue information fusion
systems in image forensic scenarios. First, we proposed a way to
describe and quantify the influence of background parameters on
the performance of forensic tools; then we devised two methods
to perform multi-clue analysis while taking these parameters into
account. Both background-aware methods obtained a significant
and, interestingly, comparable performance gain compared to their
“fusion-only” counterpart. Future work will focus on: widening the
theoretical perspective of this framework; applying it under different
information fusion strategies, and test it when a more heterogeneous
set of tools is fused.
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VII. APPENDIX

Both the DST- and SVM- based approaches take a significant
advantage from normalization of feature vectors, so that they are
well distributed within a common interval. We choose this interval to
be [0,1], and show how we scaled the tool outputs and the considered
background parameters. In the following, W denotes the normalized
version of Ŵ.

a) Normalization of tool outputs: Among the set of tools
described in Section II, those that are based on DCT coefficients
analysis tend to produce outputs that, despite being defined in [0,1],
are concentrated toward extremes. If we call x̂W the output of tool
W , its normalization xW is obtained as follows:
• JPLC: xL = (log10(x̂L)/15) + 1;
• JPNA: xN = log2(x̂N )

20 log2(1.5)
+ 1;

• JPBM: xB = log10(x̂B)/6 + 1;
Outputs from tools JPGH and JPDQ are well-distributed in the
interval [0,1], so they do not need any processing.

b) Normalization of reliability parameters: Reliability param-
eters can be very different in nature, so we used different order-
preserving functions to normalize them in the interval [0,1].
• Size of the suspect region: denote with X and Y the height and

width of the image, then:

S =
log2(

√
X ∗ Y )− 3

6
.

• Compression Quality Factor: QF = Q̂F/100.
• Average pixel value: AVG = ˆAVG/255.
• Standard deviation (STD): for natural images, the standard de-

viation will unlikely assume values higher than 100. Therefore,
the scaled parameter is obtained as: STD = ˆSTD/100.
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