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Watermarked 3D Mesh Quality Assessment
Massimiliano Corsini, Elisa Drelie Gelasca, Touradj Ebrahimi and Mauro Barni

Abstract— This paper addresses the problem of assessing
distortions produced by watermarking 3D meshes. In particular,
a new methodology for subjective evaluation of the quality
of 3D objects is proposed and implemented. Two objective
metrics derived from measures of surface roughness are then
proposed and their efficiency to predict perceptual impact of
3D watermarking are assessed and compared with the state of
the art. Results obtained show good correlations between the
proposed objective metrics and subjective assessments by human
observers.

Index Terms— 3D watermarking, mesh watermarking, objec-
tive metrics, perceptual metrics, subjective evaluation, 3D objects
quality assessment.

I. INTRODUCTION

In the last decade, digital watermarking has become a very
active research topic with important applications in the fields
of copyright protection for multimedia content, digital rights
management, document authentication and conditional access
to enhanced services. Until few years ago the research efforts
in digital watermarking have been mainly focused on the
watermarking of audio, image and video data; only relatively
recently watermarking of 3D objects has gained attention, due
to the ever increasing diffusion of such objects in many areas
including architecture, design, mechanical engineer, Cultural
Heritage and entertainment. Hence, watermarking of 3D ob-
jects has not reached the same level of maturity as in still
image and video.

One of the main requirements of any watermarking algo-
rithm is the imperceptibility of the watermark. This is also
a fundamental constraint for 3D watermarking. It is then
very important that suitable methodologies are developed to
measure the quality of the watermarked objects as judged by
human observers. Moreover, study of human perception of
geometric artifacts on 3D surfaces due to 3D watermarking
can aid the design of efficient watermarking schemes.

Generally speaking, there are two major classes of quality
criteria evaluations: objective and subjective. In fact, one obvi-
ous way of determining the quality of any visual information
is to measure it by means of subjective experiments with
human observers. After all, these signal are meant for human
consumption. However, such subjective evaluations are not
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only time-consuming and expensive, but they also cannot be
incorporated into automatic systems. The goal of this paper is
to develop objective measures that can automatically predict
the quality of watermarked 3D mesh as perceived by human
subjects. Due to the relative novelty of quality evaluation
of 3D data, no standardized procedures exist and current
studies show this lack of generalization [1]. Nevertheless, since
subjective quality measures exhibit some inherent drawbacks
(the use of a standard evaluation room, a large panel of human
observers, etc.), there has been a great interest in developing
objective metrics for 3D models quality assessment.

In this work, we propose two perceptual metrics for the
quality assessment of watermarked 3D objects. Note that,
admittedly, our new metric will not represent a general tool
to evaluate the quality of a 3D model, but it will only serve
the purpose of judging the quality of watermarked meshes.
The final aim of our study is to provide a mean whereby
watermarking researchers can evaluate the degradation intro-
duced by the watermark and take appropriate countermeasures
to minimize it. At the same time, the proposed metric will be
particularly useful for comparing the performance of different
3D watermarking algorithms on the basis of the artifacts
perceived on the 3D mesh.

As a matter of fact, some progress has been achieved in the
study of perceptual metrics for image and video. A possible
approach, then, could be to simply apply such perceptual
metrics to the final rendered views of the 3D model. The
main problem of this approach is that the perceived degra-
dation of still images may not be adequate to evaluate the
perceived degradation of the equivalent 3D model [1]. Hence,
the approach we chose is to evaluate the human perception of
geometric distortions in watermarked models and then to build
ad-hoc perceptual metrics that work directly on the model’s
surface. In such a case, subjective experiments dealing directly
with the 3D models are needed.

The paper is organized as follows. The state-of-the-art
related to the research addressed in this work is reviewed
in Section II. Our experimental methodology to carry out
subjective experiments on 3D model quality evaluation is
described in Section III. In Section IV we describe the subjec-
tive experiments and the artifacts introduced by common 3D
watermarking algorithms. Section V describes the proposed
metrics. Finally, results are presented and discussed in Section
VI before drawing the conclusions in Section VII.

II. RELATED WORK

It is widely known among researchers working in image
and video watermarking that the characteristics of the Human
Visual System (HVS) have to be carefully considered in order
to minimize the visual degradation introduced by the water-
marking process while maximizing robustness [2] [3]. Many
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methods have been proposed so far to exploit the models of
the HVS to improve the effectiveness of existing watermarking
schemes. We can divide the approaches proposed so far into
theoretical [4] [3] and heuristic [5] [6].

Concerning quality evaluation, in the past years, a set
of techniques have been defined and proposed both subjec-
tively [7] [8], and objectively [9] to be used for watermarked
video quality evaluation. To the best of our knowledge no
similar standards or objective techniques have been proposed
for watermarked 3D meshes. In recent years, in order to
properly evaluate mesh simplification and perceptually guided
rendering of 3D objects, few objective metrics have been
proposed but even less attention has been payed to establishing
a reliable procedure for subjective evaluation of 3D data and
results show the complexity of such a task [1].

Mesh simplification reduces the number of vertices and
triangles of a polygonal mesh model while preserving its
visual appearance. In general, the simplification process is
driven by a similarity metric that measures the impact of the
changes of the model after each simplification step. Two kinds
of metrics are usually adopted for simplification: geometric
metrics and (perceptual) image-based metrics. The most used
global geometry-based metrics for off-line quality evaluation
of 3D models are the Maximum Geometric Error and Mean
Geometric Error based on the Hausdorff distance [10] [11].
Concerning perceptual image-based simplification, Lindstrom
and Turk [12] propose an image-driven approach for guiding
the simplification process: the model to be simplified is
rendered by considering several viewpoints and an image
quality metric is used to evaluate the perceptual impact of the
simplification operation. More recently, Williams et al. [13]
developed a view-dependent simplification algorithm based on
a simple model of Contrast Sensitivity Function that takes into
account texture and lighting effects.

The aim of perceptually-guided rendering is to accelerate
photo-realistic rendering algorithms to avoid computations that
do not impact the perceived final result. Some remarkable
works in this field include Bolin and Meyer [14], and the work
of Ferwarda et al. [15], where a sophisticated perceptual metric
for the evaluation of how much a visual pattern, i.e. a texture,
hides geometry artifacts is proposed. The visual masking effect
caused by texturing is taken into account by analyzing the final
rendered images.

It is worth to mention that a possible approach to eval-
uate the visual quality of watermarked 3D objects could
be to simply apply image-based perceptual metrics to the
final rendered images of the 3D model. This method was
investigated in the work by Lindstrom and Turk [12] just
mentioned. The main problem of this approach is that the
perceived degradation of still images may not be adequate to
evaluate the perceived degradation of the equivalent 3D model
as concluded by the subjective experiments of Rogowitz and
Rushmeier [1]. Another possible approach is to evaluate how
the human visual system perceives geometric distortions on
the model surface and to build an ad-hoc perceptual metric
for geometric artifacts. The latter approach is more interesting
from a research viewpoint, since no similar studies have been
conducted so far. The potential field of applications is not

limited to 3D watermarking, but other Computer Graphics
applications can also benefit from them. For these reasons, this
work has adopted the second approach, i.e. to work directly
on the geometry of the 3D model.

III. A METHODOLOGY FOR SUBJECTIVE QUALITY
EVALUATION

Since no standards exist for the evaluation of the quality
of 3D objects with impairments, we propose a method for
subjective evaluation of watermarked 3D objects based on
the criteria usually followed in video and multimedia content
quality evaluation [7], [8].

In designing subjective experiments for quality evaluation
of 3D objects, a first crucial problem is to decide the way the
object under examination is rendered. This is not a trivial task.
Hence an accurate study has been carried out. For instance, the
rendering conditions should not bias the human perception of
the 3D model by privileging, for example, one view of the 3D
object rather than another. In our investigations the rendering
conditions have been set as follows.
• Non-uniform background. The 3D model is visualized on

a non-uniform background in order to not to overestimate
the importance of the contour of the model with respect
to its overall shape. The background color fades from
blue (at the top) to white (at the bottom).

• Light source. All models are illuminated with a single
white point light source since multiple lights can confuse
the observer [16]. To be more specific, each model is
illuminated with one white point light source located in
a top corner of the Object Bounding Box (OBB) of the
3D object.

• Lighting. We use a simple local illumination lighting
model where only the diffusive component of the re-
flected light is considered to avoid the dependence on
camera’s position.

• Texturing. Image texture mapping, bump mapping, and
other kinds of texturing usually produce masking effects
on the perceived geometry [15] and consequently on
the perception of watermarking artifacts. Since we leave
visual masking studies specific for 3D models as a future
research area we do not account for such visual effects
in our metrics. For theoretical considerations about visual
masking and texturing we refer to Sec. VII-A.

• Material properties. The color of a surface is determined
by the parameters of the light source that illuminate
the surface, by the lighting model used and by the
properties of the surface’s material. We set the material
properties to obtain a stone-like effect. This choice is
made for different reasons: first, if all models are seen
as “statues” the subjects perceive them in a natural way;
second, in this way, the memory color phenomenon is
avoided [17]. The memory color phenomenon describes
the fact that an object’s characteristic color influences the
human perception of that object’s color, e.g. shapes such
as heart and strawberries are characteristically red.

• Screen and Models Resolution. The monitor resolution
used in the experiments is 1280×600 and each model is
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displayed in a window of 600 × 600 pixels. The model
occupies about 80% of such window and the resolution of
the models ranges between 50’000 and 100’000 triangles
allowing for a good visualization of the details.

• Interaction. The studies of Rogowitz and Rushmeier [1]
suggest that an experimental methodology to evaluate
the perceived alterations of 3D objects should rely on
the interaction with the model. For this reason, in our
experimental method, we decided to allow the subject to
interact with the model by rotation and zoom operations.

Eleven test subjects (one female, ten males) were drawn from
a pool of students aged between 24 and 30. The 3D models
were displayed on an uncalibrated 17-inch LCD monitor, with
participants sitting approximately 0.4 meters from the display.
The experiments followed a five-stage procedure. The stages
were: (1) oral instructions, (2) training, (3) practice trials, (4)
experimental trials, (5) interview. In the first stage, the subjects
were verbally given instructions and made familiar with the
task and the graphic interface. In the training, the original
models and the watermarked models were shown to establish
the range for the impairment scale. The practice trials stage
was used to familiarize subjects with the experimentation. In
the experimental stage, the subjects had to give a score to
indicate how much the distortions were evident. The subjects
were instructed to enter a numerical value greater than 0
proportional to the distortion noticed. The value of 10 had
to be assigned to the most evident distortion representing
the worst cases shown in the training phase. Finally, in
the interview stage, test subjects were asked to provide a
qualitative description of the perceived artifacts.

IV. SUBJECTIVE EXPERIMENTS

Two sets of subjective experiments were carried out with
different purposes. The first set of experiments (Experiment I),
were performed to tune the two objective metrics (proposed in
the next section) with psychovisual data in order to transform
them into two perceptual metrics.

In this first set of experiments, test subjects evaluated
differently watermarked models ranging from severe down to
weak visual impairments. Those different distortion strengths
were generated using a specific watermarking algorithm, i.e.
the algorithm by Uccheddu et al. (UCB) [18]. The second
set of experiments, (Experiment II) were conducted to vali-
date the proposed metrics. Specifically, in Experiment II, we
implemented and adopted three other different watermarking
algorithms: the Vertex Flood Algorithm (VFA) [19], the Nor-
mal Bin Encoding (NBE) [20], and the method by Kanai et al.
(KDK) [21]. Concerning the kind of impairments introduced
in the model, the UCB algorithm produced a uniform noise
that can be described as an increase of the roughness of
the watermarked surface. VFA produced a noise similar to
a marble streak, depending on the viewpoint. The artifacts of
the KDK algorithm were similar to those obtained by UCB
algorithm but due to the geometric tolerance introduced by
Kanai to limit the visual impact of the watermarking, the
final visual effects of such distortions were not uniformly
distributed over the model surface. Concerning NBE, the

visual aspect (crack-like) of its artifacts was different from
that of UCB, VFA and KDK and more difficult to perceive.
Figure 1 shows a detail of the model “Horse” after application
of the four different watermarking algorithms.

The test models used for both the experiments were:
“Bunny”, “Horse”, “Venus” and “Feline”. A total of 40 (4
originals × 3 watermarking strength × 3 resolution level + 4
originals) test models were used in Experiment I. A total of
48 (4 models × 11 watermarking settings + 4 originals) test
models were used in Experiment II.

V. PROPOSED PERCEPTUAL METRICS

Thanks to the intuition and to previous studies about visual
aspects of 3D watermarking [22], we argued that a good
measure of the visual artifacts produced by watermarking
should be based on the amount of roughness introduced on
the surface. Moreover, the interviews in Experiments I and
II confirmed that the different types of noise on the surfaces
produced by the watermarking can be described essentially
with the term roughness. Hence, we chose to measure the
strength of the artifacts on the basis of an estimation of the
surface roughness. In particular, two objective metrics based
on roughness estimation of the surface have been developed.

A. Multi-scale Roughness Estimation

The first roughness measure we propose is a variant of
the method by Wu et al. [23]. This metric measures the per-
face roughness by making statistical considerations about the
dihedral angles associated to each face. Wu et al. developed
this measure in order to preserve significant shape features in
mesh simplification algorithms.

The dihedral angle is the angle between two planes. For
a polygonal mesh, the dihedral angle is the angle between
the normals of two adjacent faces (Fig. 2 (a)). The basic idea
of this method [24] is that the dihedral angle is related to
the surface roughness. In fact, the face normals of a smooth
surface vary slowly over the surface, consequently the dihedral
angles between adjacent faces are close to zero. To be more
specific, Wu et al. associated to each dihedral angle an amount
of roughness given by the quantity

ρd = 1− ( ~N1 · ~N2). (1)

where · denotes the scalar product between two vectors,
and the subscript d was added to explicitly indicate that ρd

measures the roughness of a dihedral angle.
Given a triangle T with vertices v1, v2 and v3, its roughness

is computed as:

ρ1(T ) =
G(v1)V (v1) + G(v2)V (v2) + G(v3)V (v3)

V (v1) + V (v2) + V (v3)
(2)

Referring to Fig. 2 (b), G(v1) is the mean of the roughness
associated to the dihedral angles T − T1, T1 − T2, T2 − T3,
T3−T4, T4−T5 and T5−T . In the same way G(v2) and G(v3)
are the mean roughness associated to the dihedral angles of
the faces adjacent to the vertices v2 and v3. Instead, V (v1),
V (v2) and V (v3) are the variances of the roughness ρd of the
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UCB algorithm KDK algorithm

Normal Bin Encoding (NBE) Vertex Flood Algorithm (VFA)
Fig. 1. Geometric defects introduced by 3D watermarking algorithms.
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Fig. 2. (a) Dihedral angle. (b) mean roughness G(.), and variance roughness
V (.).

dihedral angles of the faces adjacent to the vertices v1, v2 and
v3.

A rough surface can be considered as a surface with a high
concentration of bumps of different sizes. The roughness mea-
sure expressed in Eq. (2) is able to measure the ’bumpiness’
of surfaces at face level, but, if the granularity of the surface
roughness, i.e. the size of the bump, is bigger than the average
size of one face, this metric fails to measure it correctly. In
other words, this measure does not take into account the scale

of the roughness. Our idea is to modify equation Eq. (2) so as
to account for different bump scales. The first step to achieve
this goal is to transform this per-face roughness estimation in
a per-vertex roughness in the following way:

ρN
1 (v) =

1
|SN

T |
∑

i∈SN
T

ρ1(Ti)ATi (3)

where SN
T is the set of the faces of the N-ring of the vertex

v, |.| is the cardinality operator and ATi is the area of the
face Ti. Considering the N-ring in the roughness evaluation

1D-case

Bump A Bump B

v
v

Fig. 3. Bumps with different scale.
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accounts for different scales of bumpiness. Referring to Fig. 3,
the bump of size equivalent to the 1-ring (A) is well measured
by ρ1

1(v), a correct value of roughness for the vertex v in the
case (B) is provided by ρ2

1(v). Approximately, we can state
that the roughness of a vertex v centered on a bump whose
area is close to the area of the faces that form the N-ring is
well measured by ρN

1 (v). This approximation could still create
invalid estimates in certain cases. For example for high values
of N , or when a surface presents high curvatures. Despite
possible impairments, the proposed metric provides acceptable
results in most cases. In order to obtain a single value of
roughness for each vertex that accounts for the roughness
evaluated at several scales, the maximum value produced by
N-rings of different sizes is retained. In our objective metric,
after several tests, 3 scales of roughness: the 1-ring, the 2-
ring and the 4-ring were retained. Hence, the final per-vertex
roughness metric becomes:

ρ1(v) = max{ρ1
1(v), ρ2

1(v), ρ4
1(v)} (4)

A metric using a linear scale of roughness, i.e. the 1-ring, the
2-ring and the 3-ring, provides similar results.

The total roughness of the 3D object is the sum of the
roughnesses of all vertices:

ρ1(M) =
Nv∑

i=1

ρ1(vi) (5)

where Nv is the total number of mesh vertices. In the follow-
ing, we describe how to transform this multi-scale roughness
estimation in to an objective metric that correlates well to the
human perception of geometric artifacts.

B. Smoothing-based Roughness Estimation

The second method [25] is based on the consideration that
artifacts are better perceived on smooth surfaces. This was
confirmed by interviews with subjects. Hence, a smoothing-
based roughness estimation was developed. The basic idea of
this approach is to apply to the model a smoothing algorithm
and then to measure the roughness of the surface as the
variance of the differences between the smoothed version of
the model and the original. A sketch of the smoothing-based
roughness estimation is depicted in Fig. 4.

The first step is to build a smoothed version of the model
(MS) by applying a smoothing algorithm to the input model
(M ). Several possibilities for smoothing exist [26] [27] [28].
Here, we decided to use the Taubin filter [26] for its simplicity
of implementation. For the Taubin filter we used the parame-
ters λ = 0.6307, µ = −0.6352 that give a strong smoothing
effect. The filter is iterated 5 times. Once the smoothed model
obtained, the distance between each vertex of M and MS is
computed in the following way:

dOS(v, vS) = proj~nS
v
(v − vS) (6)

where proj(.) indicates the projection of the vector (v −
vS) on the vertex normals of the smoothed surface (~nS

v ). At
this point the per-vertex roughness is computed by evaluating
the local variance of the distances dOS(.) around each vertex.
To be more specific, for each vertex v, the set of distances

associated to its 2-ring (S2
d(v)) is built and the variance of this

set evaluated. Then, the per-vertex smoothing-based roughness
is computed by:

ρ2(v) =
V (S2

d(v))
AS2

(7)

where AS2 is the area of the faces that form the 2-ring of
v. This area is used as the denominator since surfaces with
the same local variance of the distances but smaller area are
assumed to be rougher. The roughness of the input model is
the sum of the roughnesses of all vertices in the model:

ρ2(M) =
Nv∑

i=1

ρ2(vi) (8)

where Nv is the number of vertices of the model.

C. Objective Metrics

Now, we describe how to use the roughness estimation
to predict the visual distortion produced by a certain 3D
watermarking algorithm. On the basis of several evaluations
we decided to define our objective metric as the increment of
roughness between the original and the watermarked model.
This increment is normalized with respect to the roughness of
the original model, leading to:

R(M,Mw ) = log
(

ρ(Mw )− ρ(M)
ρ(M)

+ k

)
− log (k) (9)

where ρ(M) is the total roughness of the original model and
ρ(Mw ) is the total roughness of the watermarked model. Both
ρ1(.) and ρ2(.) can be used to obtain two different objective
metrics for the evaluation of the quality of watermarked 3D
objects. Equation (9) is a sort of “Weber Law” in which the
amount of roughness substitutes the grey levels. The logarithm
is employed to better discriminate small values of relative
roughness increments. The constant k is used to avoid the
numerical instability of Eq. (9) since the logarithm tends to
−∞ for ρ(Mw ) very close to ρ(M). Since in experiments,
subjects used values between 0 and 10, , the value k has
been set to normalize the metric’s outputs to the same range.
In the following, we indicate with R1(M, Mw ) the objective
metric based on the multi-scale roughness estimation and with
R2(M, Mw ) the objective metric based on the smoothing-
based roughness estimation.

D. From objective to perceptual metric

Basically, there are two approaches [29] to model psy-
chophysical quantities: performance modeling and mechanistic
modeling. Although the distinction is more a continuum than
a strict dichotomy, the performance models tend to treat the
entire visual system as a “black box” for which input/output
functions need to be specified. For the mechanistic model,
physiological and psychophysical data are used to open the
black box. For our metrics, we opted for the black box
approach since a model of visual perception of geometric
artifacts could become too complex to be handled in practice.
In addition the application-oriented nature of our metrics
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Fig. 4. Smoothing-based Roughness Estimation.

makes the black box approach to be a more appropriate
solution.

Before using the results of Experiment I to obtain our
perceptual metric, we summarized the subjective scores.

The subjective scores have to be condensed by statistical
techniques used in standard methods [8] to yield results which
summarize the performance of the system under test. The
averaged score values, Mean Opinion Score (MOS), are con-
sidered as the amount of distortions that anyone can perceive
on a particular watermarked 3D object. However, impairment
is measured according to a certain scale, and such a scale may
vary from person to person. For this reason, we used standard
methods to normalize and to screen the judgments provided
by the subjects [7]. The MOS values obtained following the
above mentioned approach were used to derive a perceptual
metric by fitting them with a psychometric curve.

The purpose of a psychometric curve is to associate the
values given by the objective metric to the subjective score
values provided by the subjects. This step is always necessary
in order to take into account the saturation effects typical of
human senses. For these reasons, psychometric curves exhibit
a typical sigmoid shape that penalizes the strongest stimuli.
Through psychometric mapping, a match between the human
perception of geometric artifacts and the values provided by
the objective metric is established. In particular, we use the
Gaussian psychometric function:

g(a, b,R) =
1
2π

∫ ∞

a+bR
e−

t2
2 dt (10)

where a and b are the parameters to be estimated by fitting the
objective metric values versus the subjective data, and R is the
objective metric used to measure the visual distortions. We opt
for this psychometric curve since it provided the best fit for
our data among the commonly used psychometric curves, i.e.
Gaussian, logistic and Weibull curves [30]. To estimate the
parameters a and b, we used a nonlinear least-squares data
fitting by the Gauss-Newton method.

VI. EXPERIMENTAL RESULTS

In this section, we analyze the performance of the two
proposed objective metrics and compare them with geometric
metrics usually adopted in literature for quality evaluation of
3D models.

without adding anything):
Evaluations are performed by assessing the correlations with

the Mean Opinion Scores described previously. The correla-
tions between the subjective MOS collected in Experiment I
and the distances given by two geometric metrics based on the
Hausdorff distance for model similarity are evaluated. In this
way we obtain a term of comparison for the evaluation of our
metrics. The data of the Experiment II are used to validate
the developed perceptual metrics on different watermarking
algorithms.

First, the performance of the state of the art metrics cur-
rently used to evaluate the differences between 3D models are
analyzed. These state of the art metrics are Mean and Maxi-
mum Geometric Error based on Hausdorff distance [10] [11].
Second, the performance of the proposed metrics are assessed
and compared to those of the state of the art metrics.

A. Hausdorff distances

As previously stated (Section II) two of the most common
geometric metrics used to measure the similarity between two
3D objects, d∞(.) and d1(.), are based on the Hausdorff
distance between surfaces. Here, we want to evaluate if the
Hausdorff distance between the original and the watermarked
models could be a reliable metric for perceptual watermarking
impairments prediction. To do this, the Hausdorff distances
between watermarked models and the originals are plotted
versus the MOS provided by Experiment I. At this point,
the linear correlation coefficient of Pearson (rP ) [31] or the
non-linear (rank) correlation coefficient of Spearman (rS) [32]
are calculated in order to evaluate the global performance of
the geometric and proposed metrics obtained by fitting these
geometric data with the cumulative Gaussian in Eq. (10). The
geometric metric results do not correlate well with subjective
MOS. This underlines the fact that d∞(.) and d1(.) are not
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reflecting how humans perceive geometric artifacts due to
watermarking. The results are summarized in the first two
columns of Table I, and will be used as a reference to compare
with the performance of our perceptual metrics.

B. Roughness-based Metrics in Experiment I

As stated before, the goal of the first experiment was to
make an initial study on the perception of the geometric
artifacts caused by watermarking algorithms and to lay the
basis for the development of perceptual metrics to measure the
visual impact of such artifacts. The experimental data confirm
that the subjective perception of the impairments is well-
described by the measure of roughness. The subjective data
of this experiment are used to obtain two perceptual metrics,
named R∗1(M, Mw ) and R∗2(M, Mw ), from the corresponding
proposed objective metrics R1(M, Mw ) and R2(M,Mw ).
These perceptual metrics are obtained by fitting the subjective
data with the Gaussian psychometric curve in Eq. (10). This
leads to two perceptual metrics obtained. One based on multi-
scale roughness measure and another based on smoothing-
based roughness estimation. The parameters of the Gaussian
psychometric curve after the fitting are (a = 1.9428, b =
−0.2571) for R1(M, Mw ) and (a = 2.0636, b = −0.2981)
for R2(M, Mw ). The smoothing-based metric provides a
better fit (rP = 0.82, rS = 0.89) than the multi-scale
(rP = 0.67, rS = 0.86) as depicted in Fig. 5. On the right top
of the graphs it is possible to notice some points outside the
fitting curve. Most of these outliers correspond to the Venus
model. This is due to the fact that the Venus model represents a
human face. Human face images are well-known in subjective
experiments as a high level factor attracting human attention,
i.e. people perceive human faces differently, so the distortions
on the Venus head are perceived as more visible and annoying
with respect to other models.

C. Perceptual Metrics Performance

As discussed in the previous section, the two proposed ob-
jective metrics have been transformed into two corresponding
perceptual metrics using the data from Experiment I. In order
to evaluate such metrics, Experiment II was carried out with
three other watermarking algorithms: KDK, NBE and VFA.
The validation is very simple: the perceptual metrics obtained
in Experiment I are used to predict the MOS obtained in
the second experiment and their correlation coefficients are
computed. The correlation coefficients rP and rS are reported
in Table I. The rows indicate which watermarking algorithms
were applied to the 3D models. The first two columns of
this table report the Spearman correlation coefficients of the
Maximum and Mean Geometric Errors for comparison. The
third and the fourth show the values of rP and rS for
R∗1(M, Mw ), while the last two columns are the rP and rS

values for R∗2(M, Mw ). Referring to this table the following
considerations are in order:
• Overall, both geometric metrics based on the Hausdorff

distance (reported in the first two columns) do not cor-
relate well with the subjective data. On the other hand
the developed metrics exhibit good correlations with the

subjective data, in particular concerning the Spearman’s
coefficient.

• The first row reports the UCB’s correlation coefficients
values for reference.

• The Spearman’s coefficients for the NBE and VFA algo-
rithms (second and third rows respectively) demonstrate
that both metrics are able to predict impairment intro-
duced by these two algorithms.

• The worst performance of the proposed metrics are
obtained for the KDK algorithm. This can be explained
by considering that the distortions produced by this
algorithm are non-uniform.

• The fifth row summarizes the overall performance of the
proposed metrics for the other three watermarking algo-
rithms tested in Experiment II. The values of correlation
coefficients (rS = 0.71 for the first metric, rS = 0.6929
for the second metric) outperform the results provided
by the state-of-the-art metrics (rS = 0.3759 for the
Maximum Hausdorff metric, rS = 0.4853 for the Mean
Hausdorff metric).

• The overall performance of the perceptual metrics for the
watermarking algorithms that introduce uniform distor-
tions are reported in the sixth row of the table. The values
of the correlation coefficients (rS = 0.8416 for the first
metric and rS = 0.8954 for the second metric) are very
good. Hence, one can claim that the developed metrics
provide good prediction of the impairment caused by 3D
watermarking where artifacts are uniform.

TABLE I
PERCEPTUAL METRICS PERFORMANCES.

Hausdorff Distance R∗1(M, Mw ) R∗2(M, Mw )
Algo. Max (rS) Mean (rS) rP rS rP rS

UCB 0.67 0.66 0.67 0.87 0.83 0.90
NBE 0.71 0.70 0.56 0.80 0.62 0.81
VFA 0.50 0.88 0.75 0.94 0.78 0.91
KDK 0.70 0.32 0.62 0.72 0.55 0.71
KDK
NBE 0.38 0.49 0.49 0.71 0.50 0.69
VFA
UCB
NBE 0.52 0.62 0.65 0.84 0.74 0.90
VFA

In order to visualize the results of Experiment II, the
graphs in Fig. 5 show the values of the objective metrics
plotted versus the subjective MOS for several watermarking
algorithms. It is important to underline that the curves drawn
on this figure do not represent the results of a fit as the same
psychometric Gaussian curve obtained with the subjective data
of the Experiment I are drawn for all the pictures. In other
words, these graphs visualize the behavior of the KDK, the
NBE and the VFA algorithms with respect to the developed
perceptual metrics, that is represented by the solid curve (the
dashed line is the confidence interval for that curve).

VII. CONCLUSIONS

In this work, our investigations about the extension of the
perceptual image watermarking to 3D watermarking have been
presented. In particular, a new experimental methodology for
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subjective quality assessment of watermarked 3D objects has
been proposed. The analysis of the data collected by two
subjective experiments that use this methodology demonstrates
that such a methodology is appropriate and provides reliable
subjective data about quality evaluation of watermarked 3D
objects. Moreover, two perceptual metrics for 3D watermark-
ing impairments prediction have been developed by combining
roughness estimation with subjective data. The performance
of these metrics have been analyzed. The results of this
analysis demonstrate the effectiveness of the proposed per-
ceptual metrics with respect to the state-of-the-art geometric
metrics commonly used for 3D models comparison. More
importantly, the experimental results show that the proposed
metrics provide a good prediction of the human perception
of the distortions introduced by 3D watermarking. Hence,
these metrics could be used in a feedback mechanism to tune
the watermarking parameters of 3D watermarking algorithms
optimizing the watermark insertion. For example, referring to
the UCB algorithm, for each level of resolution, the maximum
amount of watermark strength before reaching watermark
perceptibility could be computed by using these metrics, thus
improving the robustness of the algorithm while ensuring
imperceptibility.

A. Visual Masking and Texturing

Visual masking is a well-known perceptual effect of
both human auditory and visual system caused by the fact
that the frequency content in certain channels suppress
the perceptibility of other frequencies in that channel. In
3D model watermarking, this effect can be caused by
the application of image texture on the models’ surfaces
or by the local peculiarity of the surface. For example,
a surface that reproduce a particular fine pattern could
mask the watermarking during visualization. The proposed
metrics compensate well the visual masking effect caused
by geometry since they rely on the relative roughness of the
model. However, the developed metrics does not take into
account the visual masking caused by texture. Hence, due
to the importance of textured 3D models, we would like to
further analyze some issues related to objects with texture
mapping and the proposed metrics. Ferwerda et al. [15]
are the first dealing with this issue. They demonstrate that
texture images could make geometric artifacts of a surface
less perceptible. In their work, the degree of masking of
a texture is evaluated by taking into account the contrast,
orientation and spatial frequency content of the final rendered
image. Yixin Pan et al. [33] propose a different interesting
approach related to the quality assessment (in terms of
geometric and texture resolution) of 3D models. Their
work underline that the perceptual contribution of image
texture is, in general, more important than the model’s
geometry. According to their results, we can state that, in
the general case, the perceptibility of the watermark on
a textured model should be lower w.r.t. the same model
rendered without textures. Consequently, our metrics can
be considered as an “upper bound” of the detectability of
the watermark on a textured model. In other words, if the

impairment predicted by our metrics is low on a 3D mesh, such
impairment will be even low(er) for a 3D model with textures.

Concluding, we can state that, despite the fact that the
perceptual evaluation of geometric artifacts is a very difficult
task due to the enormous number of influencing factors, the
results obtained are encouraging. Further research can regard
the evaluation of the performance of the proposed metrics
under different rendering conditions and their extension to take
into account the influence of local properties of the surface
(e.g. curvature, protrusions) on the perception of geometric
artifacts as well as visual masking effects due to texture
mapping.
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Fig. 5. Experiment I and Experiment II: Subjective MOS versus objective metrics curves fits. In Experiment II the parameters of the fitting curve are the
same of the Experiment I.


