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Abstract—Privacy protection is a crucial problem in many
biomedical signal processing applications. For this reason,
particular attention has been given to the use of secure multi-
party computation techniques for processing biomedical signals,
whereby nontrusted parties are able to manipulate the signals al-
though they are encrypted. This paper focuses on the development
of a privacy preserving automatic diagnosis system whereby a
remote server classifies a biomedical signal provided by the client
without getting any information about the signal itself and the final
result of the classification. Specifically, we present and compare
two methods for the secure classification of electrocardiogram
(ECG) signals: the former based on linear branching programs (a
particular kind of decision tree) and the latter relying on neural
networks. The paper deals with all the requirements and difficul-
ties related to working with data that must stay encrypted during
all the computation steps, including the necessity of working with
fixed point arithmetic with no truncation while guaranteeing the
same performance of a floating point implementation in the plain
domain. A highly efficient version of the underlying cryptographic
primitives is used, ensuring a good efficiency of the two proposed
methods, from both a communication and computational com-
plexity perspectives. The proposed systems prove that carrying
out complex tasks like ECG classification in the encrypted domain
efficiently is indeed possible in the semihonest model, paving the
way to interesting future applications wherein privacy of signal
owners is protected by applying high security standards.

Index Terms—Linear branching programs, neural networks
(NNs), privacy protection, quadratic discriminant function, secure
biomedical systems, secure electrocardiogram (ECG) classifica-
tion.

I. INTRODUCTION

I N THE last few years, increasing attention has been given
to the development of tools for processing encrypted sig-

nals [1]. The reason for such an interest is rooted in the call for
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security stemming from applications where two or more non-
trusted parties wish to collectively process one or more signals
to reach a common goal. While the parties share the same goal,
they do not trust each other hence they are not willing to disclose
to the other parties the pieces of data they own, thus requiring
that the signals are processed in a secure way, e.g., directly in
encrypted form. In the simplest case, the above scenario con-
sists of only two parties. One party, hereafter referred to as the
Client owns a signal that has to be processed in some way
by the other party, hereafter referred to as the Server . Since
and do not trust each other, is required to process the

signal owned by without getting any information about it, not
even the result of the processing. At the same time, wants to
protect the information it uses to process the signal provided by
. While the above may seem a formidable, if not impossible,
task, a bunch of cryptographic primitives exists, that once cou-
pled with a suitable design of the underlying signal processing
algorithms, allow us to process signals that have been secured in
some way, e.g., (but not only) by encrypting them. In the recent
scientific literature, such techniques are usually referred to as
signal processing in the encrypted domain (s.p.e.d.), or secure
signal processing (SSP) techniques, the latter term being prefer-
able given that encryption is not the only way whereby signals
can be secured.
The number of possible applications of SSP techniques is vir-

tually endless. Among the most interesting scenarios investi-
gated so far we mention: private database access [2], in which
the client accesses a server by means of an encrypted query; pri-
vate data mining [3], in which two or more parties wish to ex-
tract aggregate information from a dataset formed by the union
of their private data; secure processing of biometric data [4], in
which biometric signals are processed in the encrypted domain
to protect the privacy of the owners; watermarking of encrypted
signals [5], for digital rights management within buyer–seller
protocols; recommender systems [6], in which user’s data is an-
alyzed without disclosing it; and privacy-preserving processing
of medical data [7], in which sensitive medical data is processed
by a nontrusted party, for remote medical diagnosis or any other
form of home-care system whereby health conditions are mon-
itored remotely.
The use of SSP for the processing of medical signals is

surely one of the most promising applications among those
listed above. As a matter of fact, the health-care industry is
moving faster than ever toward technologies offering personal-
ized online self-service, medical error reduction, customer data
collection, and more. Such technologies have the potentiality
of revolutionizing the way medical data is stored, processed,
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Fig. 1. SSP framework for ECG classification.

delivered, and made available in an ubiquitous and seamless
way to millions of users throughout the world. In this frame-
work, respecting the privacy of customers is a central problem,
since privacy concerns may impede, or at least slow down,
the diffusion of new e-health services. This is the case, for
example, of on-line repositories of medical data (including
signals) managed by a third party [8], [9]. Would anybody
be willing to store his/her medical data in such repositories if
his/her privacy rights are not adequately protected?

A. Addressed Scenario

In this work, we consider a scenario where a remote diagnosis
system provided by a nontrusted party offers a service whereby
biomedical signals are processed to provide a preliminary diag-
nosis. Such a system may either be seen as a stand-alone service
or as part of a more complex e-health system where the service
provider, in addition to hosting a repository of personal medical
data, is also allowed to process such data. In order to preserve
the privacy of the users, should carry out its task without get-
ting any knowledge about the private data provided by the users.
At the same time, may not be willing to disclose the algo-
rithms it is using to process the signals, since they represent the
basis for the service it is providing.
More specifically, we consider the privacy-preserving classi-

fication of electrocardiogram (ECG) signals in the semihonest
model. Classification of ECG signals has long been studied by
the signal processing community [10] and many good algo-
rithms exist for this purpose; however, their efficient implemen-
tation in an SSP framework is not an easy task since many of
the involved operations, while trivial in the plain domain, are
very difficult to implement in a secure way. The functional de-
scription of the system addressed in our research is depicted in
Fig. 1. Given an ECG signal, performs some preprocessing

to remove noise and clean up the samples. Subsequently, the
system classifies ECG portions corresponding to single heart
beats into six possible classes: five possible diseases and one
healthy state (see Section II). To do so, each heart beat needs to
be identified and then processed to extract a set of features al-
lowing the subsequent classification. encrypts the features and
starts a classification protocol, interacting with . The classifier
uses two inputs: ’s features and a set of classification param-
eters provided by . On one side does not want to reveal the
ECG features since they are sensible information that must be
kept secret. On the other side, does not want to reveal the clas-
sification parameters. At the end of the protocol, only learns
the classification result but nothing about ’s classification pa-
rameters which are valuable intellectual property of , while
learns nothing.

B. Contribution

A protocol implementing the functionality described in Fig. 1
could be developed by resorting to generic secure two-party
computation (STPC) techniques [11], [12] allowing two par-
ties to compute the output of a public function on their
respective private inputs. At the end of the protocol, the only
information obtained by the parties is the output of the func-
tion evaluated on the inputs, but no additional information
about the other party’s input. Specifically, we should consider
a variant of the above case, where the function itself, or at
least its parameters, has to be kept secret as well. While this can
be reduced to secure evaluation of a public function using uni-
versal circuits [13], [14], this generic approach poses an enor-
mous overhead on the protocols, hence calling for the design of
efficient dedicated solutions. In this framework, the contribu-
tion of this paper is threefold. First, we present two SSP proto-
cols for the classification of ECG signals, built upon the classi-
fication algorithm described in [15], [16]. In particular, the SSP
classifier relies on a subset of the features proposed in [15] and
[16] followed by either a quadratic discriminant function (QDF)
classifier as in the original paper, or by a neural network (NN).
The former protocol is very similar to the one presented in [7]
and [17], the only differences being in the use of some of the
efficient building blocks described in [18] and the garbled cir-
cuit construction of [19] to improve the overall efficiency of the
protocol. The second protocol is completely new and relies on
the protocol for secure NN computation described in [14]. Both
protocols are designedwithin the framework of [20] which com-
bines the advantages offered by homomorphic encryption (HE)
[21] and garbled circuits (GC) [11]. We give a summary of this
framework and its building blocks later in Section IV.
As a second contribution, we investigate the relationship be-

tween the representation accuracy of the to-be-processed sig-
nals (i.e., the number of bits representing the ECG features), the
complexity of the proposed protocols, and the classification ac-
curacy. This is a crucial step where signal processing domain
knowledge must be used to ease the SSP implementation of the
classifier in terms of efficiency and reduced complexity.
Finally, as a third contribution, we compare the two proposed

protocols from a complexity point of view, getting interesting
insights about the suitability of QDF-based and NN-based clas-
sification for efficient implementation in an SSP framework.
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The rest of this paper is organized as follows. In Section II,
we describe the plain version of the ECG classification algo-
rithm, by distinguishing between the QDF and NN implemen-
tations and by paying attention to define the corresponding secu-
rity requirements. In Section III, we describe how the classifiers
must be quantized in order to enable the implementation in an
SSP framework and analyze the trade-off between representa-
tion length and classification accuracy. The analysis regarding
the NN implementation is one of the main contributions of the
paper since the impact of quantization on protocols for SFE
evaluation of NNs has never been carried out. In Section IV, we
introduce the framework and the cryptographic primitives the
proposed protocols rely on. In Section V, we describe the two
protocols we have developed, analyze their efficiency, and com-
pare them from a complexity perspective Section V-B contains
the main innovation of the paper, while Section V-A presents an
improved version of the protocols already described in [17]. In
Section V-C, the LBP and NN approaches are compared from
a complexity point of view, providing further insights into the
merits and drawbacks of the two different protocols. Finally, in
Section VI, we draw some conclusions by paying attention to
derive some general hints on the suitability of the two classifier
structures for SSP applications.

II. TWO APPROACHES TO CLASSIFY ECG

Classification of ECG signals has long been studied by the
signal processing community; however, the interest in privacy-
preserving classification has been raised only very recently [7].
In this section, we describe the plain version of the classifica-
tion algorithm. First of all, we describe the features used by the
classifier, then we examine two different approaches to classifi-
cation.We are interested in classifying each heart beat according
to the following six possible classes:

NSR normal sinus rhythm (healthy state);

APC atrial premature contraction;

PVC premature ventricular contraction;

VF ventricular fibrillation;

VT ventricular tachycardia;

SVT supraventricular tachycardia.

The classification algorithm we use relies on autoregressive
(AR) modeling of the ECG signal, and is inspired by the work of
Ge et al. [15]. The choice of this algorithm is justified first of all
by the good classification accuracy it ensures, second because
it fits well the requirements of a privacy preserving implemen-
tation, and finally because of its generality. Indeed, AR models
are often used in automatic medical diagnosis as feature extrac-
tors, due to the ability of the coefficients of the AR models to
represent the signal they approximate [22].
The overall architecture of the classifier is summarized

by the block diagram in Fig. 2. The input of the system is
an ECG chunk corresponding to a single heart beat, that,
consequently, is classified as an independent entity. For the
extraction of heart beats, we used the algorithm proposed in
[15]. We assume that the ECG signal is sampled at 250 samples

Fig. 2. General view of the ECG classifier.

Fig. 3. LBP classifier based on QDF and decision tree.

Fig. 4. Expanded LBP classifier.

per second and that 300 samples surrounding each peak are
fed to the system: 100 samples preceding the beat peak and
200 following it. We also assume that the ECG signal has been
prefiltered by a notch filter to remove the noise due to power
line interference and base line wander [15].
Each ECG chunk is modeled by means of a fourth-order AR

model. The AR model coefficients can be estimated in sev-
eral ways; in our system, we used a method based upon the
Yule–Walker equations [23]. The four coefficients of the AR
model form the feature vector used to clas-
sify each heart beat (where denotes the vector transpose
operator). In [15], six features were used; however, our experi-
ments have shown that by using four features we obtain almost
the same classification accuracy at a considerably lower com-
plexity. Specifically, as described in [7], by using four features,
the accuracy passes from 88.57% to 86.30%. For the above
reason, and in order to keep our discussion simple, in the rest
of the paper we will assume that only four features are used by
the classifier. It goes without saying that whenever a loss of ac-
curacy of 2% cannot be afforded, the complete set of features
should be used: in this case, the classifier will have to rely on
six features; however, most of the analysis we will present in
the rest of the paper would remain the same, the only difference
being a quantitative one in terms of computational complexity
(see the discussion at the end of Section V-C).

A. Linear Branching Program Classifier

Once the four AR-features have been extracted, we must use
them for the actual classification of the heart beat they refer to.
The first approach we used to classify the feature vector is by
means of a quadratic discriminant function (QDF) followed by
a decision tree as shown in Fig. 3. To cast the above approach
into a linear framework (see Fig. 4), we introduce a composite
feature vector containing the features in , their square values,
and their cross products, namely
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Fig. 5. Binary decision tree for ECG classification.

The vector represents the input of the scalar product block
shown in Fig. 4. The scalar product projects onto six direc-
tions , obtaining a six-component vector , that represents the
input of the final classification step: ,
where is a matrix whose rows are the vectors . The matrix
contains part of the knowledge embedded within the classi-

fication system, and is computed by relying on a set of training
ECGs (see [15] for details). For the final classification, the signs
of the values are extracted and used to actually classify the
ECG, by means of the binary decision tree given in Fig. 5. A
classifier having the structure described above can be repre-
sented by means of a linear branching program (LBP), i.e., a
decision tree in which the decision path is decided according to
the value assumed by the projection of the input features onto a
given set of projection vectors (see [17] and Section V for fur-
ther details on LBPs).

B. Neural Network Classifier

The second solution we developed relies on artificial neural
networks (NNs). In fact, NNs are well-know machine learning
structures used in many different fields ranging from approxi-
mation to classification. NNs are widely used as classifiers and,
in general, they give good results if the training set used to train
the network is representative of all the considered classes and
the generalization grade is good enough (see [24] or [25]).
Finding the right topology for an NN is not a simple task due

to the fact that NNs have several degrees of freedom including:
number of hidden layers, neurons per hidden layer, and form of
activation functions. In most cases, a two-layer NN is sufficient
to obtain a good classification, so in the rest of the paper we
focus on NNs with two layers, that is NNs in which the inputs
are connected to a hidden layer, that, in turn, is connected to the
output layer.
Before going on, in order to ease the description of the SSP

protocol based on an NN classifier, we now review the details of
the operations carried out by an NN. Generally speaking, each
neuron in an NN performs only two simple operations: a scalar
product and a function evaluation. As shown in Fig. 6, a single

Fig. 6. A perceptron.

neuron, or perceptron, consists of a number of weighted con-
nections , a bias and an activation
function . When a new input vector is
provided, the perceptron performs a scalar product among the
weights and the input vector and adds up the bias

(1)

after this, the activation function is applied producing the neuron
output: .
The composition of multiple perceptrons in a cascade of

layers realizes an NN. In the rest of the paper, we will use the
following notation referring to a general two layer NN:
• is the number of inputs of the NN, by this

is the input vector;
• is the number of neurons in the hidden layer (the first
layer of the NN);

• is the number of neurons in the output layer;
• is a matrix of size whose elements are the
weights of the connections between the inputs and the
hidden layer, that is: is the coefficient
used to weight the connection between the th input and
the th node of the hidden layer;

• is a matrix of size whose elements are the
weights of the connections between the hidden and the
output layers, that is: is the coefficient
used to weight the connection between the output of the
th node of the hidden layer and the th node of the output
layer;

• is a vector of length with the outputs of the neurons
of the hidden layer;

• is a vector of length with the outputs of the neurons
of the output layer;

• is a vector of length that contains the biases of the
neurons of the hidden layer;

• is a vector of length that contains the biases of the
neurons of the output layer.

With the above notation, the output of the th neuron in the
hidden layer is

(2)

while the output of the entire hidden layer can be written in
matrix form in the following way:

(3)
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where the activation function is applied component-wise to
all the values of the input vector. Similarly, the output of the
th neuron of the output layer is

(4)

that in matrix form can be written as

(5)

and is the output of the NN. Note that the neurons of the
output layer do not apply any activation function.1

In our scenario, the number of inputs is dictated by the
number of features the classifier relies on, while the number
of output layers corresponds to the number of diseases the NN
should distinguish, so we have and . The only
degree of freedom we have, then, is , the number of neurons
in the hidden layer. To choose , we carried out some tests
trying to reach the same accuracy provided by the LBP-based
classifier. A training set was built by using as samples the pair

, where, as said before, and is a
six-component vector, having value equal to 1 for the index
of the class the ECG signal belongs to and 0 elsewhere.2 In
our experiments, we used a dataset of 200 ECG signals (and
the corresponding 200 feature vectors) taken from PhysioBank
[26]. Specifically, we split the dataset into a training set (con-
taining 140 ECG sequences) and a test set (with the remaining
60 signals). While the size of the dataset may not be realistic
for real life applications, we decided to use it since this dataset
is often used in relevant literature on ECG classification; for
instance, it is the same used in [15]. As it will be clear from
the following discussion, the size of the dataset does not have a
direct impact on the structure of the proposed protocols (while
it surely has a great impact on the training phase); however, it
is possible that for larger datasets a larger number of features
is needed thus impacting on the complexity of the overall
protocols.
As activation function we used a symmetric saturating linear

function, defined by

if
if
if

(6)

Training was performed by using the Levenberg–Marquardt
regularized learning algorithm [27]. Using this setup and
100 epochs for training, we obtained the classification accuracy
shown in Fig. 7. Considering the results of Fig. 7, an NN with

neurons in the hidden layer is the smallest NN giving
a classification accuracy larger than 86.30%, hence justifying
the choice of an NN with the topology indicated in Fig. 8
(for the sake of simplicity the figure shows just a part of the
involved variables). Note that the final classification is obtained
by choosing the maximum among the outputs of the NN. A
compact representation of the NN shown in Fig. 8 is given

1More formally, the activation function of the neurons of the output layer is
the identity function.
2This kind of neural network is often called NN with fired output.

Fig. 7. Classification accuracy as a function of the number of nodes in the
hidden layer and as activation function.

Fig. 8. NN topology.

in Fig. 9 where the entire flow needed to evaluate the NN is
shown. In particular, we recall that in formulas we have

(7)

and finally the classification result is computed as

(8)

III. QUANTIZED CLASSIFIERS

In this section, we introduce the quantized version of the clas-
sifiers described so far. By quantized classifiers we mean a ver-
sion of the classifiers that works only with integer numbers. This
is a necessary step since the cryptosystem underlying any SSP
protocol can handle only integer numbers. For this reason, we
must adapt the algorithms described in Section II to let them
work with integer numbers. To do so, we first define the quan-
tized classifiers rigorously by leaving undefined the number of
bits that are used to represent the inputs and the classifier pa-
rameters; then we describe the experiments we carried out to
determine the exact number of bits that are needed to mimic a
floating point implementation of the classifiers from the point
of view of classification accuracy.
Passing from an algorithm implemented in floating point

arithmetic to one working with integer numbers (fixed point
arithmetic with no truncation) requires that the inputs and the
parameters defining the LBP and the NN are quantized and
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Fig. 9. Chain blocks to compute the output of an NN.

represented by a suitable number of bits, so that the final output
does not differ significantly from the results that would have
been obtained with a floating point implementation. Generally
speaking, given a positive floating point number , we can
construct its quantized version multiplying it by a positive
integer value and rounding the result to the nearest integer, as
specified by the following mapping:

(9)

where we have indicated explicitly that is an integer
number that requires bits to be represented.

A. Quantized Linear Branching Program Classifier

We start by giving a formal definition of quantized LBP. The
LBP is a natural generalization of binary classification trees and
ordered binary decision diagrams (OBDDs). Compared to the
above, LBPs have a more general branching condition that de-
pends on the comparison of a linear combination of the inputs
with a given threshold. More formally, a quantized LPB is de-
fined as follows [17].
Definition 3.1 (Linear Branching Program (LBP)): Let

be the attribute vector consisting of signed -bit
integer values. A binary linear branching program (LBP)
is a triple . The first element is a
set of nodes consisting of decision nodes fol-
lowed by classification nodes . Decision
nodes , are the internal nodes of the LBP. Each

is a pair, where is the
linear combination vector consisting of signed -bit integer
values and is the signed -bit in-
teger threshold value with which is
compared in this node. is the index of the next node
if ; is the index of the next node if

. The functions and are such
that the resulting directed graph is acyclic. Classification nodes

, are the leaf nodes of the LBP consisting
of a single classification label each.
Evaluation of the LBP on an attribute vector proceeds as

follows. We start with the first decision node . If
, move to node , else to . Repeat this process

recursively (with corresponding and ), until reaching one
of the classification nodes and obtaining the classification

.
It is evident how the LBP structure defined above can be used

to implement the QDF classifier described in Section II-A on in-
teger values. In our specific case, we have , , and

. As to quantization, the situation is rather simple, since
the size in bits of the intermediate values of the computations

do not increase when the tree representing the LBP is traversed,
hence we only need to define the number of bits necessary to
represent the components of the feature vector and the elements
of the projection matrix , i.e., we have to determine the value
of that ensures the same classification accuracy of a floating
point implementation of the LBP (see Section III-C).

B. Quantized Neural Network Classifier

We now consider the quantized version of the NN classifier.
In an NN there are several parameters that need to be quantized,
thus we introduce , , that are the multipliers used to quan-
tize the inputs of the NN, and the parameters (weights and bi-
ases) of the hidden and the output layers, respectively. We also
define , , and , respectively, as the number of bits needed
to represent the quantized version of the inputs and the quan-
tized parameters of the hidden and output layers, including the
sign bits.
In the following, we will use the notation introduced in

Section II-B. Working with quantized values, the quantized
output vector of the hidden layer is

(10)

where the biases have been multiplied by both and to
make the bias homogeneous with the term . As to the

function of (6), we have replaced it with its quantized
version defined as follows:

if
if
if

(11)

where saturation occurs when the magnitude of the input is
equal to that corresponds to a unitary magnitude of the non-
quantized inputs. Due to saturation, the output of the
function requires fewer bits than its input to be represented,
namely at most (the first bit represents the
sign), so each component in requires at most bits. This
should be contrasted with the number of bits needed to repre-
sent the input of the function. Such an input, in fact,
is the result of the product between the inputs and the weights
(it is a scalar product), which needs

bits, where the three additional bits are needed be-
cause we are adding five values (four for the scalar product be-
tween inputs and weights and one for the bias) so, this opera-
tion requires at most additional bits. As already
stated, after the application of , the number of bits
needed to represent the output is reduced to .
A similar analysis can be applied to the output layer, where

we have

(12)
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Fig. 10. Quantized NN. In our case, we have , , and .

and where each component of requires
bits (as before, one bit is used to represent

the sign). At this point, the output of the maximum function that
completes the classification is

(13)

and the number of bits necessary to represent it is the logarithm
of the length of , since is just the index of the biggest
component. We are now ready to give a rigorous description of
the number of bits necessary at each step of the NN. Specifically,
the following definitions hold:
• , the inputs of the NN, are signed integers represented
with bits;

• , the weights in the hidden layer, are signed integers
represented with bits;

• , the biases in the hidden layer, are signed integers rep-
resented with bits;

• , the weights in the output layer, are signed integers
represented with bits;

• , the biases in the output layer, are signed integers rep-
resented with bits.

We can summarize the operation of a quantized NN with the
required bit-lengths at each step, with the following formula (see
also Fig. 10):

(14)

Finally, the NN classification result is ,
which can be represented with bits.
We conclude this section by highlighting the fact that due to

the presence of the saturation function the magnitudes of the
intermediate results of the NN are kept bounded, as opposed
to what happens in general with cascade quantized algorithms
where the bit size of the quantities involved in the computation
grows linearly with the number of subsequent multiplications to
be performed. This is a very important property of our proposed
implementation of a quantized NN, that will permit us to reduce
the complexity of the secure protocol for the NN classifier.

Fig. 11. Classification accuracy of LBP as a function of the input bit length.

TABLE I
LBP PARAMETERS

C. Representation Versus Classification Accuracy

Having defined the quantized version of the LBP and NN
classifiers, we can determine the minimum number of bits nec-
essary to represent the values involved in the computations so
to obtain the same accuracy of a floating point implementation
of the classifiers. This is a crucial step, since as it will be shown
later on, the size in bits of the input features and that of the clas-
sifier parameters have an immediate impact on the complexity
of the SSP implementation of the classifiers.
1) Quantized Implementation of the LBP Classifier: Some

LBP parameters depend on the protocol: the LBP has an input
vector with elements and is characterized by
nodes, whereof are decision nodes. The bit length nec-
essary to represent the elements of the input vector and the
matrix was obtained by running a simulation on the Phys-
ioBank [26] database of ECG signals. We evaluated the classifi-
cation accuracy by changing the bitlength, obtaining the results
shown in Fig. 11. The accuracy of a floating point implemen-
tation (86.30%) is obtained for bits. The results of the
scalar products between the input vector and the projection vec-
tors can be represented with bits.
A summary of the parameters of the quantized LBP is given in
Table I.
2) Quantized Implementation of the NNClassifier: As shown

in Section II-B, the NN classifier has an input vector with
elements and is characterized by hidden neurons and

output neurons. In order to determine the minimum
number of bits necessary to reach the same classification accu-
racy of the LBP classifier, we run a simulator that evaluates the
classification accuracy of the NN in the case ,
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Fig. 12. Classification accuracy as a function of , , .

Fig. 13. Classification accuracy in function of , with .

TABLE II
NN PARAMETERS

obtaining the results shown in Fig. 12. To guarantee the same
classification obtained by the LBP classifier, we must let

bits. These numbers of bits (namely and )
are those necessary to correctly represent the integer part of the
input features and NN parameters multiplied by the quantiza-
tion factors and [see (9)]. Specifically, according to the
experiments we carried out with the PhysioBank database, they
correspond to and .
The result of the scalar products in the hidden layer are used

as input in the function that gives an output with
magnitude bounded by , hence it can be represented with

bits. From the values given above we
obtain yielding bits, including the sign
bit. As a further test we tried to reduce the number of bits used
for the output layer once the bit length of the parameters of the
hidden layer has been fixed. As shown in Fig. 13, letting
is sufficient to guarantee the same accuracy. A summary of the
parameters we used for the NN classifier are given in Table II.

D. Security Requirements for SSP-Based ECG Classification

We conclude this section by analyzing the security require-
ments for an SSP implementation of the two classification algo-
rithms described so far.
In our scenario (a patient) owns an ECG beat signal and

asks (e.g., a remote health-care system) to determine which
class his beat belongs to. requires that does not get any
information about the ECG signal, not even the final result of
the classification. At the same time, does not want to reveal

Fig. 14. High level protocols: (a) QDF plus LBP classifier; (b) NN classifier.
Values in brackets are assumed to be encrypted with the public key of .

the parameters of the classification algorithm it is using, since
they represent a valuable asset to protect.
From the point of view of security requirements, the QDF

and NN classifiers are quite similar. In both cases (see Fig. 14),
does not want to reveal anything about the feature vector ex-

tracted from the ECG signal, namely the plain features in the
NN case, and the extended feature vector in the QDF case. In
the QDF case, does not want to reveal any information about
the projection matrix and the actual form of the classification
tree following the projection.
In the NN case, wants to keep secret the NN parameters,

namely the weights , and also the biases and .
Note that we assume that knows the general form of the clas-
sifier used by , i.e., a QDF classifier or an NN. also knows
the overall size of the classifier, that is the size of the projection
matrix and the size of the classification tree in the QDF case,
and the number of layers and neurons in the NN case. This is
a reasonable assumption since the domain specific knowledge
needed to classify the ECGs and the knowledge got from the
training, a knowledge that may want to protect, reside in the
classification tree and the matrix for the QDFClassifier and in
the weights and biases of the NN in the case of the NNClassifier.

IV. MODULAR DESIGN OF EFFICIENT SFE PROTOCOLS

In this section, we summarize the framework for modular de-
sign of efficient two-party secure function evaluation (SFE) pro-
tocols of [20]. We use this framework to intuitively describe our
protocols for privacy-preserving classification of ECG data later
in Section V as a sequence of operations on encrypted data.
1) Security Model: The standard approach for formalizing

and proving security of cryptographic protocols is to consider
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adversaries with different capabilities as summarized in the fol-
lowing. We refer to [20] and [28] for a detailed discussion.
Our protocols presented in this paper are secure against semi-

honest (or passive) adversaries that honestly follow the protocol
but try to infer additional information from the transcript of mes-
sages seen. At first, it may appear contrived and trivial. Con-
sideration of semihonest adversaries, however, is important in
many typical practical settings. First, even externally unobserv-
able cheating, such as poor random number generation, manip-
ulations under encryption, etc., can be uncovered by an audit
or reported by a conscientious insider, and cause negative pub-
licity. Therefore, especially if the gain from cheating is low, it
is often reasonable to assume that a well-established organiza-
tion will exactly follow the protocol (and thus can be modeled
as semihonest). Further, even if players are trusted to be fully
honest, it is sometimes desired to ensure that the transcript of
the interaction reveals no information. This is because in many
cases, it is not clear how to reliably delete the transcript due to
lack of control of the underlying computing infrastructure (net-
work caching, virtual memory, etc.). Running an SFE protocol
ensures that player’s input cannot be subsequently revealed even
by forensic analysis. At the same time, designing and evaluating
the performance of protocols in the semihonest model is a first
stepping stone towards protocols with stronger security guaran-
tees. Indeed, most protocols and implementations of protocols
for practical privacy-preserving applications focus on the semi-
honest model [17], [29]–[32].
The strongest security guarantees are against malicious (or

active) adversaries that are allowed to arbitrarily deviate from
the protocol, aiming to learn private inputs of the other parties
and/or to influence the outcome of the computation. Not sur-
prisingly, protection against such very powerful adversaries is
relatively expensive as discussed in [20]. The basic transfor-
mation to convert a protocol secure against semihonest adver-
saries into one that provides security against malicious adver-
saries is to let each party prove in zero-knowledge that it be-
haves correctly [33]. Although these zero-knowledge proofs re-
sult only in a linear blowup of the protocol complexity, their
efficient implementation is far from trivial and results in a sub-
stantially decreased performance (e.g., complexity of securely
evaluating AES using garbled circuits is increased to approx-
imately 800 times more communication and 160 times longer
computation [19]).3

As the overhead for getting full-fledged security against both
parties beingmalicious is too large for practical applications, we
advocate the usage of hybrid security instead, where players are
not equal in their capabilities, trustworthiness, and motivation.
In particular, in our medical scenario, it is reasonable to assume
that the service provider has strong incentives not to cheat in
the protocol (act semihonestly) as his cheating attempts might
be detected and ruin his reputation and business model, whereas
may be much more willing to cheat (act maliciously). As de-

scribed in [20], such protocols with asymmetric assumptions on
the two players can be constructed efficiently, where the over-
head is very moderate. In particular for garbled circuit-based

3To the best of our knowledge, [19], which is an extension of [34], are the
only works that provide an implementation and performance measurements for
secure two-party computation in the malicious model.

Fig. 15. Function representations. (a) Boolean circuit. (b) Arithmetic circuit.

protocols, only the underlying oblivious transfer protocol needs
to be replaced with a slightly (about two times) less efficient
one. Thus, protocols which are based only on garbled circuits
(such as our protocol presented in Section V-B) are good candi-
dates for settings with corresponding trust relationships.
Notation: By following the notation used until now, we call

the two semihonest SFE participants client and server . This
naming choice is influenced by the asymmetry in the SFE proto-
cols, which fits into the client–server model.We stress that while
in most real-life two-party SFE scenarios this client–server re-
lationship in fact exists, we do not limit ourself to this setting.
2) Security Parameters: We use the following security pa-

rameters: symmetric security parameter and asymmetric secu-
rity parameter .
3) Function Representation: Given a function that should

be computed securely, the first task during the design of the cor-
responding SFE protocol is to find a suitable representation for
. Well-established representations which allow efficient SFE
protocols are boolean circuits and arithmetic circuits as shown
in Fig. 15. The representation determines the size of the func-
tion, e.g., multiplication is an arithmetic circuit with a single
multiplication gate while its representation as boolean circuit is
substantially larger. As described below, the online phase for
SFE of boolean circuits is substantially more efficient than SFE
of arithmetic circuits, so especially nonlinear functions such as
comparisons benefit from boolean circuits [18]. The framework
of [20] allows us to modularly compose functions from building
blocks which are compactly represented as boolean or arith-
metic circuits and then convert back and forth between the rep-
resentations under encryption.
In the following, we summarize efficient methods for SFE of

arithmetic and boolean circuits, and conversions between them.
For a comprehensive description we refer to [20].

A. Homomorphic Encryption (HE) for Arithmetic Circuits

1) Additively Homomorphic Encryption: Encryption
schemes such as [21] and [35] are semantically secure en-
cryption schemes with plaintext space and ciphertext
space that allow addition under encryption. They allow
us to compute the operation on plaintexts by the corre-
sponding operation on ciphertexts, which satisfies ,

. (We write
for homomorphic encryption of plaintext .) This

naturally allows for multiplication with a plaintext con-
stant using repeated doubling and adding: ,

.
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SFE of arithmetic circuits can be naturally based on addi-
tively homomorphic encryption as follows: generates a key-
pair for the homomorphic cryptosystem and sends the public
key together with his inputs encrypted under the public key to
. uses the homomorphic property to evaluate the arithmetic
circuit on the encrypted data. If the cryptosystem is only addi-
tively homomorphic, multiplication under encryption requires
the help of in a single round of interaction (details in [20]).
Finally, sends the encrypted outcome of the computation back
to who can decrypt.
2) Instantiation of HE: We use the additively homomorphic

cryptosystem of Paillier [21] where the public key is an RSA
modulus , i.e., the product of two large primes , of bit length

each, and the secret key is the factorization of . The ex-
tension described in [35, Sec. 6] allows us to precompute expen-
sive modular exponentiations of the form in a setup
phase, such that only two modular multiplications per encryp-
tion are needed in the online phase. As knows the factorization
of , he can use the Chinese remainder theorem to efficiently
precompute these exponentiations and for efficient decryption.
The length of ciphertexts is (recall, is the asymmetric se-
curity parameter), as Paillier has ciphertext space .
3) Packing: As the plaintext space (e.g., for the Pail-

lier cryptosystem [21]) is often larger than the encrypted values,
can pack multiple values under encryption using Horner’s

method before sending them to to reduce communication and
number of decryptions by . For a comprehensive treatment of
packing in a SFE framework, see [36].
4) Fully Homomorphic Encryption: As described in [20], the

interactive approach for multiplication currently results in faster
SFE protocols than using schemes which also provide one (e.g.,
[37]) or arbitrarily many (e.g., [38]–[40]) multiplications under
encryption, called fully homomorphic encryption.

B. Garbled Circuits (GCs) for Boolean Circuits

GCs are an efficient method for SFE of boolean circuits.
The general idea of GCs, going back to Yao [11], is to encrypt
(garble) each wire with a symmetric encryption scheme. In
contrast to homomorphic encryption (cf., Section IV-A), the
encryptions/garblings here cannot be operated on directly, but
require helper information which is generated and exchanged
in the setup phase in form of a garbled table for each gate.
On the other hand, the online phase of GCs is highly efficient
as it requires only symmetric cryptographic operations (cf.,
Section IV-A1).
1) Yao’s Protocol: On a high-level, Yao’s GC protocol works

as follows: in the setup phase, the constructor generates an
encrypted version of the function (represented as boolean cir-
cuit), called garbled circuit . For this, he assigns to each wire

of two randomly chosen garbled values , (sym-
metric keys) that correspond to the respective values 0 and 1.
Note that does not reveal any information about its plain
value as both keys look random. Then, for each gate of , the
constructor creates helper information in the form of a garbled
table that allows us to decrypt only the output key from the
gate’s input keys. The garbled circuit consists of the garbled
tables of all gates and is sent to the evaluator . Later, in the
online phase the evaluator obliviously obtains the garbled

Fig. 16. Hybrid SFE protocols.

values and corresponding to the plain inputs and of and
, respectively, (see below). Afterwards, evaluates the gar-
bled circuit on by evaluating the garbled gates one-by-one
using their garbled tables. Finally, obtains the corresponding
garbled output values which allow to decrypt them into the
corresponding plain output .
For converting a plain input bit of into its garbled equiv-

alent, simply sends the key to . Similarly, must obtain
the garbled bit corresponding to his input bit , but without
learning . This can be achieved by running (in parallel for

each bit of ) a 1-out-of-2 oblivious transfer (OT) protocol.
OT is a cryptographic protocol into which inputs his choice
bit and inputs two strings and .
The protocol guarantees that obtains only the chosen string

while learns no information on .
We emphasize that GCs cannot be evaluated twice, and

refer to [41] for a proof of security for Yao’s protocol in the
semihonest model and to [20] for a summary of different GC
methods and converting garbled outputs into plain values.
2) Implementation Details (cf., Appendix A): We give im-

plementation details for efficient constructions of GC and OT in
Appendix A1. In our protocols, we compose the functionality to
be evaluated from several standard blocks (cf., Appendix A2 for
details): comparison and multiplication of two
unsigned -bit integer values, addition and subtraction

of two signed -bit integer values in two’s complement,
multiplexing between two -bit values , maximum index
of unsigned -bit values , and adding/subtracting
an unsigned -bit value to/from a signed -bit value depending
on a control input .

C. Hybrid SFE of Mixed Representations

The SFE framework proposed in [20] allows us to modularly
compose SFE protocols as a sequence4 of operations on en-
crypted data as shown in Fig. 16: both parties have plain values
as their inputs into the protocol. These plain values, denoted
as , are first encrypted by converting them into their corre-
sponding encrypted value: a garbled value, denoted as , held
by , or a homomorphic value, denoted as held by , de-
pending on which operations should be applied. After encryp-
tion, the function is securely evaluated on the encrypted values,
which may involve conversion of the encryptions into the re-
spective other type of encryption (see below). Finally, the en-
crypted output values are revealed and can be decrypted by con-
verting them into the corresponding plain output values. In the
following, we describe how to efficiently convert between the
two types of encryptions.

4As all building blocks are proven secure against semihonest adversaries,
their sequential composition inherits this security property (see, e.g., [42]).
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1) Conversion Between Garbled and Homomorphic Values:
To convert a homomorphic value into a garbled value ,
adds a random mask under homomorphic encryption, sends
the blinded value to who decrypts and both
parties evaluate a garbled subtraction circuit which takes off the
random mask under “garbled encryption.” Parallel conversion
of multiple values can be optimized by packing multiple values
into one ciphertext before blinding. A similar method can be
used for converting a garbled value into an homomorphic
value . For details we refer to [20].

V. PRIVACY-PRESERVING ECG CLASSIFICATION

We now apply the framework described in Section IV to the
LBP and NN approaches to ECG classification. Remember that
in our scenario the patient (playing the role of ) has as input a
quantized ECG signal and the medical service provider has
a private classifier. After the protocol run, knows the classifi-
cation of each single heart beat of ECG signal, while learned
nothing about ’s input.

A. Privacy-Preserving LBP Classifier

The protocols described in [17] allow secure evaluation of
private linear branching programs (LBPs) which can be used for
privacy-preserving ECG classification [7]. In the following, we
describe the hybrid protocol which is based on a combination
of homomorphic encryption and garbled circuits and achieves
better performance than the protocol based on GCs only in the
ECG classification setting.
We also propose a new optimization in case is willing to

reveal additional information about the classifier to .
1) Protocol Description: As described in Section III-A,

the input provided by is a quantized attribute vector

of signed -bit integer values,
and the input provided by is the LBP . On a high level, the
protocol of [17] proceeds as follows: First, the attribute vector

is projected onto the rows of the projection matrix by
using homomorphic encryption. The resulting homomorphi-
cally encrypted -bit signed integer values are converted into
their corresponding garbled values which are compared with
the threshold values of using garbled comparison circuits
(observe that in our specific case all thresholds are equal to 0),
and classified with a garbled -input gate. Finally, the garbled
output is decrypted and revealed to .
In more detail, the protocol works as follows:
1) To convert the quantized attribute vector into its corre-
sponding homomorphic vector held by , encrypts each
component with the homomorphic encryption system and
sends the ciphertexts to .

2) Then, computes for the homomorphic
values using the
properties of the homomorphic cryptosystem without in-
teraction with .

3) The homomorphic -bit values are converted into
their garbled equivalents using the conversion protocol
described in Section IV-C.

4) The garbled values are compared with the threshold
values using garbled comparison circuits for -bit
values.

TABLE III
COMPLEXITY OF LBP-BASED ECG CLASSIFICATION PROTOCOL

5) For small values of , the resulting garbled bits can be used
as input into a garbled -input gate to perform the final
classification and output the outcome of the classification
to .

For a detailed description of the protocol and its proof of se-
curity we refer to [17].
2) Efficiency Analysis: As calculated in Section III-C1, the

parameters for ECG classification are , , ,
, , the symmetric security parameter is , and the

asymmetric security parameter is . This yields the following
costs for the LBP-based ECG classification protocol.
Abstractly, the following computations need to be performed

under encryption: in Step 1, performs Paillier encryp-
tions and sends Paillier ciphertexts
to . In Step 2, performs modular exponentiations of
Paillier ciphertexts and modular multiplications
to combine the results. In Step 3, packs the homomorphic
values into one Paillier ciphertext
to who decrypts once. Afterwards, both parties run the online
phase of parallel OTs
and evaluate a garbled subtraction circuit [ garbled
non-XOR gates] to take off the random mask. In Step 4, evalu-
ates garbled comparison circuits for -bit integers [
garbled non-XOR gates]. Finally, in Step 5, evaluates a garbled
-input gate.
The resulting complexity of the LBP-based ECG classifica-

tion protocol is summarized in Table III.
a) Online Phase: The communication complexity in the

online phase is approximately
bits. The computations performed by consist of 15 Pail-

lier encryptions, 1 decryption, and invo-
cations of for evaluating the garbled gates. The computations
of are dominated by modular exponentiations on
Paillier ciphertexts. The online phase requires four moves.

b) Setup Phase: In the setup phase, the garbled circuits are
generated by [ invocations of ] and
transferred to .
Additionally, parallel OTs need to be precomputed as
described in Section A1.
3) Optimization: If does not want to hide from that

indeed all thresholds are zero, we can omit the compar-
ison and directly use the most significant bit instead. By doing
this, we no longer need the comparison circuits and save 306
non-XOR gates. This yields a more efficient protocol where in
the setup phase less invocations of by and

less communication are needed and in the on-
line phase performs 306 less invocations of .
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B. Privacy-Preserving NN Classifier

In the following, we describe a novel privacy preserving pro-
tocol for the NN-based classifier described in Section III-B.
With respect to previous works in NN computation in an SFE

framework (e.g., [43], where the activation functions are imple-
mented by introducing a rather security-critical multiplicative
blinding step), our solution is provably secure and computation-
ally efficient. Specifically, the general structure of our protocol
follows the approach of [14] where the quantized NN for clas-
sification (in our case the NN shown in Fig. 10) is represented
as a boolean circuit which is evaluated securely with a garbled
circuit protocol. While [14] gives only concrete circuit instanti-
ations for threshold functions, our NN uses the func-
tion (as defined in Section III-B) for which we give an efficient
circuit instantiation.
1) Boolean Circuit: To simplify the presentation, we di-

rectly substitute variable names with the parameters determined
in Section III-C2 and the sizes of circuit building blocks of
Table VI.

a) Inputs: At the input of the circuit, we have the vector
provided by . The inputs

provided by are
• ;

• ;
• ;

• .
b) Gates: The circuit is constructed by instantiating the

blocks of Fig. 10 with circuit building blocks as follows.
The inputs and are given in sign-magnitude rep-

resentation s.t. we can easily compute their component-wise
product: the magnitude is the product of the input magnitudes
using blocks for 12-bit unsigned integers (

non-XOR gates); the sign is computed “for
free” by XORing the input signs. Now, depending on the sign,
the magnitudes of the products are added to or subtracted from

by using blocks (at most

non-XOR gates). The output is a
vector with components of -bit signed
values in 2’s complement representation.
Afterwards, for each of the neurons the ac-

tivation function is evaluated: first, the 28-bit input (let us call it
) is converted from 2’s complement into sign/magnitude rep-
resentation with an block (27 non-XOR gates). After-
wards, the function is computed according to (11)
as . The minimum
is computed by comparing the magnitude of with 1 using
a block (27 non-XOR gates). Depending on the outcome
of this comparison, the 17-bit magnitude of the outcome is ei-
ther the magnitude of or selected with a block [17
non-XOR gates]. Overall, the conversion and computation of the

functions requires
non-XOR gates. The output is a vector of compo-
nents of -bit signed values in sign/magnitude represen-
tation.
The value is computed similarly to the

computation of described before and requires

TABLE IV
COMPLEXITY OF NN-BASED ECG CLASSIFICATION PROTOCOL

a circuit of at most

non-XOR gates. The output is a vector with
components of -bit signed values in

2’s complement representation.
Finally, the index of the maximum value is determined with

an block (
non-XOR gates).

c) Outputs: The output of the circuit for is (three
wires).

d) Summary: In total, the circuit has 52 input wires of ,
input wires of , at most

non-XOR two-input
gates and three output wires for .
2) Protocol Description: As the NN classifier can be

represented as a reasonably small boolean circuit (cf.,
Section V-B1), it can be evaluated securely with Yao’s garbled
circuit (GC) protocol as described in Section IV-B. The inputs
to the protocol are the quantized inputs of :

and : . These plain inputs

are converted into their corresponding garbled inputs ,
provided to who uses them to evaluate a garbled circuit
created by to obtain the garbled output .
Finally, the garbled output is converted into the plain value

output to .
3) Efficiency Analysis: The costs for this NN-based ECG

classification protocol with symmetric parameter are summa-
rized in Table IV:

a) Setup Phase: In the setup phase, the garbled circuit
is generated by ( invocations of ) and
transferred to bits . Additionally,

parallel OTs need to be precomputed as de-
scribed in Appendix A1 to convert ’s input into its garbled
version . The setup phase requires three moves.

b) Online Phase: In the online phase, obtains the garbled
inputs corresponding to ’s input

bits and executes the online phase of 52 parallel OTs
bits which requires two moves. Evaluation of requires

17 000 invocations of .

C. Comparison

Finally, we compare the two approaches we have investigated
for ECG classification, from an efficiency point of view.
1) Communication Complexity: For the length of the secu-

rity parameters we consider short-term security ( and
bits) and long-term security ( and
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bits). In both cases, the NN-based protocol requires ap-
proximately 5 times more communication in the setup phase
(e.g., 169 kByte compared to 33.6 kByte for short-term secu-
rity). For short-term security, both protocols have similar online
communication complexity of 10 kByte, while for long-term
security the NN-based protocol has 38% less communication
(15.7 kByte compared to 21.6 kByte).
2) Computation Complexity: The LBP-based protocol has a

larger computation complexity than the NN-based protocol as
it requires more elliptic curve multiplications and operations on
Paillier ciphertexts which are substantially more expensive than
evaluations of the cryptographic hash function .
3) Timing Complexity: To compare the timings of both proto-

cols, we refer to two prototype implementations of similar pro-
tocols which both measure the runtime on two Intel Core Duo’s
running at 3.0 GHz, with 4 GB of RAM connected by a 1-GB
ethernet. We leave a more detailed analysis of the run-times of
both protocols with a prototype implementation of both proto-
cols as future work.
The prototype implementation of the LBP-based protocol for

ECG classification reported in [7] requires a total computation
time of 18.7 s for short-term security parameters. To the best of
our knowledge, this is the only implementation of LBPs.5

In comparison, the prototype implementation of [19] mea-
sures SFE of a functionality of similar size to the NN-classi-
fier (an AES circuit consisting of 11 286 non-XOR gates) and
requires in total only 7 s for long-term security parameters. As
shown in [45], most of the complexity of GC-based SFE proto-
cols can be precomputed in a setup/precomputation phase re-
sulting in an online phase which is approximately ten times
faster in the semihonest model resulting in an estimated setup
time of 6 s and an online time of 1 s. One may wonder whether a
classification time in the order of a few seconds is affordable in
real life applications. The ultimate answer to this question de-
pends on the application at hand; however, we can observe that
a running time of less than 1 s would be enough for applications
wherein heart beats are classified at the same pace at which they
are produced. While our protocols are not that fast, their per-
formances are not far away from the above so-to-say real-time
requirements thus witnessing the validity of our solutions.
For security against stronger covert adversaries (who can

be caught in a cheating attempt with a fixed probability) or
malicious adversaries (who are caught cheating with over-
whelming probability), the runtimes measured in [19] are 1 min
and 18.6 min, respectively. Furthermore, the computation and
communication complexity of GC-based protocols can be
substantially improved by using hardware accelerators for GC
evaluation [46], trusted hardware tokens for local GC creation
[47], possibly in a cloud computing scenario where GCs are
evaluated in parallel in the cloud [48].
4) Summary: In summary, we can state that the LBP clas-

sifier is preferable from a communication complexity point of
view when considering the total amount of data sent in setup
plus online phase. The reason is that the 12-bit values to be mul-
tiplied are too small to benefit from homomorphic encryption

5SFE of the less generic (and hence not directly applicable to our scenario)
branching programs functionality takes 5 s and 361 kB for 15 nodes and 100
attributes [44].

and hence must be implemented most efficiently with the GC
approach. In this way, multiplications must be implemented at
the logic circuit level with a number of gates (that ultimately
determines the communication complexity of the setup phase
of the protocol) depending quadratically6 on the bit size of the
factors. For a detailed comparison of protocols for secure multi-
plication, based on homomorphic encryption or garbled circuits,
we refer to [45].
On the other side, the NN protocol relies only on fast sym-

metric encryption operations, hence resulting in a better perfor-
mance from a computational complexity perspective, an advan-
tage that becomes more significant for long-term security, since
the security parameters of asymmetric cryptosystems are going
to increasemore rapidly than those of symmetric cryptosystems.
By considering the classifier structures underlying the two

protocols, we see that the NN ensures a twofold advantage since:
1) it allows us to work on a smaller feature vector (4 features
instead of the 15 components of the composite feature vector
required by the QDF-LBP classifier), and 2) it requires a smaller
number of bits for the representation of the feature vector and
the classifier parameters. This is partially due to the presence of
hard limiting activation functions avoiding that the inner results
of the computation grows in magnitude. It is thanks to the above
properties that the GC implementation of the NN protocol does
not pay a too large penalty for the necessity of working entirely
with boolean instead of arithmetic circuits.
We conclude our discussion by observing that the complexity

of both protocols depend on the number of features used to clas-
sify the ECG signals. In the NN case, the dependence of the size
of the classifier on the number of features is not easy to deter-
mine. On one side it results in an increase of the size of the
input layer of the NN, with a linear impact on the complexity
of the part of the protocol corresponding to the computation of
the input of the hidden layer. On the other side it is likely that
the number of neurons in the hidden layer will have to increase
as well thus resulting in a superlinear dependence of the com-
plexity on the number of features. The overall complexity in-
crease, however, is likely to be less than quadratic, given that
the size of the output layer will remain constant. In the LBP
case, the dependence is at least quadratic due to the inclusion
within the composite feature vector of quadratic terms7. For this
reason, we expect that the NN structure is going to become even
more advantageous if the number of features considered by the
classifier increases.

VI. CONCLUSION

The need for privacy protection is steadily increasing in our
society due to the wide diffusion of online distributed services
offered by nontrusted parties having potential access to private
information like users’ preferences or other personal data. This
need is even more pressing in settings where the information
to be protected is related to the health of the users: with the
appearance of more and more online medical repositories, it is
simple to imagine that in a few years the approach to health care

6We note that for multiplications of larger values with bits, the over-
head is less than quadratic as shown in [45].
7Of course the size of the decision tree may change as well
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will be completely different from the actual one and it is of the
outmost importance that manipulation of sensible data does not
compromise the privacy of users.
In this paper, we have shown how SSP technology may

help to achieve the twofold goal of allowing the processing of
biomedical signals while ensuring the privacy of the signal’s
owner. The proposed protocols address the classification of
ECG signals and rely on some innovative SFE constructions
and on a proper design of the classification algorithms so to
ease their implementation in an SSP framework.
More specifically, we have described two alternative ECG

classification protocols: the former is based on a QDF classifier
and is implemented by relying on a hybrid approach wherein
homomorphic encryption and garbled circuit theories are used
together; the latter implements an NN classifier and relies only
on garbled circuit constructions. This approachwas possible due
to the capacity of the NN to limit the size in bits of the input,
output, and inner values of the computation.
While both protocols are rather efficient, thus opening

promising directions for real-world applications, the QDF
classifier is (slightly) preferable from the point of view of
communication complexity, while the NN classifier is (slightly)
preferable from a computational complexity perspective.
As we said, the promising results of our research pave the way

to a number of interesting research directions that can be ex-
ploited in the future. First of all, newmore efficient implementa-
tions of the underlying building blocks can be sought for to fur-
ther improve the efficiency of the classifiers. Second, the results
we obtained for the particular case of ECG classification should
be extended to more general setups with the goal of deriving
some general conclusions about the suitability of the QDF and
the NN approaches to classification in an SSP framework. Se-
curity models more stringent than the semihonest model should
also be considered, attempting to develop efficient constructions
in the presence of malicious adversaries. Last but not least, some
new advances in cryptography, like the recently proposed fully
homomorphic cryptosystems [38], [39], [49] could open new re-
search directions finally leading to a brand new class of efficient
SSP protocols.

APPENDIX

A. Implementation Details

In this section, we summarize most efficient methods and
primitives for implementing garbled circuits (Appendix A1) and
the evaluated circuit building blocks (Appendix A2).

1) Efficient Implementation of Garbled Circuits: For
implementing GCs and OT with maximum efficiency, we use
a random oracle which can be instantiated with a suitably
chosen cryptographic hash function such as SHA-256 [50].

Instantiation of GC: We use the currently most efficient
GC method of [19] which is provably secure in the random
oracle model and provides “free XOR” gates, i.e., garbled XOR
gates require no garbled table and negligible computation only.
Evaluation of a garbled -input non-XOR gate requires one in-
vocation of ; to create the garbled table with entries

TABLE V
COMPLEXITY OF -PARALLEL OT PROTOCOL OF -BIT STRINGS

invocations of are needed; each table entry and each garbled
value has size bits (recall, is the symmetric security pa-
rameter).

Oblivious Transfer (OT): To efficiently implement OT,
[20] proposes to combine the following techniques resulting in
the total complexity summarized in Table V.

Precomputing OT [51]: This construction allows us to pre-
compute OTs in a setup phase, where both parties run the OT
protocol on random inputs. Later, in the more time-critical on-
line phase, they use these random inputs tomask their real inputs
with a one-time pad. For parallel OTs of -bit strings, the
online phase requires two moves and bits
datatransfer.

Extending OT Efficiently [52]: This technique allows us
to reduce the computation complexity of the setup phase by re-
placing parallel OTs of -bit-strings with parallel OTs of
-bit strings performed in the opposite direction. This construc-
tion requires invocations of by and invocations by .
The protocol needs one message of size bits in
addition to those of the underlying OT protocol.

Efficient OT Protocols [53]: parallel OTs of -bit strings
can be implemented efficiently with the protocol of [53] over el-
liptic curves. This protocol consists of three messages in which

elliptic curve points and encrypted bits are sent.
Using point compression, each point can be represented with

bits and hence the overall communication complexity of
this protocol is bits. As
computation, the sender has to perform point multipli-
cations and invocations of , and the receiver performs
point multiplications and invocations of . This protocol is
provably secure in the random oracle model.

2) Efficient Circuit Constructions: In our constructions,
we use several standard circuit building blocks which are op-
timized for a small number of XOR gates. The size and refer-
ences to the details of such optimized constructions are listed in
Table VI. In particular, we need blocks for comparison
and multiplication of two unsigned -bit integer values,
as well as for addition and subtraction of two
signed -bit integer values in two’s complement. A multiplexer

can select one of two -bit inputs as output.
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TABLE VI
EFFICIENT CIRCUIT CONSTRUCTIONS WITH FREE XOR

Fig. 17. Controlled addition or subtraction circuit .

Maximum Index: To determine the maximum index of
unsigned -bit values, called block, we adopt the cir-
cuit for computing the maximum value and index of [18] and
omit the last multiplexer for the maximum value resulting in a
circuit of size
non-XOR gates.

Controlled Addition or Subtraction: A block
which can add/subtract the unsigned -bit value to/from the
signed -bit value in 2’s complement depending on a control
bit can be naturally constructed from : If ,
must be subtracted from . This can be done by converting
into two’s complement and adding it to . The resulting circuit
is shown in Fig. 17. As each of the bit-addition blocks can
be implemented with one non-XOR gate [18], this circuit has size
non-XOR gates.
To convert an -bit signed integer value from 2’s com-

plement to sign/magnitude representation, the least significant
bits of are added to or subtracted from 0 depending on the
sign of , i.e., the most significant bit of , using an
block of size non-XOR gates.
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