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ABSTRACT
The present monograph focuses on the detection problem in ad-
versarial setting. When framed in an adversarial setting, classical
detection theory can not be applied any more, since, in order to
make a correct decision, the presence of an adversary must be
taken into account when designing the detector. In particular,
the interplay between the Defender (D), wishing to carry out the
detection task, and the Attacker (A ), aiming at impeding it, must
be investigated. The purpose of this monograph is to lay out the
foundations of a general theory of adversarial detection, taking
into account the impact that the presence of the adversary has
on the design of the optimal detector. We do so by casting the
adversarial detection problem into a game theoretical framework,
which is then studied by relying on typical methods of information
theory. As a final result, the theory allows to state the conditions
under which both the false positive and false negative error prob-
abilities tend to zero exponentially fast, and to relate the error
exponents of the two kinds of errors to the distortion the attacker
can introduce into the test sequence.
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1
Introduction

Security-oriented applications of signal processing have received increas-
ing attention in the last decades; digital watermarking, steganography
and steganalysis, multimedia forensics, biometrics, network intrusion
detection, spam filtering, traffic monitoring, video surveillance are just
some examples of such an interest. All these fields are characterized by
a unifying feature: the presence of one or more adversaries aiming at
making the system fail.

Although each adversarial scenario has its own peculiarities, there are
some fundamental questions whose solution under a unified framework
would ease the understanding of the underlying security problems and
the development of effective and general solutions. Such an observation
has prompted the birth of a new discipline, namely adversarial signal
processing [1], whose final aim is to design signal processing tools
which retain their effectiveness even in the presence of an adversary.
Within such a framework, classical methods can no longer be applied,
since the presence of two contenders with opposite goals and their
mutual interaction must be properly taken into account. The goal
of this monograph is to present a coherent theory of the most recent
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1.1. Application Areas 3

findings regarding the single most common problem in adversarial signal
processing, namely binary detection in adversarial setting.

The monograph originates from the research activity carried out
by the authors over the last six years, with particular reference to the
results proven in [2]–[5]. Other related papers have been published
by the same authors and by other researchers, however they are not
discussed in this monograph to let the reader focus on the core theory.
A brief overview of related works is given in Section 1.3 to introduce the
reader to the most interesting extensions of the results presented here.

1.1 Application Areas

Binary detection, sometimes referred to as binary decision or a particular
kind of binary hypothesis testing, is a ubiquitous problem in virtually all
branches of science and technology. In many cases, binary detection must
be carried out in a setting wherein the presence of an adversary aiming
at inducing a wrong decision can not be ruled out. Upon restricting the
attention to signal processing and data science applications, examples of
binary detection problems that, by their nature, are required to work in
an adversarial setting include: network monitoring, intrusion detection,
spoofing detection in biometric recognition systems, watermarking,
steganography and steganalysis, multimedia forensics, spam filtering,
video surveillance, anomaly detection, malware detection and many
others.

In network monitoring applications, for instance, a common binary
detection problem consists in detecting if there is an on-going Denial of
Service (DoS) attack. In the simplest case, the presence of the attack can
be detected by relying on a few traffic characteristics like the traffic rate,
the provenance of data packets and the frequency of traffic bursts [6]. In
the likely case that the hacker responsible for the DoS attack is aware
of the presence of a network monitoring service, he will try to shape the
traffic resulting from the attack in such a way that its characteristics
are as close as possible to those of the benign traffic loading the network
in the absence of attacks (while of course retaining the effectiveness of
the attack). In this way, the hacker is going to alter the statistics of the
observed traffic in the presence of the attack, thus impacting heavily
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4 Introduction

the performance of the monitoring service in case the service had been
designed without taking into account the presence of the attacker. Of
course, the designer of the monitoring service does not know exactly
how the hacker will shape the traffic. In turn, the hacker may not know
the exact features the traffic monitoring service is going to rely on to
make his decision. This uncertainty, or lack of knowledge, characterizing
both the network analyst and the hacker, must be properly taken into
account by both parties to optimise the actions they are going to take.
It is the goal of adversarial detection theory to model the interplay
between the analyst and the hacker to suggest the best way for them to
reach their (opposite) goals, and derive the performance the monitoring
service can achieve despite the presence of the adversary.

A similar situation occurs in spam filtering applications [7], [8]. Even
in this case, the spammer and the filter designer engage in a struggle
wherein the designer of the spam filtering service looks for a reliable way
to distinguish normal e-mails from spam, while the spammer does its
best to convey the intended malevolent payload letting spam messages
resemble normal e-mails, or, in a similar but not equivalent way, by
avoiding that they are recognized as spam. Once again, designing the
filter without taking into account the possible efforts made by the
spammer to evade detection would result in poor filtering performance.
In the same way, creating spam e-mails neglecting the presence of the
anti-spam filter would result in most of the spam being filtered out.

Another relevant scenario, even closer to the theory presented in this
monograph, is Multimedia Forensics (MF) [9]. Most problems in MF
can be formulated as a binary detection or hypothesis testing problem.
For instance, the MF analyst may be asked to distinguish between
synthetic and natural images, or to decide if a given image has been
captured by a specific device or not. In other cases, the analysis aims at
deciding if an image or a video has been compressed once or multiple
times, since the compression history of the image/video may reveal
important aspects of the processing chain the image/video has been
subject to. In yet other cases, binary detection requires understanding
if a certain media has been manipulated since it has been captured or
not. Since the very first days of MF research, it has been recognised
that forensic analysis had to cope with the opposite effort, usually
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referred to as counter-forensics, made by a counterfeiter [10]. From this
perspective, counter-forensics can then be defined as a way to degrade
the performance of the hypothesis test envisaged by the analyst. In an
attempt to avoid a never-ending loop wherein new defenses and attacks
are developed iteratively, and to an extent anticipating the theory
developed here, the authors of [10] argued that the Kullback–Leibler
distance between the probability density functions of the observed
signals after the application of the counter-forensic attack is a proper
way to measure the effectiveness of the attack itself. Noticeably, such
measure does not depend on the particular technique adopted by the
analyst. Even though the formulation in [10] does not explicitly use
the game-theoretic approach, this can be seen as the first step towards
the definition of the equilibrium point of a general multimedia forensics
game.

Prior to multimedia forensics, the arguments used in [10] had al-
ready been adopted to model the interplay between steganography and
steganalysis. In steganography, the steganographer modifies a cover
media, usually an image, to hide within it a hidden message. The re-
sulting image, referred to as a stego image, is sent to the intended
receiver of the hidden message in such a way that an external observer
does not notice the presence of the hidden message, thus creating a
cover channel between the steganographer and the receiver [11]. The
goal of the steganalyzer is to observe the communication between the
sender and the receiver, trying to distinguish between the cover and
stego images. As in the previous examples, the task of the steganalyzer
corresponds to a binary detection problem (detecting stego images),
taking into account the opposite effort of the steganalyzer who aims
at making the cover and stego images indistinguishable. Interestingly,
the mathematical model used to describe the interplay between the
steganographer and the steganalyzer is very similar to that used in [10],
with the steganographer playing the role of the counterfeiter and the
steganalyzer the role of the forensic analyst [12].

Biometric authentication is yet another discipline which is often faced
with binary decision in settings wherein the presence of an adversary
cannot be ignored. In biometric-based user verification, for instance, the
authenticating system must decide whether a biometric template (a face
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6 Introduction

image, a fingerprint, an iris image or any other biometric trait) belongs
to a certain individual, despite the opposite efforts of an attacker aiming
at building a fake template that passes the authentication test. In other
cases, the owner of the biometric template modifies the template to avoid
being recognized [13]. In both cases, the distortion introduced within
the template as a consequence of the attack should be minimal impede
the detection of the attack. Another problem pertaining to biometric
security that is naturally modelled as an adversarial binary detection
problem, is anti-spoofing. A spoofing attack refers to a situation wherein
the attacker attempts to impersonate the target by presenting to the
authentication system a synthetic copy of the biometric signal used for
authentication. In the case of face-based authentication, for instance, a
spoofing attack is easily implemented by showing to the authentication
system the face of the victim displayed on the screen of a mobile phone
(rebroadcast attack). In this framework, the goal of the anti-spoofing
system is to distinguish between natural and rebroadcast images. In
his turn, the attacker will try to generate the image or video to be
rebroadcast in such a way that it is judged as a natural one by the
spoofing detection system. In doing so, the attacker must preserve the
quality of the displayed image/video since otherwise it would fail to be
recognized as the victim of the attack [14].

In all the examples described so far, the attack is carried out at test
time. The situation is rather different in applications entailing the use
of machine learning tools, since in such cases the attacker may already
act during the training phase [15]. With such detectors, the different
distributions of samples observed under the two hypotheses being tested
is not known through statistical models, rather, they are learnt during
the training phase in which examples of data produced under the two
hypotheses are shown to the system. If the attacker can interfere with
the training phase, he can try to modify the training data to facilitate
a subsequent attack carried out at test time. Many examples of the
effectiveness of this kind of attacks have been published recently, due
to the ever-increasing popularity of machine learning techniques [16].
In Chapter 6, while addressing the problem of binary detection with
corrupted training data, we touch upon attacks carried out at training
time.
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1.2 Scope of the Theory

The main idea behind adversarial detection theory (and adversarial
signal processing in general) consists in casting the detection problem
into a game-theoretic framework, which permits to rigorously define
the goals and the actions available to the two contenders, namely, the
designer of the detector, hereafter referred to as Defender (D), and the
adversary, referred to as the Attacker (A ).

In the following, we introduce the general adversarial binary detec-
tion problem addressed in this monograph, which is a binary hypothesis
testing problem.1

Let X ∼ PX and Y ∼ PY be two discrete sources belonging to the
class of the discrete memoryless sources (DMS) C, with alphabet X . The
goal of the Defender, D , is to decide whether a test sequence zn ∈ X n

has been generated by X (hypothesis H0) or Y (hypothesis H1). As a
result of the test, X n is partitioned into two complementary regions
Λn and Λ̄n, such that for zn ∈ Λn, D decides in favor of H0, while for
zn ∈ Λ̄n, H1 is preferred. We have a Type-I, or false positive, error when
D decides for H1 and H0 is true, and a Type-II, or false negative, error
when the decision is in favor for H0 while H1 occurs. We indicate the
probability of a Type-I, or false positive error as PFP and the probability
of a Type-II or false negative error as PFN. Our goal is to design a
hypothesis test that encompasses the presence of an attacker aiming
at impeding a correct decision. A Neyman–Pearson (NP) setup [17,
Chapter 3, p. 63] is considered for the decision test. Accordingly, D must
choose the decision regions Λn and Λ̄n in such a way as to ensure that
the Type-I error probability is lower than a certain prescribed value.
The Attacker, A , takes a sequence yn generated by Y and transforms it
into a sequence zn so that when presented with the modified sequence,
D still accepts H0. In doing so, A must respect a distortion constraint,
limiting the amount of modifications that can be introduced into the
sequence. In such a scenario, the goal of the Attacker is to cause a false
negative decision error. Therefore, A aims at maximizing the Type-II
error probability, while D ’s goal is to minimize it by taking into account

1For an introduction on the statistical method of hypothesis testing, the reader
is referred to [17].
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8 Introduction

Figure 1.1: General setup of the adversarial binary decision test. PX and PY govern
the generation of the test sequence under H0 and H1 respectively. PX also underlies
the generation of the training sequences tND and tKA for the case of binary decision
based on training data.

the presence of A . The above scenario provides a suitable model for
the detection problems found in many practical applications, where the
rejection of H0 corresponds to raising some kind of alarms and A aims
at preventing it (e.g., to avoid that an anomalous situation is detected,
or to allow the access to a system or service to a unauthorized user).

A schematic representation of the adversarial binary detection test
in its general form is depicted in Figure 1.1. The continuous line drawing
refers to the most basic scenario. Let xn ∈ X n, resp. yn ∈ X n, be a
sequence drawn from X, resp. Y , and let zn ∈ X n denote the sequence
observed by the D . We then have zn = xn under H0, whereas, under
H1, zn is a modified version of yn produced by A in the attempt to
deceive D . In the rest of this monograph, we assume that X and Y are
discrete memoryless sources (DMS).

In this monograph, we address several variants of the above problem,
depending on the knowledge available to the Defender and the Attacker
about the statistical characterization of the system under the two
hypotheses, which can be full or based on training data, and on the
capability of the adversary, who may attack the system at test time
only or both during the training and testing phases.

Below, we summarize the setups of the adversarial binary decision
test considered in this monograph.
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1.2. Scope of the Theory 9

1.2.1 Adversarial Binary Detection Setups

In the simplest setup, referred to as binary detection with known sources,
the Defender and the Attacker have full knowledge of the statistics
characterizing the system, i.e., they know the probability mass func-
tion ruling the emission of the test sequence under H0. The scheme
illustrating this setup is the one corresponding to the continuous-line
drawing in Figure 1.1. Binary detection with known sources is studied
in Chapters 3 and 4. The second setup studied in this monograph con-
siders the more realistic case in which the sources are not fully known
to the Defender and the Attacker. In this case, D and A obtain their
knowledge about X through the observation of a training sequence.
This setup is schematized in Figure 1.1 (solid and dashed line drawing).
In the most general case, the training sequences observed by D and A ,
namely tND and tKA , are different and have different length (N 6= K).
Such a setup is referred to as binary detection with training data, and
is studied in Chapter 5. We also consider a setup that accounts for the
possibility that the Attacker corrupts part of the training data available
to the Defender. This corresponds to a more complicated situation,
since the action of the Attacker also affects the decision under H0, thus
impacting on both Type-I and Type-II error probabilities (while in the
previous cases, the action of the attack had an impact on H1 only). This
setup, referred to as binary detection with corrupted training, is studied
in Chapter 6. More specifically, two different scenarios are considered
in Chapter 6, one corresponding to the case where the attacker can
only add some samples to the training sequence, and the other to the
case where he replaces a percentage of samples of the training sequence.
A schematic representation of the adversarial detection test in the cor-
rupted training setup is reported in Figure 1.2. With reference to the
notation in the figure, the original training sequence tKA is corrupted
by A producing tmA . The corrupted training sequence tmA is the one
observed by D , upon which he bases the decision. Such a sequence has
length m > K in the case of sample addition, while in the scenario of
sample replacement, m = K. The scheme presented in Figure 1.2 is a
very general one. A more detailed representation for each of the two
scenarios with corrupted training is provided in Chapter 6. The two
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Figure 1.2: Setup of the adversarial binary decision test with corruption of the
training set. PX and PY rule the generation of the test sequence under H0 and H1
respectively. PX also rules the generation of the training sequence tKA .

Table 1.1: Summary of the adversarial binary detection tests addressed in this
monograph

Defender Adversary

Source Source
Setup Knowledge Goal Knowledge Goal Capability

Known sources PX

minPFN
2

PX

maxPFN

Modify yn

Detection with
tND tKA Modify yn

training data

Corrupted training
tmA tKA

Modify yn and tKA
(sample addition
or replacement)

variants of the game corresponding to sample addition and replacement
are discussed in Sections 6.3 and 6.6, respectively.

Table 1.1 summarizes the three adversarial detection setups consid-
ered in this monograph.

In all the setups, the game between the Defender and the Attacker
is solved by relying on information-theoretic methods, notably on the
method of types, under some limiting, yet reasonable, assumptions on
the statistics used by the Defender to make a decision. The analysis
starts with a formal definition of the game, and proceeds by looking
for the equilibrium point and with the evaluation of the payoff at
the equilibrium. The analysis of the payoff permits one to draw some
conclusions about the outcome of the games. From the analysis of

2The minimization of PFN is subject to a constraint on PFP.
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the achievable performance of the various games, and by drawing a
parallelism with optimal transport theory, we are also able to define a
measure of statistical distinguishability of information sources under
adversarial conditions.

In fact, it turns out that as long as the distortion the adversary
is allowed to introduce is smaller than a certain quantity, called Se-
curity Margin (SM), at the equilibrium both the false positive and
false negative error probabilities tend to zero exponentially fast (hence
ensuring strictly positive error exponents). On the other hand, if the
allowed distortion is larger than SM, the error probabilities can not
tend to zero simultaneously. The exact value of SM depends on the
probability density functions governing the emission of the test sequence
under H0 and H1 and the particular version of the game played by A

and D . Comparing the Security Margin to the distortion introduced by
the attacker permits one to anticipate the results of the race of arms
between D and A for a given strength of the attack when the length of
the observed sequence tends to infinity.

1.3 Related Work

In this monograph, we focus on the core of adversarial binary detection
theory, paying particular attention to the game-theoretic framework
wherein such a theory is cast, and prove theorems stating the most
important results of the theory. We do so by analyzing first the basic
binary detection game under the assumption that the sources underlying
the two hypotheses being tested are known, then we extend the analysis
to the more complicate case of sources known through the observation of
(possibly corrupted) training data. The theory presented in this mono-
graph, however, does not exhaust the problems addressed and the results
proven in the last years pertaining to the general field of adversarial de-
tection. Several extensions of the basic theory have been published both
by the authors of this monograph and by other researchers, and several
related problems have been addressed as described in the following.

One recent extension of the theory concerns the case of a fully active
attacker, that is an attacker that acts also when the null hypothesis
holds. In many cases, it is reasonable to assume that the attacker
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12 Introduction

is active under both hypotheses with the goal of causing both false
positive and false negative detection errors. As an example, we may
consider the case of a radar target detection system, where the defender
wishes to distinguish between the presence and the absence of a target,
by considering the presence of a hostile jammer. To maximize the
damage caused by his actions, the jammer may decide to act under
both hypotheses: when H1 holds, to avoid that the defender detects the
presence of the target, and in the H0 case, to increase the number of
false alarms inducing a waste of resources deriving from the adoption
of possibly expensive countermeasures even when they are not needed.
In a completely different scenario, we may consider an image forensic
system aiming at deciding whether a certain image has been shot by
a given camera, for instance because the image is involved in a legal
procedure. Even in this case, the attacker may be interested in causing
a missed detection event, or induce a false alarm to accuse an innocent
party. The binary detection game with a fully active adversary is studied
extensively in [18], where various versions of the game are considered
according to whether the attacker is aware of the real status of the
observed system.

A different adversarial hypothesis testing game is introduced in [19].
In this work, the price the attacker has to pay to modify the distribution
of samples emitted under H1 is expressed as a cost added to the payoff of
the game, rather than as a hard constraint on the admissible attacking
strategies. This results in a non-zero sum game admitting a Nash
equilibrium point, for which the authors derive exponential rates of
convergence of classification errors.

Another extension of the theory presented in this monograph con-
cerns the case of binary detection based on multiple observations. This
scenario is relevant in several applications, including multimedia foren-
sics, data fusion, distributed hypothesis testing and detection, sensor
networks, and cognitive radio networks. In all these cases, a fusion
center has to take a binary decision about the status of a system by
relying on a number of observations made available by different sensors
or a number of traces detected by different investigation tools. In many
situations, it is possible that an attacker corrupts the observations or
deliberately provides misleading data to induce a decision error at the
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fusion center. The binary detection game with multiple observations
studied in [20] models several situations that can be traced back to the
above general formulation, accounting for attackers altering a different
number of observations and with different attacking capabilities.

Data fusion with corrupted observations is itself a widely studied
topic. Such a problem, often referred to as distributed binary detection
in the presence of Byzantines [21], deals with a situation wherein a
fusion center must make a decision about the status of a system based on
the reports submitted by local agents observing the system at different
locations or under different conditions. In particular, binary detection
must be carried out despite the possible presence of corrupted agents
(referred to as Byzantines) submitting possibly corrupted reports with
the goal of inducing a decision error. The Byzantines must satisfy
two opposite requirements: (i) maximize the error probability at the
fusion center and (ii) avoid being identified. To accomplish this, they
can choose among many corruption strategies, however they must do
so without knowing the precise detection strategy adopted by the
fusion center. In its turn the fusion center must select its detection
strategy without knowing the exact attack strategy implemented by
the Byzantines. This is a typical dilemma encountered in adversarial
binary detection games, thus opening the way to the study of the
data fusion problem with corrupted reports via the game-theoretic
methods discussed in this monograph (see [22], [23, Chapter 5] for
specific examples). Other approaches to distributed binary detection
with Byzantines are discussed in [24]–[26]. An example of distributed
estimation in the presence of tampered sensors can be found in [27]. For
a thorough review of distributed inference in the presence of Byzantines
readers are referred to [28].

As a last remark, we mention interesting relationships – deserving
further investigation – between adversarial binary detection with train-
ing data and the vast body of research devoted to studying the security
of Machine Learning (ML) [29], [30]. Despite the difficulty of applying
the theory described in this monograph to practical applications, due to
the difficulty of building precise statistical models to describe the kind
of data ML systems usually involve, such a theory can be conveniently
used to get useful insights about the security level that can be reached
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by binary detectors in practice. An example of such an analysis applied
to image forensics is described in [31]. The theoretical framework be-
hind Generative Adversarial Networks (GANs) also presents interesting
connections to adversarial detection with training data. As explained in
the seminal work by Goodfellow et al. [32], GANs are based on a game
played by a generator and a discriminator, the former aiming at generat-
ing samples that mimic those of a certain class (e.g., natural images), in
such a way that the discriminator can not distinguish between natural
samples and samples produced by the generator. The generator, in turn,
iteratively updates its decision strategy by learning the characteristics
of the samples output by the generator. Interestingly, [32] shows that
the equilibrium point of the game is reached when the data produced by
the generator minimizes the Jensen–Shannon divergence between the
distributions of natural and synthetic samples, which is by any means
equivalent to the generalized log-likelihood ratio function appearing
in Theorem 5.3 defining the equilibrium point of the binary detection
game with training data.

1.4 Outline of the Monograph

This monograph is organized as follows: in Chapter 2 we review the
basic tools required to derive and understand the results of our analysis.
In Chapter 3, we define and study the simple case of binary detection
when the statistical characterization of the observed system is known
to both the Defender and the Attacker. The achievable performance of
this game are studied in Chapter 4 where we also introduce the source
distinguishability concept. The analysis of Chapters 3 and 4 is extended
in Chapter 5 to the case in which the statistics of the observed system
are known through training data. Then, in Chapter 6, we generalize
the adversarial setup studied in Chapter 5 by considering a version of
the game in which the adversary can corrupt part of the training data
available to the Defender. A summary of the main contributions of the
theory and a discussion of its possible extensions are given in Chapter 7.

For a good comprehension of the theory treated in the monograph,
the reader is assumed to have a solid background in information theory.
Some basic knowledge of classical detection theory is also required.
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2
Background Notions and Tools

This chapter provides the reader with the background and the tools
necessary for understanding the rest of the monograph. Such tools are
of a heterogeneous nature and belong to a number of diverse disciplines
including information theory, game theory, optimal transport, and large
deviation theory.

2.1 Notation and Definitions

We start by introducing the notation and definitions used throughout
the monograph.

Capital letters will be used to indicate scalar discrete random vari-
ables (RVs), whose specific realizations will be represented by the cor-
responding lower case letters. Random sequences, whose length will
be denoted by n, are indicated by Xn = (X1, X2, . . . , Xn), where Xi

denotes the i-th element of the sequence, i = 1, . . . , n. Instantiations of
random sequences are denoted by the corresponding lowercase letters, so
xn indicates a specific realization of the random sequence Xn, and xi the
i-th element of xn. Information sources will also be defined by capital
letters. Throughout the monograph we will focus exclusively on discrete
sources. The alphabet of a source will be denoted by the corresponding

15
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16 Background Notions and Tools

calligraphic capital letter (e.g., X ). Calligraphic letters will also be used
to indicate classes of information sources (C) and classes of probability
density functions (P). The probability mass function (pmf) of a random
variable X will be denoted by PX . The same notation will be used to
indicate the probability measure ruling the emission of sequences from
a source X, so we will use the expressions PX(a) and PX(xn) to denote,
respectively, the probability of symbol a ∈ X and the probability that
the source X emits the sequence xn, the exact meaning of PX being
always clearly recoverable from the context wherein it is used. Similarly,
PXY denotes the joint pmf of a pair of random variables (X,Y ). The
notation X ∼ PX indicates that the source X emits symbols according
to PX . Generic sets will also be denoted with capital letters. Given an
event A (be it a subset of X or X n), we will use the notation PX(A) to
denote the probability of the event A under the probability measure PX .
Notation Ā will be used to denote the complementary set of A.

Let xn be a sequence with elements belonging to a finite alphabet X .
The type Pxn of the sequence xn is defined as the empirical probability
distribution induced by the sequence xn, that is, the vector of the rela-
tive frequencies of the various alphabet symbols in xn. In the following,
we denote by Pn the set of types with denominator n, i.e., the set of
types induced by sequences of length n. Given P ∈ Pn, we denote by
T (P ) the type class of P , i.e., the set of all the sequences in X n having
type P . Similarly, given a sequence xn we denote by T (Pxn), or simply
T (xn), the set of the sequences having the same type as xn. Given
a pair of sequences (xn, yn), Pyn |xn denotes the empirical conditional
probability distribution, i.e., the conditional type. The conditional type
class T (Pyn |xn), or T (yn |xn), is the set of sequences yn having empir-
ical conditional probability distribution (i.e., conditional type) Pyn |xn .
Some basic results concerning types are provided in Section 2.4.1.

Regarding information theoretic measures, the empirical entropy of
the sequence xn, that is the entropy associated with Pxn , is defined as

H(Pxn) = −
∑
a∈X

Pxn(a) logPxn(a), (2.1)

sometimes simply referred to as Hxn . Similar definitions hold for other
information theoretic quantities (e.g., joint and conditional entropy)
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2.1. Notation and Definitions 17

governed by empirical distributions. The Kullback–Leibler (KL) diver-
gence between two distributions P and Q defined on the same finite
alphabet X is:

D(P‖Q) =
∑
a∈X

P (a) log P (a)
Q(a) , (2.2)

where, according to usual conventions, 0 log 0 = 0 and p log p/0 =∞ if
p > 0. If Pxn and Pyn are empirical distributions induced, respectively,
by xn and yn, D(Pxn‖Pyn) is the empirical KL-divergence.

With regard to binary hypothesis testing, relying on the notation
already introduced in Section 1.2, the two decision error probabilities
PFP and PFN are given by

PFP = P (H1 |H0) = P (zn ∈ Λ̄n |H0) = PX(zn ∈ Λ̄n), (2.3)
PFN = P (H0 |H1) = P (zn ∈ Λn |H1) = PY (zn ∈ Λn), (2.4)

where X and Y are the two sources emitting symbols under H0 and H1
respectively, Λn is the acceptance region of hypothesis H0, and zn is
the test sequence.

Our main focus is on the asymptotic behavior of PFP and PFN as n
tends to infinity. We define the false positive (η) and false negative (ε)
error exponents as follows:

η = − lim sup
n→∞

logPFP
n

; ε = − lim sup
n→∞

logPFN
n

, (2.5)

where the log’s are taken in base 2. Note that when the limit exists
the above definitions can be simplified by avoiding the use of lim sup:
whenever this is the case, we use lim instead of lim sup.

Given two sequences xn and yn, the distance induced by the Lp-norm,
p ≥ 1, is referred to as the Lp distance and is denoted by dLp(xn, yn).
Then,

dLp(xn, yn) = ‖xn − yn‖Lp =
(

n∑
i=1
|xi − yi|p

)1/p

. (2.6)

Throughout the monograph, we will use the same notation dLp also
to denote the Lp distortion between two pmf’s in P ,1 the exact meaning
being always clear from the context.

1Given two pmf’s P and Q, dLp (P,Q) = (
∑

a∈X |P (a)− P (a)|p)1/p.
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The Hamming distance between xn and yn is defined as the number
of locations for which xi 6= yi, i.e., dH(xn, yn) = n−

∑n
i=1 δ(xi, yi), with

δ(xi, yi) = 1 if xi = yi and 0 otherwise (Kronecker delta).

Definition 2.1. A distance function d: X n × X n → R+ is said to be
permutation-invariant if for every two sequences xn and yn, d(yn, zn) =
d(σ(yn), σ(zn)) for all permutations σ of the elements of the sequences.

Below we introduce the concept of distances between subsets and
the definition of the Hausdorff distance as a way to measure the distance
between subsets of a metric space [33, Chapter 2]. We denote by (S, d)
a metric space with the distance functions d. For any point x ∈ S and
any non-empty subset A ⊆ S, the distance of x from A is defined as:

d(x,A) = inf
a∈A

d(x, a). (2.7)

Definition 2.2. For any given pair (A,B) of subsets of S let δA(B) =
supb∈B d(b, A). Let δH be a function that associates to the pair of subsets
(A,B) the quantity

δH(A,B) = max{δA(B), δB(A)}. (2.8)

δH(A,B) is called the Hausdorff distance between A and B.

According to the above definition, the Hausdorff distance is not a true
metric, but only a pseudometric, since δ(A,B) = 0 implies only that the
closures of the sets coincide, namely cl(A) = cl(B), but not necessarily
that A = B. In order for δH to be a metric, the definition must be
restricted to closed subsets. Let L(S) denote the space of non-empty
closed and bounded subsets of S and let δH : L(S)×L(S)→ [0,∞). The
assumption of boundedness of the sets2 guarantees that the Hausdorff
distance takes a finite value. Then, the space L(S) endowed with the
Hausdorff metric δH is a metric space [33, Chapter 2].

Definition 2.3. Let {Kn} be a sequence of closed and bounded subsets
of (S, d), i.e., Kn ∈ L(S) ∀n. We use the notation Kn

H→ K to indicate
that the sequence has a limit in (L(S), δH) and the limiting set is K.

2Recall that boundedness of the sets depends on the distance measure d defined
in the metric space.
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2.2 Game Theory in a Nutshell

Game Theory is a branch of mathematics devoted to the study of the
interplay, of conflict and/or cooperation, between decision makers or
players. Game-theoretic concepts apply whenever the actions of several
decision makers are interdependent, that is their choices potentially
affect, and are affected by, the choices of the other players. Game Theory
is also referred to as interactive decision theory, as opposed to classical
decision theory. While classical decision theory has been used to study
signal processing problems, Game Theory can be naturally advocated
for the study of adversarial signal processing, where the simple adoption
of a worst-case analysis for the design of the system (carried out under
the assumption that the attacker always acts in such a way as to cause
the greatest damage to the system) leads to suboptimum solutions.

The birth of modern Game Theory as a unique field traces back to
1944, with the book “Theory of Games and Economic Behavior” by
von Neumann and Morgenstern [34]. Game Theory provides tools to
formulate, model, and study strategic scenarios in a wide variety of
application fields, from economics and political science to computer
science. A central assumption in most variants of Game Theory is that
each decision maker is rational and intelligent. A rational player is
one who has a relation of preferences regarding the outcomes of the
game.3 An intelligent player is able to act in a rational way and then
always chooses the action that gives the most preferable outcome to him,
i.e., the action that maximizes his gain or payoff, given his expectation
on the other players. The goal of game theory analysis is to predict how
the game will be played, or, relatedly, to give advice on how to play the
game against rational opponents.

Game Theory models are highly abstract representations of classes
of real-life situations for which equilibrium solutions are suggested,
having some desirable properties. Game Theory encompasses a large
variety of situations depending on the number of players, the way
the players interact, the knowledge that a player has of the strategies
adopted by the others, the deterministic or probabilistic nature of

3Axioms of rationality, Von Neumann-Morgenstern utility theorem
[34, Chapter 3].
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the game, etc. In all the models, the basic entity is the player, which
should be interpreted as an individual or as a group of individuals
making a decision. A distinction can be made between situations in
which the players have common goals, and are allowed to form binding
agreements (cooperative games) and situations in which the players have
different and possibly conflicting goals (non-cooperative games). Another
common distinction is made between simultaneous and sequential games.
Simultaneous games are games where both players move simultaneously,
or if they do not move simultaneously, they are unaware of the earlier
players’ actions (making their action effectively simultaneous). On the
contrary, sequential games (or dynamic games) are games where players
have some knowledge about earlier actions. The difference between
simultaneous and sequential games is captured in the different ways of
representing the game. With reference to non-cooperative games, the
strategic form is used when the players choose their action or plan of
actions once and for all at the beginning, that is, when all the players’
decisions are made simultaneously (strategic form games are discussed
below). By contrast, the so-called extensive form is used for sequential
games, when each player needs to reconsider his plan of action whenever
it is his turn to move [35, Chapters 5 and 10].

The extensive form of a game is an explicit, highly descriptive,
representation of a number of important aspects, like the sequence of
players’ moves, their choices at every stage, the (possibly imperfect)
information each player has about the other player’s moves when he
makes a decision, and his payoffs for all possible game outcomes [35].
A game in extensive form is represented using a game tree, which is
composed of nodes and branches. Each non-terminal node represents
a move and the departing branches represent actions associated with
the move (at every node, it is one player’s turn to move). The sequence
of moves that precedes a node is the history of the game up to that
point. A player then chooses his action for every history after which it
is his turn to play. A play corresponds to a path through the tree, from
the root to a terminal node. A payoff for each player is then associated
to each terminal node (outcome of the game). A simple example of a
2-player game in extensive form is shown in Figure 2.1, representing a
two-step (sequential) interaction where {a, b} are the actions available
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Player 1

Player 2 Player 2

Figure 2.1: Example of game in extensive form.

to the first player in Step 1 (when it is his turn to move), while {a′, b′}
are the actions of the second player in Step 2. The pairs with the payoffs
for both players are shown for every leaf. Given a game, determining
the best strategy that each player should follow to maximize his payoff
is not easy, all the more that a profile which is optimum for both players
may not exist.

A common goal in Game Theory is to determine the existence of
equilibrium points, i.e., profiles that in some sense represent a satisfac-
tory choice for all the players. Strategic and extensive form games are
characterized by different equilibrium notions and can be studied using
different tools.

In this monograph, we focus on non-cooperative, 2-player, strategic
games.

2.2.1 Strategic Games

The strategic form, also called normal form, is the basic type of games
studied in non-cooperative Game Theory. A game in strategic form
lists each players’ strategies, and the outcomes that result from each
possible combination of choices. In the 2-player case, a strategic game
is defined as a quadruple G(S1,S2, u1, u2), where S1 = {s1,1, . . . , s1,n1}
and S2 = {s2,1, . . . , s2,n2} are the sets of strategies (or actions) the
first and the second player can choose from, and ul(s1,i, s2,j), l = 1, 2 is
the payoff of the game for player l, when the first player chooses the
strategy s1,i and the second chooses s2,j . A pair of strategies (s1,i, s2,j)
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Table 2.1: Example of game representation in normal form

s2,1 s2,2

s1,1 (u1(s1,1, s2,1), u2(s1,1, s2,1)) (u1(s1,1, s2,2), u2(s1,1, s2,2))
s1,2 (u1(s1,2, s2,1), u2(s1,2, s2,1)) (u1(s1,2, s2,2), u2(s1,2, s2,2))
s1,3 (u1(s1,3, s2,1), u2(s1,3, s2,1)) (u1(s1,3, s2,2), u2(s1,3, s2,2))

is called a profile and it corresponds to an outcome of the game. Games
in strategic form are compactly represented by matrices, referred to as
payoff matrices. For the 2-player case, one player is considered as the
row player, and the other as the column player. Each row or column
represents a strategy (which is the move selected by the player) and
each entry in the matrix represents the payoff, that is the outcome of
the game for each player for every combination of strategies. A simple
example of 2-player game in normal form (with three strategies for
the row player and two strategies for the column player) is shown in
Table 2.1. The row player is Player 1 and the column player is Player 2.
The entries of the table for each pair of strategies are the payoffs of the
players.

A particular class of 2-player strategic games is the class of strictly-
competitive games. In a strictly-competitive game, also referred to as
zero-sum, the two players have opposite goals; in this case, the two payoff
functions are strictly related to each other since for any profile we have
u1(s1,i, s2,j) + u2(s1,i, s2,j) = 0. In other words, the win of a player is
equal to the loss of the other player. In the particular case of a zero-sum
game, then, only one payoff function needs to be defined, referred to
as payoff of the game. The payoff of the game, generally denoted by u,
can be defined by adopting the perspective of one of the two players,
e.g., without loss of generality, u(s1,i, s2,j) = u1(s1,i, s2,j), with the
understanding that, for the second player, u2(s1,i, s2,j) = −u(s1,i, s2,j).
In the most common formulation of strategic games, the sets S1, S2 and
the payoff functions are assumed to be known to both players (game
with perfect information [35, Chapter 5]). In addition, as discussed
before, it is assumed that the players choose their strategies before
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starting the game so that they have no hints about the strategy actually
chosen by the other player.

Nash Equilibrium

The most popular notion of equilibrium for strategic games is due to
Nash [36], [37]. For a 2-player game, a profile (s1,i∗ , s2,j∗) is a Nash
equilibrium if

u1(s1,i∗ , s2,j∗) ≥ u1(s1,i, s2,j∗) ∀s1,i ∈ S1

u2(s1,i∗ , s2,j∗) ≥ u2(s1,i∗ , s2,j) ∀s2,j ∈ S2,
(2.9)

where for a zero-sum game u2 = −u1. Then, a profile is a Nash equilib-
rium if no player can improve his payoff by unilaterally changing his
strategy. The notion of Nash equilibrium captures a steady state of a
strategic game, however the process whereby the steady state is reached
is not examined.

For zero-sum games, Nash equilibria have interesting properties. Let
(s1,i∗ , s2,j∗) be the Nash equilibrium of a 2-player zero-sum game G.
Then, s1,i∗ maximizes the first player’s payoff in the worst-case scenario,
i.e., assuming that the second player selects his most profitable strategy
corresponding to the most harmful move for the first player. Similarly,
s2,j∗ maximizes the second player worst-case payoff. We also have

max
s1,i∈S1

min
s2,j∈S2

u1(s1,i, s2,j) = min
s2,j∈S2

max
s1,i∈S1

u1(s1,i, s2,j) = u1(s1,i∗ , s2,j∗).

(2.10)
As a consequence of relation (2.10), if many equilibria exist, they all
yield the same payoff. In a 2-player game, a player’s min-max value
is always equal to his max-min value, and both are equal to the Nash
equilibrium value as shown by Von Neumann’s Minimax Theorem [38].

It is possible to show that the solution of Equation (2.10) can
be found by solving two separate Linear Programming (LP)
problems [39, Chapter 8], one for each player that moves first (cor-
responding to the outer maximization of the max-min and to the outer
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minimization of the min-max).4 Since the problems are duals,5 it turns
out that only one LP has to be solved to find the optimal strategies for
the players [40], [41].

Equation (2.9) defines a pure-strategy Nash equilibrium profile,
where the equilibrium strategies for the players are the pure strategies
s1,i∗ and s2,j∗ . More generally, a Nash equilibrium can be defined in
mixed strategies. A mixed strategy for a player is defined as a probability
distribution over his set of (pure) strategies. This allows for a player
to randomize the choice over his set of strategies. Since probabilities
are continuous, there are infinitely many mixed strategies available
to the player. More formally, given a 2-player game G(S1,S2, u1, u2),
let Π(Z) be the set of all the probability distributions over the set
Z = {z1, . . . , zk}. Then, the set of mixed strategies for a player i is
formed of all probability distributions over his strategy set Si, namely,
Π(Si), and the set of mixed strategy profiles is the cartesian product of
single mixed strategy sets Π(S1)×Π(S2). When mixed strategies are
adopted by the players, the expected payoff can be computed for them.

An important result in Game Theory states that every strategic
game with finite sets of strategies for the players has at least one Nash
equilibrium in mixed strategies [36].

Dominance Solvable Games

Despite its popularity, the practical meaning of Nash equilibrium is
often unclear, since there is no guarantee that the players will end up
playing at the Nash equilibrium. A particular kind of strategic games for
which stronger forms of equilibrium exist are the so-called dominance
solvable games [37]. The concept of dominance-solvability is directly
related to the notion of dominant and dominated strategies. A strategy
is said to be strictly dominant for one player if it is the best strategy for
the player, i.e., the strategy which maximizes the payoff, no matter what

4LP deals with the maximization or minimization of a linear objective function,
subject to linear equality and inequality constraints. The admissible region of an
LP problem is then a convex polytope, namely, a set defined as the intersection of
finitely many half-spaces.

5We refer to [39, Chapter 15], for the concept of duality.
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the strategy of the opponent is. Reasonably, when one such strategy
exists for one of the players, he will surely adopt it. In a similar way, we
say that a strategy sl,i is strictly dominated by strategy sl,j , if the payoff
achieved by player l choosing sl,i is always lower than that obtained
by playing sl,j regardless of the strategy of the other player. Formally,
in the 2-player case, we say that strategy s1,i is strictly dominated by
strategy s1,k for player 1 if

u1(s1,k, s2,j) > u1(s1,i, s2,j) ∀s2,j ∈ S2. (2.11)

Accordingly, a strictly dominant strategy is a strategy which strictly
dominates all the other strategies.

Recursive elimination of dominated strategies is a possible technique
for solving dominance-solvable games working as follows: in the first
step, all the dominated strategies are removed from the set of available
strategies, since no rational player would ever choose them. In this way,
a new, smaller game is obtained. At this point, some strategies, that
were not dominated before, may be dominated in the new game, and
hence are eliminated as well. The process goes on until no dominated
strategy exists for any player. A rationalizable equilibrium is any profile
that survives the iterative elimination of dominated strategies [42], [43].
If at the end of the process only one profile is left, the remaining profile
is said to be the only rationalizable equilibrium of the game, which is
also the only Nash equilibrium point. A dominance solvable game is a
game that can be solved according to the procedure described above.
It goes without saying that the concept of rationalizable equilibrium
is a much stronger notion than that of the Nash equilibrium, and its
practical meaning is easier to grasp [44, Chapter 3]: in fact, under
the assumption of rational players, we can anticipate that the players
will choose the strategies corresponding to the unique rationalizable
equilibrium. While every game with finitely many players, each of
whom has finitely many pure strategies, has a Nash equilibrium in
mixed strategies, a rationalizable equilibrium only exists for dominance
solvable games. Another, related, interesting notion of equilibrium is
that of dominant equilibrium. A dominant equilibrium is a profile which
corresponds to dominant strategies for both players and is the strongest
kind of equilibrium that a strategic game may have.
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Continuous Games

The concept of continuous game extends the notion of discrete game,
where the players choose from a finite sets of pure strategies. Continuous
strategic games include sets of pure strategies which may be uncountably
infinite [45, Chapter 3, p. 140]. More specifically, continuous games are
a special case of the broad category of infinite games (i.e., games with
infinite strategy sets) with the following main features: the number
of players is finite, the sets of strategies are compact sets and the
payoff functions are continuous. An important property of such games
is that they can be approximated with a sequence of finite games
corresponding to a successively finer discretization of the original game.
As a consequence, all the main concepts stated for discrete games (Nash
equilibrium, dominance solvability, . . .) can be extended to this category
of games. In particular, it is possible to prove that every continuous
game has a mixed strategy Nash equilibrium (Glicksberg theorem) [46].

2.3 Introduction to Optimal Transport (OT)

The theory of optimal transportation (OT) has its origins in the eigh-
teenth century when the problem of transporting resources at a minimal
cost was first formalized by the mathematician Monge [47]. The problem
of “déblais and remblais” addressed by Monge is the following: given a
pile of soil and a hole (of the same volume), filling the hole with the soil
from the pile with the minimum effort. Equivalently, Monge’s problem
is the one of moving a certain amount of soil from a source location to
a sink location by minimizing some cost function of the transportation
per unit of mass (see Figure 2.2 for a pictorial illustration of Monge’s
problem of mass transportation). The pile and hole can be modeled as
probability measures µ and ν, defined on some spaces X and Y . For
any A and B, measurable subsets of X and Y respectively, µ(A) gives
the measure of the amount of soil located within A, while ν(B) tells
how much soil can be piled in B. The cost of moving one unit of mass
from location x ∈ X to location y ∈ X is denoted by c(x, y), which is
assumed nonnegative. Then c: X × Y → R ∪ {+∞}.
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X
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µ
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Figure 2.2: The mass transportation problem addressed by Monge.

Similarly, source and sink can be regarded two as two different ways
of piling up a certain amount of soil and the goal is to move one pile
into the other introducing the minimum average transportation cost.

Below, we give a rigorous formulation of the mass transportation
problem. In doing so, we consider the (modern) relaxed version of the
original transportation problem due to Kantorovich [48, p. 2], known
as Monge–Kantorovich optimal transportation problem.

The transportation map is modeled as a probability measure π on
the product space X × Y . The quantity dπ(x, y) measures the quantity
of mass moved from x to y (the mass at a given location x in X may
be split into several parts moved to different destinations y in Y ). An
admissible transportation map π has to satisfy, for every x and y,∫

Y
dπ(x, y) = dµ(x),

∫
X
dπ(x, y) = dν(y), (2.12)

that is, the mass taken from x equals dµ(x), and the mass moved to y
equals dν(x). Then, for all measurable subsets A of X and B of Y , π
has to satisfy

π(A× Y ), π(X ×B) = ν(B). (2.13)

Then, an admissible map π has marginals µ and ν. The set of admissible
maps is denoted by Π(µ, ν).

Solving the OT problem corresponds to searching for a map π with
minimum transportation cost associated to it. Formally, the Monge–
Kantorovich transportation problem (TP) corresponds to the following
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minimization problem:

min
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y). (2.14)

The original Monge formulation of the TP differs from Kantorovich
formulation for the fact that it requires that the mass be not split. Then,
a unique destination y is associated to each location x. In this case, the
transfer can be (more simply) described by a function T : X → Y . Then,
π has the special property

dπ(x, y) ≡ dµ(x)δ(y = T (x)), (2.15)

where δ is the Kronecker delta defined before. The transportation
function T has to be a bijection and, for any measurable set B ⊆ Y , we
must have ν(B) = µ(T−1(B)). This property is compactly indicated as
T#µ = ν. Then, Monge addresses the following problem:

min
T :T#µ=ν

∫
X
c(x, T (x))dµ(x). (2.16)

2.3.1 The Hitchcock Transportation Problem (HTP)

The one-dimensional discrete version of the Monge–Kantorovich mass
transportation problem [49, Chapter 1], is also known as the Hitchcock
Transportation Problem (HTP).

The general formulation of the HTP is the following:

min
{x(i,j)∈R, ∀i, j}

m∑
i=1

n∑
j=1

c(i, j)x(i, j)

subject to
n∑
j=1

x(i, j) = ai, i = 1, . . . ,m

m∑
i=1

x(i, j) = bj , j = 1, . . . , n

x(i, j) ≥ 0,

(2.17)

where ai (called supplies), i = 1, . . . ,m, represent the source pile, and
bj (called demands), j = 1, . . . , n, the sink or destination pile. Without
loss of generality, we can assume that the problem is balanced, that
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is
∑m
i=1 ai =

∑n
j=1 bj , with ai, bj ≥ 0 (note that am and bn do not

necessarily sum to 1). Moreover, c(i, j) ≥ 0.
The Hitchcock Transportation Problem in (2.17) is an LP problem

(see Footnote 4), hence, as such, it can be solved by direct application of
LP solving algorithms.6 One of the most famous is the simplex algorithm
[39, Chapter 19], that has polynomial-time complexity.

A greedy algorithm that can be used to solve the HTP in some
special cases is presented in Section 2.3.2.

Probabilistic Version of the HTP

Given two sources X and Y , with pmf’s PX and PY defined over the
same alphabet X , we can interpret PX and PY as two different ways of
piling up the same amount of soil. The joint pmf SXY, usually referred to
as PXY, can be regarded as the transportation map moving PX into PY .
By adopting an OT point of view, SXY(i, j) denotes the quantity of soil
shipped from location i in PX to j in PY . We let d(i, j) be the cost,
sometimes referred to as distortion, associated to the modification of
the i-th symbol of the alphabet into the j-th one. The transportation
map that minimizes the average distortion necessary to move PX into
PY can be obtained by solving the following constrained minimization
problem:

min
SXY:

∑
y
SXY=PX ,

∑
x
SXY=PY

∑
i,j

d(i, j)SXY(i, j), (2.18)

where
∑
x SXY is a short form for

∑
i SXY(i, j). The minimization in

(2.18) is a particular version of the Hitchcock Transportation Prob-
lem (HTP), where the source and destination piles are probability
distributions.

In the rest of the monograph, the acronym TP always refers to the
discrete probabilistic formulation in (2.18).

Due to the earth transportation analogy, in computer vision ap-
plications, the minimum in Equation (2.18) is often known as Earth
Mover Distance (EMD) between PX and PY [51], and is denoted by

6To be more specific, for the expert reader, HTP is a particular minimum cost
flow problem [50, Section 1.2].
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EMDd(PX , PY ) (the subscript d is sometimes omitted for brevity). The
term EMD is used in general, also when the source and sink piles are
general mass functions (as in the TP formulation in (2.17)). When the
soil piles are probability mass functions, and d(i, j) = l(i, j)p for some
distance measure l (with p ≥ 1), the EMD has a more general statisti-
cal meaning. Let X and Y be two random variables with probability
distributions PX and PY ; the EMD between PX and PY corresponds
to the minimum expected p-th power distance between X and Y taken
over all joint probability distributions PXY with marginal distributions
respectively equal to PX and PY :

EMDlp(PX , PY ) = min
PXY:

∑
y
PXY=PX ,

∑
x
PXY=PY

EXY[l(X,Y )p]. (2.19)

In transport theory terminology, expression (2.19) is the p-th power
of the Wasserstein distance [49, Chapter 1, p. 40], [52, Chapter 6,
p. 105], or the Monge–Kantorovich metric of order p [48, Chapter 7,
p. 207], [53]. In particular, when the L2

2 distance is considered and
then d(i, j) = |i− j|2 (i.e., l(i, j) = |i− j| and p = 2), the Earth Mover
Distance, namely EMDL2

2
(PX , PY ), is equivalent to the squared Mallows

distance between PX and PY [54].7 In the following, we will continue
to refer to (2.18) as EMD(PX , PY ).

2.3.2 Hoffman’s (Greedy) Algorithm

Let X ∼ PX and Y ∼ PY be discrete sources defined on the sets X and
Y respectively.8 The TP in (2.18), that has to be solved for computing
EMDd(PY , PX), is a Linear Programming problem. In general, the
solution of TP depends on the cost function d(·, ·), however there are
some classes of cost functions for which the solution can be found
through a simple greedy algorithm. Specifically, the algorithm proposed
by A. J. Hoffman in 1963 [55], allows to solve the transportation problem

7L2
2 indicates the squared Euclidean distance (similarly, throughout the mono-

graph, Lpp denotes the p-power of the Lp distance).
8In this chapter, we refer to X and Y as possibly different subsets of bins from

the same alphabet, where PX and PY , have non-zero mass (non-empty bins).
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whenever d(·, ·) satisfies the so-called Monge property [56], that is when:

d(i, j) + d(r, s) ≤ d(i, s) + d(r, j), (2.20)

for all (i, j, r, s) such that 1 ≤ i < r ≤ |X | and 1 ≤ j < s ≤ |Y |.
It is easy to verify that the Monge property is satisfied by any cost

function of the form d(i, j) = |i−j|p, and, more generally, by any convex
function of the quantity |i − j|. The iterative procedure proposed by
Hoffman to solve the optimal transport problem is known as North-West
Corner (NWC) rule [55] and works as follows: take the bin of X with
the smallest value and start moving its elements into the bin with the
smallest value in Y . When the smallest bin of Y is filled, go on with
the second smallest bin in Y . Similarly, when the smallest bin in X
is emptied, go on with the second smallest bin in X . The procedure
is iterated until all the bins in X have been moved into those of Y .
Let ilow (iup) and jlow (jup) denote the lower (upper) bins of X and Y
respectively. A pseudocode description of the NWC rule is given below.

1. Initialize: i := ilow, j := jlow.

2. Set SXY(i, j) := min{PX(i), PY (j)}.

3. Adjust the “supply” distribution PX(i) := PX(i)− SXY(i, j) and
the “demand” distribution PY (j) := PY (j) − SXY(i, j).
If PX(i) = 0 then i := i+ 1 and if PY (j) = 0 then j := j + 1.

4. If j < jup or PY (jup) > 0, go back to Step 2.

The above procedure is described graphically in Figure 2.3. For the
sake of clarity the figure shows two distributions with disjoint supports,
however this assumption is not necessary for the validity of the procedure.
Interestingly, the NWC rule does not depend explicitly on the cost
matrix, so the transportation map obtained through it is the same
regardless of the Monge cost. According to Hoffman’s greedy algorithm,
when the cost function satisfies Monge’s property, the EMD can be
computed in linear running time: the number of elementary operations,
in fact, is at most equal to |X | + |Y |. This represents a dramatic
simplification with respect to the complexity required to solve a general
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Figure 2.3: Graphical representation of the NWC rule for the Monge transportation
problem. PX and PY are two generic soil piles (source and sink) defined on X and Y ,
while SNWC

XY (i, j) denotes the amount of soil moved from location i to j.

Hitchcock transportation problem (the interested reader may refer
to [57] for more details).

2.4 Elements of Large Deviation Theory

Large deviation theory deals with rare events, whose probability is ex-
ponentially small, and has applications in many different scientific fields.
As a matter of fact, most of the results presented in this monograph can
be seen as the solution of large deviation theory problems. The math-
ematical machinery used to prove the main results of large deviation
theory relies on the methods of types, whose main properties are stated
in the section below. Moreover, many results in the monograph are
derived exploiting a generalization of Sanov’s theorem [58, Chapter 12,
p. 292], [59], provided in Section 2.4.2.

2.4.1 Basics of the Method of Types

The method of types is a powerful technique in large deviation theory.
Following the notation introduced in the beginning of this chapter,

for a given sequence xn over a finite alphabet X , the type (or empir-
ical probability distribution) of the sequence is defined as Pxn(a) =
N(a |xn)/n, a ∈ X , where N(a |xn) is the number of times symbol a
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occurs in the sequence xn. For a type P ∈ Pn, the type class is defined
as T (P ) = {xn ∈ X n: Pxn = P}.

In the following, we summarize the main results concerning the
method of types.

• The number of types is at most polynomial in n, that is |Pn| ≤
(n+ 1)|X |.

• If the n random variables are drawn i.i.d. according to PX , the
probability of xn depends only on its type and is given by

PX(xn) = 2−n(H(Pxn )+D(Pxn‖PX)). (2.21)

• For any type P ∈ Pn, the size of the type class T (P ) can be
bounded as 1

(n+1)|X | 2
nH(P ) ≤ |T (P )| ≤ 2nH(P ).

• For any P ∈ Pn and any distribution PX , the probability of the
type class T (P ) under PX can be bounded as 1

(n+1)|X | 2
−nD(P‖PX) ≤

PX(T (P )) ≤ 2−nD(P‖PX).

The second to last statement asserts that the cardinality of the type
class T (P ) grows exponentially with n, with exponent H(P ), that is9

|T (P )| .= 2nH(P ), while its probability tends to zero exponentially fast
with decay rate given by D(P‖PX), that is, PX(T (P )) .= 2−nD(P‖PX)

(last bullet point).
The above relations allow us to estimate the behavior of (asymptot-

ically) long sequences based on the properties of the type. For instance,
given a long sequence of samples drawn i.i.d. according to a given distri-
bution, the type of the sequence is close to the generating distribution.10

In fact, PX(T (P ))→ 0 for any P 6= PX .
For the derivation of the above results and for more insights into

the use of types and type classes in information theory and statistics,
interested readers are referred to [58], [60].

9Notation an
.= bn indicates equality to the first order in the exponent, that is,

limn→∞ 1/n log(an/bn) = 0.
10Ultimately, this is nothing but another way of formulating the Weak Law of

Large Numbers.
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2.4.2 Generalized Sanov’s Theorem

Sanov’s theorem constitutes one of the main results in large deviation
theory. The statement of this theorem and its generalization, which
underlie the results derived in this monograph, are provided in the
following.

We start by giving the following definition.

Definition 2.4. The probability simplex in Rm is the set of points
{xm ∈ Rm:

∑m
i=1 xi = 1, xi ≥ 0 ∀i}.

The space P of probability distributions defined over a finite alphabet
X is then geometrically represented by the probability simplex in R|X |,
that is,

P =
{
P ∈ R|X |:

|X |∑
i=1

P (a) = 1, P (a) ≥ 0, ∀a ∈ X
}
. (2.22)

For |X | = 3, the probability simplex P is the 2-dimensional manifold
represented in Figure 2.4.

Given a sequence of n i.i.d. random variables drawn according to
a source distribution P , we denote by Pn the empirical pmf of the
sequence.11 Let E ⊆ P be a set of probability distributions. From the
properties of types, it is easy to argue that if E does not contain P , or
a neighborhood of P , then the probability that Pn belongs to E tends
to zero as the length n of the sequence of r.v.’s tends to infinity (weak
law of large numbers [58, Chapter 3, p. 57]). Sanov’s theorem [59], [61,
Chapter 2, p. 16], [58, Chapter 12, p. 292] calculates the exponent of
the (vanishing) probability that Pn belongs to E, stating that

inf
Q∈E
D(Q‖P ) ≤ −lim sup

n→∞

1
n

logP (Pn ∈ E)

≤ −lim inf
n→∞

1
n

logP (Pn ∈ E)

≤ inf
Q∈int E

D(Q‖P ), (2.23)

where int E denotes the interior part of the set E.
11For brevity, in this section we use notation Pn in place of Pxn for the empirical

pmf.
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Figure 2.4: Probability simplex P for |X | = 3.

When cl(E) = cl(int(E)),12 or, E ⊆ cl(int(E)), the left- and right-
hand side of (2.23) coincide, and we get the exact rate:

− lim
n→∞

1
n

logP (Pn ∈ E) = inf
Q∈E
D(Q‖P ). (2.24)

Let Q∗ denote the distribution yielding the infimum in (2.24). A ge-
ometric illustration of Sanov’s theorem in the probability simplex is
given in Figure 2.5.

If we define the set En = E∩Pn, we have: P (Pn ∈ E) = P (Pn ∈ En)
and we can rewrite Sanov’s theorem as:

inf
Q∈E
D(Q‖P ) ≤ −lim sup

n→∞

1
n

logP (Pn ∈ En)

≤ −lim inf
n→∞

1
n

logP (Pn ∈ En)

≤ inf
Q∈int E

D(Q‖P ). (2.25)

We now extend the formulation of Sanov’s theorem to more general
sequences of sets En for which we do not necessary have En = E ∩ Pn
for some set E.

We start by introducing the notion of convergence for sequences of
subsets due to Kuratowski, which is a more general notion of convergence
compared to the one based on the Hausdorff distance. Let (S, d) be a

12cl(E) denotes the closure of E.
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Figure 2.5: Geometric interpretation of Sanov’s theorem.

metric space. We first provide the definition of lower closed limit or
Kuratowski limit inferior [62, Chapter 29, p. 335].

Definition 2.5. A point p belongs to the lower limit Li
n→∞

Kn (or simply
LiKn) of a sequence of sets Kn, if every neighborhood of p intersects
all the Kn’s from a sufficiently great index n onward.

The expression p ∈ Li
n→∞

Kn is equivalent to the existence of a
sequence of points {pn} such that:

p = lim
n→∞

pn, pn ∈ Kn. (2.26)

Stated in another way, LiKn is the set of the accumulation points of
sequences in Kn. An alternative, equivalent, definition is

Li
n→∞

Kn =
{
p ∈ X s.t. lim sup

n→∞
d(x,Kn) = 0

}
. (2.27)

Similarly, the following definition of upper closed limit or Kuratowski
limit superior [62, Chapter 29, p. 335] can be given.

Definition 2.6. A point p belongs to the upper limit Ls
n→∞

Kn (or simply
LsKn) of a sequence of sets Kn, if every neighborhood of p intersects
an infinite number of terms in Kn.

The expression p ∈ Ls
n→∞

Kn is equivalent to the existence of a
subsequence of points {pkn} such that

k1 < k2 < · · · , p = lim
n→∞

pkn , pkn ∈ Kkn .
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An alternative, equivalent, definition is

Ls
n→∞

Kn =
{
p ∈ X s.t. lim inf

n→∞
d(x,Kn) = 0

}
. (2.28)

It can be proven that the Kuratowski limit inferior and superior are
always closed sets [62, Chapter 29, pp. 335 and 337].

Given the above, we can state the following.

Definition 2.7. The sequence of sets {Kn} is said to be convergent to
K in the sense of Kuratowski, that is Kn

K→ K, if LiKn = K = LsKn,
in which case we write K = LimKn.

Kuratowski convergence is weaker than convergence in Hausdorff
metric; in fact, given a sequence of closed sets {Kn}, Kn

H→ K implies
Kn

K→ K [63]. For compact metric spaces, the reverse implication also
holds and the two kinds of convergence coincide.

In this monograph, we are interested in the space P of probability
mass functions defined over a finite alphabet X , i.e., the probability
simplex in R|X |, equipped with the L1 metric. Being P a closed subset
of R|X |, P is a complete set. In addition, with the L1 metric, P ∈
L(R|X |), that is, P is bounded. The space (P , dL1), then, is a compact
metric space and therefore, for our purposes, Kuratowski and Hausdorff
convergence are equivalent.

With the above ideas in mind, the following generalization of Sanov’s
theorem can be proven. We use notation E(n) to denote the dependence
on n of a generic set in P , and we let En = E(n) ∩ Pn.
Theorem 2.1 (Generalized Sanov’s Theorem). Let {E(n)} be a sequence
of sets in P , such that Li(E(n) ∩ Pn) 6= ∅. Then:

min
Q∈ LsE(n)

D(Q‖P ) ≤ −lim sup
n→∞

1
n

logP (Pn ∈ E(n))

≤ −lim inf
n→∞

1
n

logP (Pn ∈ E(n))

≤ min
Q∈ Li (E(n) ∩ Pn)

D(Q‖P ). (2.29)

If, in addition, LsE(n) = Li(E(n) ∩ Pn), the generalized Sanov’s limit
exists as follows:

− lim
n→∞

1
n

logP (Pn ∈ E(n)) = min
Q∈LimE(n)

D(Q‖P ). (2.30)
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The theorem follows from the properties of the Kuratowski limit
superior and the boundedness of the probability simplex P . We refer to
Appendix A in [5] for the proof.

In general, the Kuratowski convergence of E(n) is a necessary con-
dition for the existence of the generalized Sanov limit in (2.30), but
it is not sufficient. In fact, we may have LiE(n) ⊇ Li(E(n) ∩ Pn), in
which case the lower and upper bound in (2.29) do not coincide. We
notice that when E(n) ∈ Pn is a sequence of sets in Pn, then Sanov’s
limit holds whenever E(n)

K→ E for some set E, or, by exploiting the
compactness of P , E(n)

H→ E. Based on the above observation, we can
state the following corollary.

Corollary 2.2. Let E(n) be a sequence of sets in Pn, such that E(n)
H→ E.

Then:
− lim
n→∞

1
n

logP (Pn ∈ E(n)) = min
Q∈E
D(Q‖P ). (2.31)

As a final observation, it is straightforward to argue that, when
{E(n)} = E ∀n (or from a certain n on), the generalized Sanov’s theorem
corresponds to the classical Sanov’s theorem. In this case, in fact, we
have that LsE(n) = E, while Li(En) = Li(E ∩Pn) ⊇ intE (since every
p ∈ int(E) is the accumulation point of a sequence in E ∩Pn), and the
original Sanov’s bounds are obtained.
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3
Binary Detection Game with Known Sources

In this chapter, we study the binary detection problem when both the
Defender and the Attacker have full knowledge of the sources underlying
the two hypotheses. The problem is first cast into a rigorous game-
theoretic framework by modeling the interplay between the Defender and
the Attacker as a zero-sum game. Under some simplifying assumptions,
we derive the optimal strategies of the two players and the equilibrium
point of the game. We then analyze the asymptotic payoff at equilibrium,
i.e., the limit payoff when the length of the observed sequence tends to
infinity, determining under which conditions the Defender succeeds in
making a correct detection notwithstanding the presence of the Attacker.

3.1 Detection Game with Known Sources (DG-KS)

In this chapter, we consider the simplest version of the detection game
according to which the pmf’s PX and PY are known to D and A . The
assumption that the source Y is known to D may seem a questionable
choice, since, in many practical applications, it could be difficult for
D to have full access to the source Y . We will see, however, that, at
least asymptotically, the assumption that D knows Y can be removed,
thus leading to a more realistic model. In order to limit the complexity

39
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40 Binary Detection Game with Known Sources

of the problem and make the analysis tractable, we limit the kind
of acceptance regions D can choose from. Specifically, we confine the
decision to depend on a limited set of statistics computed on the test
sequence. Such an assumption, according to which the detector has
access to a limited set of empirical statistics of the sequence, is referred
to as limited resources assumption (see [64] for an introduction on
this terminology). In particular, we limit the analysis carried out by
the detector to first order statistics, which are sufficient statistics for
the case of memoryless sources ([58, Section 2.9]). Hence, we require
that D bases his decision by relying only on Pzn , i.e., on the empirical
probability distribution induced by the test sequence zn. Note that,
strictly speaking, Pzn is not a sufficient statistics for the test under
H1: in fact, even if Y is a memoryless source, A could introduce some
memory within the sequence as a result of the attack. This is the reason
why we need to introduce explicitly the requirement that D bases
his decision only on the empirical distribution, that is, on first order
statistics. While the limited resources assumption is mainly introduced
to simplify the analysis, we observe that the use of first order statistics
is pretty common in a number of application scenarios even if the
sources under analysis are not memoryless. In multimedia forensics,
for instance, several techniques have been proposed which rely on the
analysis of the image histogram or a subset of statistics derived from
it (see, for example, [65], [66]). As another example, the analysis of
statistics derived from the histograms of block-DCT coefficients is often
adopted for detecting multiple JPEG compression [67]. More generally,
the assumption of limited resources is reasonable in application scenarios
where the detector has a small computational power. Eventually, we
emphasize that the theory presented in this and the subsequent chapters
can be extended to richer sets of empirical statistics, as long as a suitable
extension of the method of types is available (e.g., for Markov source).

A fundamental consequence of the limited resources assumption is
that it forces Λn to be a union of type classes, i.e., if zn belongs to Λn,
then the whole type class of zn, namely T (Pzn), will be contained in Λn.
Since a type class is univocally defined by the empirical probability
distribution of the sequences contained in it, the acceptance region Λn
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3.1. Detection Game with Known Sources (DG-KS) 41

can be defined as a union of types P ∈ Pn, where Pn is the set of all
possible types with denominator n.

Moreover, we focus on the asymptotic behavior of the game, that
is, the behavior when the length n of the observed sequence tends to
infinity.

With the above ideas in mind, the binary detection game with
known sources (DG-KS) is defined as follows.

Definition 3.1. The DG-KS (SD ,SA , u) game is a zero-sum, strategic,
game played by D and A , defined by the following strategies and payoff.

• Defender’s strategies. The set of strategies D can choose from is
the set of acceptance regions for H0 for which the false positive
probability is below a certain threshold:

SD = {Λn ∈ 2Pn : PFP ≤ 2−λn}, (3.1)

where PFP = PX(zn /∈ Λn) and 2Pn denotes the power set of Pn,
i.e., all the possible unions of types1 and we require that the false
positive error probability decays exponentially fast with n, with
an exponential rate at least as large as λ.

• Attacker’s strategies. The set of strategies of A is formed by all
the functions that map a sequence yn ∈ X n into a new sequence
zn ∈ X n subject to a distortion constraint:

SA = {g(·): d(yn, g(yn)) ≤ nL}, (3.2)

where d(·, ·) is a proper distortion function and L is the maximum
allowed average per-letter distortion.

• Payoff function. The payoff of the game is defined in terms of the
false negative error probability (PFN), namely:

u(Λn, g) = −PFN = −PY (zn ∈ Λn) = −
∑

yn: g(yn)∈Λn
PY (yn),

(3.3)
where D aims at maximizing u, while A wishes to minimize it.

1We will refer to Λn as a union of sequences or a union of types interchangeably,
the two perspectives being equivalent and clearly understandable from the context.
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Regarding the distortion measure d(·, ·), throughout the monograph
we always consider the most common case of additive distortion. The
only exception are Sections 3.5 and 4.5, where we consider a distortion
measure based on the infinity norm.2 We also point that d(·, ·) does
not need to be a distance, that is why we adopt the general term
distortion. For instance, in the following, we will use both the L1
distortion, corresponding to the L1 distance, and the L2

2 distortion,
which corresponds to a squared distance. Regarding the constraint
imposed by the Attacker, since L is the maximum average per-letter
distortion, A is not forced to introduce a distortion that is lower than
L for each sample of the sequence.

Before going on, we pause to clarify some of the choices behind the
formulation of the DG-KS game. First of all, the strategies available to
A are limited to deterministic functions of yn. This may seem a limiting
choice, however we will see that, at least asymptotically, i.e., when the
length of n tends to infinity, the optimal strategy of D does not depend
on the strategy chosen by A , then, it does not make sense for A to
adopt a randomized strategy to confuse D . The second comment regards
the assumption that D knows PY . As it is evident from Equation (3.3),
this is a necessary assumption, since for a proper definition of the game
it is required that both players have a full knowledge of the payoff for
all possible profiles. As we will see later, the asymptotically optimal
strategy of D does not depend on PY , thus making the assumption that
D knows PY irrelevant.

3.2 Solution of the DG-KS Game

The solution of the DG-KS game passes through the following lemma.

2Part of results derived in the monograph, e.g., the derivation of the equilibrium
strategies (for all the versions of the binary detection game), can be stated for a
wide class of distortion measures. Other results, e.g., the characterization of the
attack by means of optimum transportation and the computation of the payoff at
the equilibrium, require that some assumptions are made on the distortion measure.
In our treatment, we privileged the simplicity of the analysis and hence we avoid to
state each time the minimum set of requirements needed to prove the various results.
The reader may refer to [68] for a more detailed analysis.
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Lemma 3.1. Let Λn,∗ be defined as follows:

Λn,∗ =
{
P ∈ Pn: D(P‖PX) < λ− |X | log(n+ 1)

n

}
, (3.4)

sometimes referred to as Λn,∗(PX) or Λn,∗(PX , λ). Then we have:

1. PFP ≤ 2−n(λ−δn), with δn → 0 for n→∞,

2. for every Λn ∈ SD (with SD defined as in (3.1)) we have Λ̄n ⊆ Λ̄n,∗.

Hence, Λn,∗ is a dominant strategy for D .

Proof. Since Λ̄n,∗ and Λn,∗ are unions of type classes, PFP(Λn,∗) can be
rewritten as

PFP(Λn,∗) =
∑

P∈Λ̄n,∗
PX(T (P )), (3.5)

where PX(T (P )) denotes the collective probability (under PX) of all
the sequences in T (P ). For the class of DMS sources, the number of
types is upper bounded by (n+ 1)|X | and the probability of a type class
T (P ) by 2−nD(P‖PX) (see Section 2.4.1), hence we have:

PFP(Λn,∗) ≤ (n+ 1)|X | max
P∈Λ̄n,∗

PX(T (P ))

≤ (n+ 1)|X |2
−n min

P∈Λ̄n,∗
D(P‖PX)

≤ (n+ 1)|X |2−n
(
λ−|X | log(n+1)

n

)
= 2−n

(
λ−2|X | log(n+1)

n

)
, (3.6)

proving the first part of the lemma with δn = 2|X | log(n+1)
n and where

the last inequality derives from (3.4).
We now pass to the second part of the lemma. Let Λn be in SD and

let P be in Λ̄n. Then we have (see Section 2.4.1 for a justification of
the last inequality):

2−λn ≥ PX(Λ̄n)
≥ PX(T (P ))

≥ 1
(n+ 1)|X |

2−nD(P‖PX), (3.7)

which, by taking the logarithm of both sides, proves that P ∈ Λ̄n,∗.
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The first relation proved in Lemma 3.1 says that, asymptotically,
Λn,∗ defines a valid strategy for D , while the second one implies the
optimality of Λn,∗. In fact, if for a certain strategy of A we have that
P /∈ Λ̄n,∗, a fortiori we have that P /∈ Λ̄n for any other choice of Λ̄n
hence resulting in a larger false negative error probability.

Some interesting consequences of the lemma are the following. The
optimal strategy for D does not depend on the strategy chosen by A . By
adopting a game-theoretic terminology this means that the best defence
strategy is a dominant one. As a further consequence, the optimal
defence strategy does not depend on PY , meaning that the optimal
strategy is universal with respect to Y in C, i.e., it is optimal across all
the sources under the alternative hypothesis (H1). As we anticipated,
this result makes the assumption that D knows PY irrelevant. In the
same way, it is not necessary for D to know the probability distribution
of the attacked sequences.

The result stated in Lemma 3.1 corresponds to the well known
Hoeffding test for the non-adversarial case [69].

We now pass to the determination of the optimal strategy of A . The
existence of a dominant strategy for D significantly simplifies the search
for the optimal attack strategy. In fact, since a rationale Defender will
surely play the dominant strategy Λn,∗, A can choose her strategy by
assuming that Λn = Λn,∗. In this way, the derivation of the optimal
attack becomes an easy task. By observing that the goal of A is to
maximize PFN, we argue that such a goal is obtained by trying to bring
the sequences produced by Y within Λn,∗, i.e., by trying to reach the
condition:

D(Pg(yn)‖PX) < λ− |X | log(n+ 1)
n

. (3.8)

In doing so A must only respect the constraint that d(yn, g(yn)) ≤ nL.
The optimal strategy for A can then be expressed as follows:3

g∗(yn) = arg min
zn: d(zn,yn)≤nL

D(Pzn‖PX). (3.9)

Together with Lemma 3.1, the above observation permits to state
our first fundamental result, summarized in the following theorem.

3In general, the minimization in (3.9) may have multiple solutions, all of them
equivalent, i.e., leading to the same value of the payoff.
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Theorem 3.2 (Equilibrium Point of the DG-KS Game). The DG-KS game
is a dominance solvable game and the profile (Λn,∗, g∗) is a rationalizable
equilibrium of the game.

Proof. Lemma 3.1 asserts that Λn,∗ is a strictly dominant strategy for D ,
thus permitting us to eliminate all the other strategies in SD (since
they are strictly dominated by Λn,∗). The theorem, then, follows by
observing that g∗ satisfies

−u(Λn,∗, g∗) ≥ −u(Λn,∗, g) ∀g ∈ SA , (3.10)

that is, g∗ maximizes the false negative error probability for a fixed Λn,∗.
In fact, for any to-be-attacked sequence yn, whenever the minimum
in (3.9) is not lower than the acceptance threshold, no other strategy
will succeed in bringing yn inside the acceptance region; hence, A

maximizes the false negative probability, namely PY (g(yn) ∈ Λn,∗), by
playing g∗.

3.2.1 Characterization of the Game by means of
Transportation Theory

In this section we show that, thanks to the permutation invariance
ensured by additive distortion measures, we can consider an interesting
reformulation of the game. More specifically, we can look at the At-
tacker’s strategy from a different perspective, by drawing a parallelism
with transportation theory (see Section 2.3), which permits to derive
a very intuitive and insightful interpretation of the optimal Attacker’s
strategy, opening the way to the analysis of the source distinguishability
performed in Chapter 4.

Given a sequence yn drawn from Y , the goal of A is to transform it
into a sequence zn belonging to the acceptance region chosen by D . Let
us denote by n(i, j) the number of times that the i-th symbol of the
alphabet is transformed into the j-th one as a consequence of the attack.
Similarly, we denote by SnYZ(i, j) = n(i, j)/n the fraction of times the
i-th symbol of the alphabet is transformed into the j-th one. In the
following we will refer to SnYZ(i, j) as transportation map. The fact that
SnYZ refers to n-long sequences is explicitly indicated by adding the
superscript n.
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For any additive distortion measure d, we have

d(yn, zn) =
∑
i

d(yi, zi) =
∑
i,j

n(i, j)d(i, j), (3.11)

where d(i, j) is the distortion introduced when the symbol i is trans-
formed into the symbol j. Hence, d is permutation-invariant (see Defi-
nition 2.1), and the average per-symbol distortion between yn and zn
can be expressed in terms of SnYZ as

d(yn, zn)/n =
∑
i,j

SnYZ(i, j)d(i, j). (3.12)

The map SnYZ determines also the empirical distribution (i.e., the
type) of the attacked sequence. In fact, by denoting with Pzn(j) the
relative frequency of symbol j within zn, we have

Pzn(j) =
∑
i

SnYZ(i, j) , SnZ(j). (3.13)

Since A can not change more symbols than there are in the sequence
yn, a map SnYZ can be applied to a sequence yn only if SnY (i) ,∑
j S

n
YZ(i, j) = Pyn(i). Accordingly, SnYZ can be interpreted as the

joint empirical pmf (i.e., the joint type) of the sequences yn and zn.
In the same way, SnY and SnZ correspond, respectively, to the empirical
pmf’s of yn and zn.

By remembering that Λn depends only on the empirical pmf of
the test sequence, and given that the empirical pmf of the attacked
sequence depends on SnZ only through SnYZ, we can define the action of
the Attacker as the choice of a transportation map among all admissible
maps, a map being admissible if:

SnY = Pyn∑
i,j

SnYZ(i, j)d(i, j) ≤ L, (3.14)

which is a set of linear constraints in SnYZ. The set of the admissible
maps is denoted by An(L,Pyn).

Given the above, the space of strategies of the Attacker can be
seen as the set of all the possible ways of associating an admissible
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transformation map to the to-be-attacked sequence. In the following, we
will refer to the result of such an association as SnYZ(yn), or SnYZ(i, j; yn),
when we need to refer explicitly to the relative frequency with which the
symbol i is transformed into the symbol j. In the same way, SnZ(j; yn)
denotes the output marginal of SnYZ(i, j; yn). With regard to the input
marginal, we always have SnY (i; yn) = Pyn(i). Similarly, we use the
notation SnY (yn) to denote the pmf Pyn . By adopting this symbolism,
the space of strategies of A can be redefined as:

SA = {SnYZ(yn): SnYZ(i, j) ∈ An(L,Pyn)}. (3.15)

We can also rewrite the payoff function as follows

u(Λn, SnYZ) = −
∑

yn: SnZ(yn)∈Λn
PY (yn). (3.16)

By adopting the above transportation theory perspective, Theo-
rem 3.2 can be rephrased as follows.

Corollary 3.3 (Equilibrium Point of the DG-KS Game). Let

Λn,∗ =
{
P ∈ Pn: D(P‖PX) < λ− |X | log(n+ 1)

n

}
, (3.17)

and
Sn,∗YZ(yn) = arg min

SnYZ∈An(L,Pyn )
D(SnZ‖PX). (3.18)

Then Λn,∗ is a dominant equilibrium for D and the profile (Λn,∗, Sn,∗YZ (yn))
is the only rationalizable equilibrium of the DG-KS game, which, then,
is a dominance solvable game.

While the formula defining the optimum acceptance region in (3.17)
can be easily implemented by the Defender, the task of the Attacker is
more complex due to the necessity of solving the minimization prob-
lem in (3.18). However, we notice that the number of variables in the
minimization in (3.18) is quadratic in |X |, thus representing a dra-
matic improvement with respect to the minimization in (3.9) where
the number of variables involved in the minimization is n. By further
inspecting (3.18), we see that such a minimization resembles an opti-
mal transport problem, however it departs from it since the divergence
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between a source pmf and a target one is minimized in (3.18), subject
to a distortion constraint, whereas, OT faces with the somewhat-dual
problem of minimizing the distortion needed to make the two pmf’s
equal (we will also adopt this perspective in Chapter 4 when we will
analyze the limiting performance of the game). Since SnYZ(i, j) ∈ Qn
(i.e., n(i, j) = n ·SnYZ(i, j) ∈ N), the problem in (3.17) is an integer min-
imization problem. By observing that the divergence term D(SnZ‖PX)
is convex as a function of the transportation map SnYZ, see [58, Theo-
rem 2.7.2] (the dependence of SnZ in SnYZ is linear and the divergence is
convex), if the admissibility set is defined by convex constraints in SnYZ,
as it is the case with any additive distortion, the minimization problem
in (3.18) is a convex integer optimization problem, for which a unique
global optimal solution exists. Such a solution can be found by using
common optimization algorithms implemented by existing solvers for
convex MINLP (Mixed Integer Nonlinear Problems) [70], [71], see [72].

3.3 Analysis of the Payoff at the Equilibrium

The next step of our analysis focuses on the computation of the payoff
at the equilibrium. Specifically, given the asymptotic nature of the
game, we will evaluate the error exponent of the false negative error
probability at the equilibrium, i.e., ε∗ (see Section 2.5). As a result, at
the equilibrium, PFN will either tend to 0 or not for n→∞ depending
on the relationship between the maximum allowed distortion and the KL-
divergence between PX and PY . As to the false positive error exponent,
namely η∗, in the setup defined by the DG-KS game we always have
η∗ ≥ λ (see (3.1)).

To start with, let Γn be the set of sequences generated by Y that
can be moved into Λn,∗ as a consequence of the attack, that is

Γn(PX , λ, L) = {yn: ∃ zn ∈ Λn,∗(PX , λ) s.t. d(yn, zn) ≤ nL} . (3.19)

Accordingly, the false negative error probability is equal to the probabil-
ity that the sequence yn belongs to this set, that is PFN = PY (yn ∈ Γn).

Proposition 3.1. The set Γn(PX , λ, L) defined in (3.19) is a union of
type classes for any permutation invariant distance-measure.
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The above proposition can be easily proven by observing that Λn,∗
depends on the observed sequence only via the type class and that,
whenever the distance measure is permutation invariant, the action of
A is equivalent to the application of a transportation map Sn,∗YZ(yn).

The set in (3.19) can then be easily redefined in terms of types
instead of sequences:4

Γn(PX , λ, L) = {P ∈ Pn: ∃ SnPV ∈ An(L,P ) s.t. V ∈ Λn,∗(PX , λ)}.
(3.20)

The above region defines all the type classes (with denominator n)
whose sequences can be moved within Λn,∗ by A . In order to decide
whether the sequences generated by two generic sources (not necessarily
belonging to Pn) can be eventually distinguished as n tends to infinity,
we now investigate the asymptotic behavior of PFN at the equilibrium.

To do so, it is convenient to introduce the asymptotic version of
Γn(PX , λ, L), defined as follows:

Γ(PX , λ, L) = {P ∈ P : ∃ SPV ∈ A(L,P ) s.t. V ∈ Λ∗(PX , λ)}, (3.21)

where
Λ∗(PX , λ) = {P ∈ P : D(P‖PX) ≤ λ}. (3.22)

In the same way, the definitions of SPV (i, j) and A(L,P ) are obtained
immediately from those of SnPV (i, j) and An(L,P ), by relaxing the
requirement that SPV (i, j) and P (i) are rational numbers with denomi-
nator n.

We now have all the necessary tools to prove the following theorem.

Theorem 3.4 (Asymptotic Payoff of the DG-KS Game). For the DG-KS
game, the error exponent of the false negative error probability at the
equilibrium is given by:5

ε∗ = min
P∈Γ(PX ,λ,L)

D(P‖PY ), (3.23)

4With a slight abuse of notation, we denote with SnPV the transportation map
from a pmf P ∈ Pn to another pmf V ∈ Pn, when the sequences that induce the
pmf’s and their underlying sources are not specified. The same notation is used in
other parts of the monograph.

5The use of the minimum instead of the infimum is justified by the compactness
of Γ(PX , λ, L) which is demonstrated within the proof itself.
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leading to the following cases:

1. ε∗ = 0, if PY ∈ Γ(PX , λ, L);

2. ε∗ 6= 0, if PY /∈ Γ(PX , λ, L).

Proof. In order to derive the error exponent of the false negative prob-
ability, we must evaluate the following limit:

ε∗ = − lim
n→∞

1
n

log(PY (Pn ∈ Γn)), (3.24)

namely, the error exponent of the probability of the sequence of sets
Γn (we use lim – instead of the lim sup – because, as we will show,
such limit exists). The computation of the above limit can be carried
out by applying the generalization of Sanov’s theorem reported in
Section 2.4.2. In order to apply the theorem to this case, it is sufficient
to show that, for a given distance measure d: P × P → R+, Γn tends
to Γ in the Hausdorff metric δH , that is, Γn H→ Γ (see Corollary 2.2 in
Section 2.4.2).6

Due to the convexity and continuity of the divergence function w.r.t.
its arguments, and the density of rational numbers into the real ones,
the Hausdorff distance between Λn,∗ and Λ∗ gets smaller as n increases,
meaning that δH(Λn,∗,Λ∗)→ 0 as n→∞ (and hence, Λn,∗ H→ Λ∗). We
now show that such a property can be extended to the sets Γn and Γ. To
this purpose, it is convenient to rewrite Γ and Γn in a slightly different
manner, by considering the inverse transportation map that moves a
distribution out of the acceptance region, that is

Γ(PX , λ, L) = {P ∈ P : ∃ SVP ∈ A(L, V ), for some V ∈ Λ∗(PX , λ)}.
(3.25)

The equivalence of definitions (3.25) and (3.21) follows from the fact that
for any map SPV that moves P into V , the inverse map SVP moves V into
P by introducing the same distortion.7 A similar equivalence holds for

6We remind that, for computing the Hausdorff distance, the distance measure d
between pmf’s must be such that P endowed with d is bounded (see discussion in
Section 2.4.2).

7We are implicitly assuming that the element-wise distortion d(i, j) is symmetric,
i.e., d(i, j) = d(j, i) ∀(i, j), which holds in all the cases considered in this monograph.
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the set Γn(PX , λ, L). Being Γn ⊆ Γ (which is obvious from the definition
of Γn and Γ), any pmf P in Γn also belongs to Γ, and hence δΓ(Γn) =
supP∈Γn infP ′∈Γ d(P ′, P ) = 0. In order to show that δH(Γn,Γ)→ 0 as
n→∞ we must prove that δΓn(Γ) = supP∈Γ infP ′∈Γn d(P, P ′)→ 0 as
n→∞.

Let us fix P1 ∈ Γ. Let V1 be a pmf in Λ∗(PX , λ) such that SV1P1 ∈
A(L, V1). We can choose a point V2 ∈ Λn,∗(PX , λ) such that d(V1, V2) ≤
δH(Λn,∗,Λ∗). By exploiting the fact that δH(Λn,∗,Λ∗) tends to zero as
n → ∞, V2 can be taken arbitrarily close to V1 for large enough n.
According to Theorem A.2 (Appendix A), it is possible to move V2
into a pmf P2 close to P1 with a map in An(L, V2); by construction,
P2 ∈ Γn. Specifically (see the proof of Theorem A.2), for any given
P1 and SV1P1 , the map SnP2V2

∈ An(L, V2) can be chosen in such a
way that P2 ∈ B(P1, en)8 with en = (2/n + δH(Λn,∗,Λ∗)) · |X |2. Ac-
cordingly, infP∈Γn d(P, P1) ≤ d(P2, P1) ≤ en, ∀P1. Then, δΓn(Γ) =
supP ′∈Γ infP∈Γn d(P, P ′) ≤ en which tends to zero, as n → ∞, thus
concluding the proof.

The main consequence of Theorem 3.4 is that, given PX , L and λ,
the set of sources PY can be split into two distinct regions: the subset for
which, as a consequence of the attack, the false negative error exponent
is 0 (PY ∈ Γ(PX , λ, L)) and the subset for which the false negative
error exponent is positive and then the false negative probability PFN
tends to zero exponentially fast (PY ∈ Γ̄(PX , λ, L)). Stated in another
way, given two pmf’s PX and PY , a maximum attack distortion L and
the desired false positive error exponent λ, Theorem 3.4 permits to
understand whether D may succeed in making the false negative error
probability tend to zero exponentially fast. In the following we will
refer to such a case by saying that D wins the game. When this is
not possible, the false negative error probability may either tend to
a finite value strictly larger than 0 (possibly 1) or tend to zero at a
sub-exponential rate. In both cases, we will say that A wins the game
and that the source X and Y can not be distinguished reliably.

8For any point P ∈ P , B(P, τ) denote the neighborhood of P of radius τ ,
according to the metric d.
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Figure 3.1: Geometric interpretation of Γ(PX , λ, L) and Λ∗(PX , λ) in the probability
simplex by the light of Theorem 3.4.

With the above ideas in mind, Γ(PX , λ, L) can be interpreted as the
region with the sources that cannot be reliably distinguished from PX
guaranteeing a false positive error exponent at least equal to λ in the
presence of an adversary with allowed distortion L. Accordingly, we say
that Γ(PX , λ, L) represents the indistinguishability region of the adver-
sarial detection test in the DG-KS setup. A geometric interpretation of
Theorem 3.4 is given in Figure 3.1.

In general, the expression of Γ does not allow an analytic computa-
tion of the pmf’s PY that D is not able to distinguish from PX . In the
next section, we consider a simple case in which a closed-form expression
can be found for Γ.

3.3.1 Bernoulli Sources

To exemplify the results of Theorem 3.4, we consider the particular
case in which the distortion constraint is expressed in terms of the
Hamming distance and we specialize the expression of Γ to such a case
(it is easy to see that the Hamming distance satisfies the conditions
under which the theorems in the previous sections have been proved).
In such a case, in fact, a closed-form expression can be found for Γ
thus greatly simplifying the analysis. The simplification relies on the
following lemma.
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Lemma 3.5. If d(yn, zn) = dH(yn, zn), the set Γn can be expressed as:

Γn,∗(PX , λ, L) =
{
P ∈ Pn: ∃P ′ ∈ Λn,∗(PX , λ) s.t. dL1(P, P ′) ≤ 2L

}
(3.26)

where dL1 is the L1 distance between P and P ′ (sometimes called
variational distance).

Proof. We start by proving that a sequence whose type has a L1 distance
larger than 2L from all the types in Λn,∗ cannot belong to ΓnH . Let
yn and zn be two sequences, and let Pyn and Pzn be their types. The
distance between Pyn and Pzn can be rewritten as follows:

dL1(Pyn , Pzn) =
∑
a∈X+

[Pyn(a)− Pzn(a)]

+
∑
a∈X−

[Pzn(a)− Pyn(a)]

= 2
∑
a∈X+

[Pyn(a)− Pzn(a)], (3.27)

where X+ (res. X−, X=) denotes the set of a’s for which Pyn(a) >
Pzn(a) (res. Pyn(a) < Pzn(a), Pyn(a) = Pzn(a)), and where the last
equality follows from the observation that:∑

a∈X−
Pyn(a) = 1−

∑
a∈X+

Pyn(a)−
∑
a∈X=

Pyn(a). (3.28)

Let us consider now the Hamming distance between the sequences yn
and zn. By considering X+, we see that dH(yn, zn) is larger than or
equal to

∑
a∈X+ n[Pyn(a) − Pzn(a)]. In fact, for each a ∈ X+, there

must be at least n[Pyn(a) − Pzn(a)] positions in which the sequences
yn and zn differ, so to justify the presence of n[Pyn(a)− Pzn(a)] more
a’s in yn than in zn, thus yielding:

dL1(Pyn , Pzn) ≤ 2dH(yn, zn)
n

. (3.29)

For the sequences yn whose type does not satisfy (3.26), we have
dL1(Pyn , Pzn) > 2L ∀zn ∈ Λn,∗, yielding

2L < dL1(Pyn , Pzn) ≤ 2dH(yn, zn)
n

, (3.30)

showing that Γn ⊆ Γn,∗.
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We now show that Γn,∗ ⊆ Γn. Let P be a type in Γn,∗. Then there
exists a type P ′ ∈ Λn,∗ whose distance from P is lower than or equal
to 2L. Let yn be a sequence belonging to T (P ), the type class of P .
Starting form yn we can easily build a new sequence zn whose type is
equal to P ′ by proceeding as follows. Let X+ be the set of a’s for which
Pyn(a) > P ′(a). For each a ∈ X+ we take n[Pyn(a)− P ′(a)] positions
where yi = a, and replace a with a value b ∈ X−, in such a way that
at the end we have Pzn(a) = P ′(a) ∀a ∈ X . Note that this is always
possible as we have∑

a∈X+

[Pyn(a)− P ′(a)] =
∑
b∈X−

[P ′(b)− Pyn(b)]. (3.31)

Since to pass from yn to zn we modified only
∑
a∈X+ n[Pyn(a) −

P ′(a)] positions of yn we have:

dH(yn, zn) =
∑
a∈X+

n[Pyn(a)− P ′(a)]

= ndL1(Pyn , P ′)
2

≤ nL, (3.32)

showing that yn ∈ Γn, and hence Γn,∗ ⊆ Γn, thus concluding the proof
of the lemma.

Lemma 3.5 permits to rewrite the expression for the indistinguisha-
bility region in a simpler form:

Γ∗ =
{
P ∈ P : ∃ P ′ ∈ Λ∗0(PX) s.t. dL1(P, P ′) ≤ 2L

}
. (3.33)

The relation between Hamming distance and L1 distance, investigated
in the proof of the Lemma 3.5, will be exploited in other parts of the
monograph (for instance in Chapter 6).

We now apply the general expression found above to the case of
two Bernoulli sources. For the sequences emitted by these sources, the
Hamming distance is a natural choice to define the distortion constraint,
thus permitting to adopt the simplified definition of Γ given in (3.33).

Let then X and Y be two Bernoulli sources with parameters p =
PX(1) and q = PY (1) respectively. In this case the acceptance region
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for H0 assumes a very simple form. In fact, the KL-divergence between
Pxn and PX depends only on the number of 1’s in xn, the divergence
being a monotonic increasing9 function of |νx(1)− p|, where we denoted
by νx(1) the relative frequency of 1’s in xn. When seen as an union
of types, the acceptance region may be defined in terms of P (1) (the
probability of 1 under P ) only:

Λn,∗(p, λ) = {P ∈ Pn: P (1) ∈ (νinf (λ), νsup(λ))} , (3.34)

where νinf (λ) and νsup(λ) derive from the equality

D(P‖PX) = λ− |X | log(n+ 1)
n

. (3.35)

Note that in some cases we may have νinf = 0 and/or νsup = 1, since
Equation (3.35) may admit a solution only for P (1) > p, P (1) < p, or
no solution at all.

The optimal strategy of A is also easy to define. Given the monotonic
nature of the KL-divergence, A will increase (decrease) the number of
1’s in yn to make the relative frequency of 1’s in zn as close as possible
to p. A will succeed in inducing a decision error if the relative frequency
of ones in zn belongs to the interval (νinf , νsup). Since the distortion
constraint states that dH(yn, zn) ≤ nL, we clearly have:

Γn(p, λ, L) = {P ∈ Pn: P (1) ∈ (νinf (λ)− L, νsup(λ) + L)} , (3.36)

with the boundaries of the interval truncated to 0 or 1 when needed.
For the computation of the error exponent of PFN at the equilibrium,
we first introduce the asymptotic version of Λn,∗ and Γn:

Λ∗(p, λ) = {P ∈ P : P (1) ∈ (ν∞inf (λ), ν∞sup(λ))}, (3.37)

where ν∞inf and ν∞sup are now derived from the equality

D(P‖PX) = λ. (3.38)

Then the indistinguishability region is

Γ(p, λ, L) = {P ∈ P : P (1) ∈ [ν∞inf (λ)− L, ν∞sup(λ) + L]}. (3.39)
9Actually the KL-divergence may have an asymmetric behavior for nx(1) < np

and nx(1) > np however this asymmetry does not have any impact on our analysis.
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As stated by Theorem 3.4, we can distinguish two cases:

q = PY (1) ∈ [ν∞inf (λ)− L, ν∞sup(λ) + L]
q = PY (1) /∈ [ν∞inf (λ)− L, ν∞sup(λ) + L]. (3.40)

In the first case ε∗ = 0. In the second case PFN tends to zero expo-
nentially fast for n→∞ and the error exponent can be computed by
resorting to Equations (3.23) and (3.33). Let us suppose for instance
that q > ν∞sup + L. The type in Γ(p, λ, L) closest to PY in divergence is
a Bernoulli source with parameter p∗ = ν∞sup + L, and hence the error
exponent will be ε∗ = D(p∗‖q).

3.4 Numerical Analysis: A Case Study

In this section, we resort to numerical analysis to get some insights
into the best achievable performance of the game between D and A

for a close-to-reality situation related to a class of camera identification
problems in the field of image forensics. Let us assume that two signal
sources X and Y differ by the noisiness of the signals they produce.
In order to test the hypothesis that a signal has been generated by
X, D applies a wavelet decomposition to the signal and considers
the statistics of the DWT (Discrete Wavelet Transform) coefficients
at a certain decomposition level [73]. The Defender knows that the
DWT coefficients are independent and follow a Laplacian distribution
PX(x) = γ

2e
−γ|x|. The DWT coefficients of the signal produced by the

source Y also follow a Laplacian distribution but with a different decay
parameter ω. In order to distinguish between images acquired by the two
sources (cameras), D identifies a flat region of the image and analyzes
how the pixel grey levels are distributed around the mean value of the
area. D knows that if the image has been produced by the first camera
the pixels follow a Laplacian distribution with decay parameter γ, while
for images acquired by the second camera, the decay parameter is equal
to ω. Given a sequence yn of DWT coefficients (or pixel gray levels)
produced by Y and a distortion constraint nL, by exploiting the results
of this chapter, we can derive the optimal attack strategy. Moreover,
we can also investigate whether D can effectively distinguish between
sequences (images) generated by X and Y by ensuring that the false
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3.4. Numerical Analysis: A Case Study 57

positive error probability tends to zero exponentially fast with error
exponent at least equal to λ.

The analysis of the previous section applies to DMS sources and not
to continuous sources as those considered here. We get around this prob-
lem by quantizing the continuous probability density functions (pdf’s).
If the quantization step is small enough, the analysis of the discrete
case will provide useful indications about the continuous problem. We
then quantize the Laplacian pdf’s onto the set of integers by restricting
the pdf to values that have a non-negligible probability of appearing
in a sequence of a certain length. Specifically, the probability PX(i) is
computed as:

PX(i) =
∫ i+1/2

i−1/2

γ

2 e
−γ|x|dx. (3.41)

For the values of n, γ and ω used in our simulations, it is enough to
consider values until i = ±20 since the probability that a value outside
the interval [−20, 20] shows up is significantly lower than one.10 For
instance, with n = 106 and γ = 1, such a probability is about 0.002.
A similar procedure is adopted to discretize PY . Let us call P̂X and P̂Y
the discretized versions of PX and PY .

We use numerical analysis through Monte Carlo simulations, by
working as follows: we generate a large number of sequences according
to P̂Y and perform numerical optimization to move them within Λn,∗

implementing the attack in (3.18). To do so, we use a solver for convex
MINLP [71] (see a discussion in the end of Section 3.2), that works
by solving a relaxed version of the minimization problem in which
n(i, j)’s are not required to be integer, that is, the quantities SnYZ(i, j)
are not required to be in Qn, but they are assumed to be continuous
variables (SnYZ(i, j) ∈ R ∩ [0, 1]). Given the convexity of the objective
function, the relaxed problem can be solved efficiently by resorting to
the steepest gradient descent method [74]. Once the relaxed solution
has been obtained, the optimum integer solution is found by searching
in the neighborhood of the relaxed minimum.

An estimate of the false negative error probability can be obtained by
measuring the success rate. Figure 3.2 shows results obtained by applying

10For i = 20 we let PX(i) =
∫∞
i−1/2

γ
2 e
−γ|x|dx. Similarly for i = −20.
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Figure 3.2: False negative error probability obtained through Monte Carlo simula-
tions (1000 random sequences), for L = 0.01, λ = 0.06.

the above procedure for γ = 1.5, various values of ω, L = 1/100, λ = 0.06
and two different values of n (n = 103 and n = 104). Each point
of the curve is obtained by generating 103 sequences according to P̂Y .
The behavior of PFN agrees with the insights provided by Theorem 3.4:
the values of ω can be split into two main classes, those for which the
false negative error probability approaches zero and those for which
the false negative probability tends to 1. Of course, the former class
corresponds to the cases for which ω is further from γ thus easing
the job of the Defender. Such a dual behavior is more apparent for
large values of n since for such values the numerical analysis gets closer
to the asymptotic conditions underlying the theoretical analysis. The
numerical analysis then permits, for each value of λ (and for a fixed
L), to compute the minimum and maximum values of ω for which D is
going to fail. An example of this kind of analysis is given in Figure 3.3,
where the range of ω for which D fails is plotted as a function of λ.

3.5 DG-KS Game under Maximum Distortion-Limited Attack

We now extend the analysis of Sections 3.2 and 3.3 to the case in which
the distortion measure constraining the Attacker is expressed in terms
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Figure 3.3: Range of ω for which increasing n results in a false negative error
probability tending to 1, for γ = 1.5 and n = 104.

of the maximum absolute distance between the samples of yn and zn,
that is, to the case in which the distortion is measured by relying on
the L∞ distance.

The particular interest in this scenario is justified by the fact that, in
many practical applications, the distortion constraint must be satisfied
locally, thus requiring that the maximum absolute distance between yn
and zn is limited, rather than its average across the whole sequences.
This is the case, for instance, of biomedical and remote sensing image
compression, for which the maximum error introduced at each pixel
location must be strictly controlled [75]. Other examples, where the
use of the L∞ distance is recommended, come from image processing
applications, when it must be ensured that two versions of the same
image, an original and a processed one, are visually indistinguishable [76].
In such a case, it is necessary that the absolute difference between the
two images is lower than the visibility threshold (often referred to as
just noticeable distortion (JND) [77]) at each pixel location.

It is easy to see that the L∞ distance measure is a permutation
invariant measure, and then it is possible to express the distortion
constraint the Attacker is subject to by limiting the set of transportation
maps SnYZ he can choose from, that is, by defining the set of admissible
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maps similarly to (3.14). More specifically, we observe that the maximum
distance between the sequences yn and zn can be rewritten as follows:

dL∞(yn, zn) = max
k
|zk − yk| = max

(i,j):SnYZ(i,j)6=0
|i− j|. (3.42)

The set of strategies of the Attacker can be defined as in (3.15), where
the set of the admissible maps AnL∞(L,Pyn) is given byS

n
Y = Pyn

max
(i,j):SnYZ(i,j)6=0

|i− j| ≤ L. (3.43)

We observe that now the distortion constraint is imposed on a per-letter
basis and not only on the average, and then L is the maximum allowed
per-symbol distortion level.

Passing to the analysis of the indistinguishability region, it is straight-
forward to see that all the previous definitions continue to hold by
replacing An(L,Pyn) with AnL∞(L,Pyn). In fact, the dominant strategy
for D does not depend on the set of strategies available to A . Let
ΓnL∞(PX , λ, L) denote the set of the types for which D decides in fa-
vor of H0 as a consequence of the attack. The asymptotic version of
ΓnL∞(PX , λ, L) is defined as in (3.21)

ΓL∞(PX , λ, L) = {P ∈ P : ∃ SYZ ∈ AL∞(L,P ) s.t. SZ ∈ Λ∗(PX , λ)},
(3.44)

where AL∞(L,P ) is the asymptotic counterpart of AnL∞(L,P ).
By observing that the maximum distortion constraint can be equiv-

alently rewritten as a collection of linear constraints in SnYZ, that is

max
(i,j):SnYZ(i,j)6=0

|i− j| ≤ L←→ SnYZ(i, j) = 0, ∀i, j: |i− j| ≤ L, (3.45)

we deduce that the admissible set in (3.43) is a linear set. Accordingly,
Theorem 3.4 also holds in the L∞ case and the asymptotic payoff can
be computed as in (3.23), with the indistinguishability region given
by (3.44).
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4
Limit Performance and Source Distinguishability

A drawback with the analysis carried out in Chapter 3 is the asymmetric
role of the false positive and false negative error exponents, namely
η and ε, which derives from the adoption of the Neyman–Pearson
approach in the definition of the game. With such an approach, in fact,
the Defender aims at ensuring a given value for η, namely λ, but is
satisfied with any strictly positive ε. In the analysis of this chapter, we
make a more reasonable assumption and say that the Defender succeeds,
i.e., he is able to distinguish between X and Y despite the presence of
the adversary, if – at the equilibrium – both error probabilities tend
to zero exponentially fast, regardless of the particular values assumed
by the error exponents. More precisely, by mimicking Chernoff-Stein’s
lemma [58, Section 12.8] for the non adversarial version of the test,
we analyze the behavior of the indistinguishability regions of the test,
namely Γ(PX , λ, L), when the false positive decay rate λ approaches 0,
to see whether, given a maximum allowable distortion L, it is possible
for D to simultaneously attain strictly positive error exponents for the
two kinds of error, hence permitting to reliably distinguish between PX
and PY . Doing so permits to study the ultimate achievable performance
of the detection in adversarial setting.

61
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62 Limit Performance and Source Distinguishability

By exploiting the parallelism with optimal transport, we intro-
duce the concept of Security Margin (SM), defined as the maximum
distortion introduced by the Attacker for which the two sources can
be distinguished by the Defender ensuring arbitrarily small, yet pos-
itive, error exponent for Type I and II error probabilities. The SM
is a powerful concept that permits to summarize in a single quan-
tity the distinguishability of two sources X and Y in the adversarial
setting.

4.1 Characterization of the Indistinguishability Region
using OT

By adopting an optimal transport perspective, we can rewrite the
indistinguishability region in (3.21) in a more compact and easier-to-
interpret way, as follows

Γ(PX , λ, L) = {P ∈ P : ∃ Q ∈ Λ∗(PX , λ) s.t EMD(P,Q) ≤ L}, (4.1)

where EMD denote the Earth Mover Distance defined in Section 2.3,
Equation (2.18), where the cost function corresponds here to the
distortion d(·, ·) used to constraint the strategies available to the
Attacker.

Such insightful rewriting of the indistinguishability region is useful
in the subsequent analysis.

4.2 Best Achievable Performance in the DG-KS Setup

We now consider the behavior of the DG-KS game as function of λ;
in particular, we study the behavior of Γ(PX , λ, L) when λ→ 0. Such
analysis permits to investigate whether two sources X and Y are ulti-
mately distinguishable in the setting defined by the DG-KS game. The
rationale behind such an analysis stems directly from the definition of
the acceptance region. In fact, from the definition of SD , it is easy to see
that a smaller λ leads to a more favorable game for the Defender, since
he can adopt a smaller acceptance region and then obtain a larger payoff.
Stated in another way, from D ’s perspective, evaluating the behavior of
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4.2. Best Achievable Performance in the DG-KS Setup 63

the game for λ→ 0 corresponds to exploring the best achievable false
negative error exponent, when PFP tends to zero exponentially fast.

More formally, we start by proving the following property.

Proposition 4.1. For any two values λ1 and λ2 such that λ2 < λ1,
Γ(PX , λ2, L) ⊆ Γ(PX , λ1, L).

Proof. The proposition follows immediately from (4.1) by observing
that Γ(PX , λ, L) depends on λ only through the acceptance region
Λ(PX , λ), for which we obviously have Λ∗(PX , λ2) ⊆ Λ∗(PX , λ1)
whenever λ2 < λ1.

Thanks to Proposition 4.1, we can compute the limit of the false
negative error exponent when λ tends to zero, as summarized in the
following theorem, extending the Chernoff-Stein’s Lemma to the ad-
versarial setup considered. Let us first give the following definition:

Γ(PX , L) = {P ∈ P : EMD(P, PX) ≤ L}. (4.2)

Theorem 4.1. Given two sources X ∼ PX and Y ∼ PY and a maximum
average per-letter distortion L, the maximum achievable false negative
error exponent for the DG-KS game is

lim
λ→0

lim
n→∞

− 1
n

logPFN = min
P∈Γ(PX ,L)

D(P‖PY ). (4.3)

Proof. The innermost limit in the left-hand side of (4.3) defines the
error exponent for a fixed λ, say it ε(λ). From Theorem 3.4, we know
that

lim
n→∞

− 1
n

logPFN = ε(λ) = min
P∈Γ(PX ,λ,L)

D(P‖PY ). (4.4)

Then, according to Proposition 4.1, the sequence ε(λ) is monotonically
non decreasing as λ decreases. In addition, since Γ(PX , L) ⊆ Γ(PX , λ, L)
∀λ, for any λ > 0, we have:

ε(λ) ≤ min
P∈Γ(PX ,L)

D(P‖PY ). (4.5)

Being ε(λ) bounded from above and non-decreasing, the limit for λ→ 0
exists and is finite. We must now prove that the limit is indeed equal to
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minP∈Γ(PX ,L)D(P‖PY ). Let P ∗0 be the point achieving the minimum in
(4.3) and P ∗λ the point achieving the minimum in the set Γ(PX , λ, L), i.e.,
the point achieving the minimum in Equation (3.23) (see Figure 3.1 for
a pictorial representation of P ∗λ ). Due to Lemma B.1 (Appendix B.1),
for any arbitrarily small τ , we can choose a small enough λ such that,
for any P in Γ(PX , λ, L), a pmf P ′ in Γ(PX , L) exists whose distance
from P is lower than τ . By taking P = P ∗λ and exploiting the continuity
of the D function, we have

D(P ′‖PY ) ≤ min
P∈Γ(PX ,λ,L)

D(P‖PY ) + δ(τ), (4.6)

for some P ′ ∈ Γ(PX , L) and some value δ(τ) such that δ(τ) → 0 as
τ → 0. A fortiori, relation (4.6) holds for P ′ = P ∗0 and then we can
write

ε(λ) ≥ min
P∈Γ(PX ,L)

D(P‖PY )− δ(τ), (4.7)

where δ(τ) can be made arbitrarily small by decreasing λ.
Equation (4.7), together with Equation (4.5), shows that we can get

arbitrarily close to minP∈Γ(PX ,L)D(P‖PY ), by making λ small enough,
hence proving that the right-hand side of (4.3) is the limit of the
sequence ε(λ) as λ→ 0.

Figure 4.1 gives a geometric interpretation of Theorem 4.1. The
figure is obtained from Figure 3.1 in Chapter 3 by observing that when
λ→ 0 the optimal acceptance region collapses into the single pmf PX ,
i.e., Λ∗ = {PX}.

By the light of Theorem 4.1, Γ(PX , L) is the smallest indistinguisha-
bility region for the DG-KS game. Moreover, from Equation (4.2), we
see that the distinguishability of two pmf’s ultimately depends on their
EMD. In fact, if EMD(PY , PX) > L, D is able to distinguish X from Y

by adopting a sufficiently small λ. On the contrary, if EMD(PY , PX) ≤ L,
there is no positive value of λ for which the sequences emitted by the
two sources can be asymptotically distinguished.
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Figure 4.1: Geometric interpretation of set Γ(PX , L) and point P ∗0 in the probability
simplex by the light of Theorem 4.1.

4.3 Security Margin in the DG-KS Setup

By adopting a different perspective, given two sources X and Y , one
may ask which is the maximum attack distortion for which D can
distinguish X and Y . The answer to this question follows immediately
from Theorem 4.1 and leads naturally to the following definition.

Definition 4.1 (Security Margin in the DG-KS Setup). Let X ∼ PX and
Y ∼ PY be two discrete memoryless sources. The maximum average per-
letter distortion for which the two sources can be reliably distinguished
in the DG-KS setup is called Security Margin and is given by

SM(PY , PX) = EMD(PY , PX). (4.8)

Since the EMD is a symmetric function of PX and PY [51], the
Security Margin does not depend on the role of X and Y in the test,
i.e., SM(PX , PY ) = SM(PY , PX).

The Security Margin is a powerful measure summarizing in a single
quantity how securely two sources can be distinguished in an adversarial
setup.

It is worth remarking that the Security Margin between two sources
pertains to the security of the hypothesis test behind the binary de-
tection problem and not to its robustness, since it is derived from the
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performance at the equilibrium of the game, i.e., by assuming that both
the players of the game make best choices in a strategic fashion. To
exemplify the above concept, let us consider the simple case of two
binary sources. Specifically, let X and Y be two Bernoulli sources with
parameters p = PX(1) and q = PY (1) respectively. Let also assume that
the distortion constraint is expressed in terms of the Hamming distance
between the sequences, that is d(i, j) = 0 when i = j and 1 otherwise.
Without loss of generality let p > q. The distortion associated to a
transportation map SXY can be written as:∑

i,j

SYX(i, j)d(i, j) = SYX(0, 1) + SYX(1, 0). (4.9)

Since p > q, it is easy to conclude that the minimum of the above
expression is obtained when SYX(1, 0) = 0 (intuitively, if the source
X outputs more 1’s than Y , it does not make any sense to turn the
1’s emitted by Y into 0’s). As a consequence, to satisfy the constraint
SX(1) = p we must let SYX(0, 1) = p−q, yielding SM(PY , PX) = p−q,
or more generally

SM(PY , PX) = |p− q|. (4.10)

We can conclude that if the Attacker is allowed to introduce an average
Hamming distortion larger or equal than |p − q|, then there is no
way for the Defender to distinguish between the two sources. This is
not the case if the output of the source Y passes through a binary
symmetric channel with crossover probability equal to |p− q|, since the
output of the channel would still be distinguishable from the sequences
emitted by X. Consider, for example, a simple case where q = 1/2
and p > 1/2. Regardless of the crossover probability, the output of
the channel will always be a binary source with equiprobable symbols,
which is distinguishable from X given that p > 1/2. In other words, in
the setup defined by the DG-KS game, the two Bernoulli sources cannot
be distinguished securely in the presence of an attacker introducing a
distortion equal to |p− q|, while they can be distinguished if the output
of the source Y passes through a noisy channel introducing the same
average distortion introduced by the Attacker.
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4.4 Security Margin Computation

Given two discrete sourcesX ∼ PX and Y ∼ PY , the computation of the
Security Margin requires the evaluation of EMD(PX , PY ). In general, the
EMD between two sources can be computed by resorting to numerical
analysis, and, due to its wide use as a similarity measure in computer
vision applications, several efficient algorithms have been proposed for
that (see for example [78]). We know from Section 2.3.2 that, when the
distortion (cost) function has the general form d(i, j) = |i− j|p, with
p ≥ 1, we can resort to a fast iterative algorithm for the computation
of the EMD, i.e., the Hoffman algorithm, known as NWC rule. A case
of great interest is p = 1 and p = 2, according to which the distortion
between yn and the attacked sequence zn corresponds, respectively, to
the L1 and L2

2 distortion.
In some simple, yet insightful, cases, a closed form solution can be

found, as detailed below.

4.4.1 Uniform Sources with Different Cardinalities

Let X ∼ PX and Y ∼ PY be two uniform pmf’s with alphabet sets
X and Y such that |X | = α|Y |, with α ∈ N. In this case, thanks to
Hoffman’s algorithm, for any Lpp distortion, the EMD, and then the
Security Margin, can be expressed as:

SMLpp
(PX , PY ) = 1

|Y |

|X |−1∑
i=0

α−1∑
j=0

(|ilow − jlow| − j − (α− 1)i)p. (4.11)

The formula implicitly assumes that jlow > ilow, the extension to the
case in which such a relationship does not hold being immediate.

4.4.2 Security Margin under the Hamming Distance

A case of interest in which the EMD assumes a particularly simple form
is when the Hamming distance dH is considered. Specifically, in this
case, the Security Margin between two sources X ∼ PX and Y ∼ PY
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with source alphabet X can be expressed as:1

SMdH (PX , PY ) = min
SXY:

∑
x
SXY=PY ,

∑
y
SXY=PX

∑
i,j

SXY(i, j)dH(i, j)

=
∑
i

( ∑
j,j 6=i

S′XY(i, j)
)

=
∑
i∈X

[PX(i)− PY (i)]+, (4.12)

where, in the second equality, S′XY is any pmf that satisfies SXY(i, j = i)
= min{PX(i), PY (j = i)}, ∀i ∈ X . Then, by construction, for any i ∈ X ,∑
j 6=i S

′
XY(i, j) = [PX(i)− PY (j = i)]+.2

4.4.3 Security Margin Under the L1 Distance

Let X ∼ PX and Y ∼ PY be two sources with alphabet X . If the
distortion function corresponds to the L1 distance, the EMD, and hence
the Security Margin, assumes a particularly simple form. Specifically,
the SM between PX and PY can be expressed in closed form as follows:

SML1(PX , PY ) =
∑
i∈X

∣∣∣∣∣
i∑

s=1
(PX(s)− PY (s))

∣∣∣∣∣. (4.13)

The above expression can be derived by rephrasing the EMD compu-
tation as a minimum cost flow problem [50, Section 1.2] and applying
the flow decomposition principle [79] to the solution of the TP problem
provided by the Hoffman’s algorithm, i.e., by the NWC rule. For sake
of completeness, we provide the proof in Appendix C.

4.5 Source Distinguishability Under Maximum
Distortion-Limited Attack

So far, we have considered the case of additive distortion measures. In
this section, we extend the definition of the Security Margin to the

1For a given quantity s, [s]+
4= max{s, 0}. Equivalently, [s]+ = s if s ≥ 0 and

zero otherwise.
2According to the transportation perspective, the optimum map is any map that,

given the source pile PX , leaves in place as much mass as possible and moves the
remaining (surplus) mass to fill the sink pile PY in an arbitrary way.
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case in which the distortion introduced by the Attacker is measured by
relying on the L∞ distance.

By following the same steps of Sections 4.2 and 4.3, we study the
behavior of the indistinguishability region of the test when λ → 0
to determine the smallest indistinguishability region. It is interesting
to notice that, even if the adoption of the L∞ distance prevents a
direct formulation of the problem in terms of mass transport, the
distinguishability between two sources X and Y is still closely related
to the optimal transportation map between PX and PY . The basis for
such a connection is rooted in the following lemma.

Lemma 4.2. Given two distributions P and Q, the transportation map
SNWC
PQ obtained by applying the NWC rule to P and Q is a solution of

the problem

min
SPQ:SP=P,SQ=Q

(
max

(i,j):SPQ(i,j)6=0
|i− j|

)
. (4.14)

Proof. Let S∗ 6= SNWC
PQ be a generic transformation that maps P into Q.

Given that S∗ 6= SNWC
PQ there exists at least one quadruple of bins

(t, r, v, s), with t < r and v < s, for which, S∗(t, s) > 0 and S∗(r, v) > 0.
Let us assume, without loss of generality, that S∗(t, s) ≤ S∗(r, v). We
now define a new map S′ which is obtained from S∗ by letting:

S′(t, v) = S∗(t, v) + S∗(t, s) (4.15)
S′(t, s) = 0
S′(r, v) = S∗(r, v)− S∗(t, s)
S′(r, s) = S∗(r, s) + S∗(t, s).

Since max{|t−s|, |r−v|} > max{|t−v|, |r−s|}, the maximum distortion
introduced by S′ is lower than or equal to that introduced by S∗, that is:

max
(i,j):S∗(i,j)6=0

|i− j| ≥ max
(i,j):S′(i,j)6=0

|i− j|. (4.16)

We now inspect S′, if there is another quadruple of bins (t′, r′, v′, s′)
satisfying the same properties of (t, r, v, s), we let S∗ = S′ and iterate
the above procedure. The process ends when no quadruple of bins with
the required properties exists and hence when S′ = SNWC

PQ . Since at
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each step the distortion introduced by the new map does not increase,
the above procedure proves that SNWC

PQ introduces a distortion lower
than or equal to that introduced by any other S∗ mapping P into Q,
thus proving that SNWC

PQ achieves the minimum in (4.14).

Thanks to Lemma 4.2, the set ΓL∞(PX , λ, L) in (3.44) can be rewrit-
ten as follows:

ΓL∞(PX , λ, L)

=
{
P ∈ P : ∃ Q ∈ Λ∗(PX , λ) s.t max

(i,j):SNWC
PQ (i,j)6=0

|i− j| ≤ L
}
.

(4.17)

By letting λ tend to 0, we obtain the smallest indistinguishability region,
thus extending Theorem 4.1 to the DG-KS game with L∞ distortion.
Let us define3

ΓL∞(PX , L) =
{
P ∈ P : max

(i,j):SNWC
PXP

6=0
|i− j| ≤ L

}
. (4.18)

We can prove the following theorem.

Theorem 4.3. Given two sources X ∼ PX and Y ∼ PY and a maximum
allowable per-letter distortion L, the maximum achievable false negative
error exponent for the DG-KS game with L∞ distortion is

lim
λ→0

lim
n→∞

− 1
n

logPFN = min
P∈ΓL∞ (PX ,L)

D(P‖PY ). (4.19)

Proof. The proof relies on the extension of Proposition 4.1 and
Lemma B.1 to the L∞ case. The extension of Proposition 4.1 is immedi-
ate since, even in this case the indistinguishability region depends on λ
only through Λ∗(PX , λ), whose form does not depend on the particular
norm adopted to express the distortion constraint. The extension of
Lemma B.1 requires some more care and is proven in Appendix B.2
(Lemma B.2). For the rest, the theorem can be proven by reasoning as
in the proof of Theorem 4.1.

3We exploit the fact that, by symmetry, max(i,j):SNWC
P PX

6=0 |i − j| =
max(i,j):SNWC

PX P
6=0 |i− j|.
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As a consequence of Theorem 4.3, the distinguishability of two
sources depends again on the optimum transportation map between the
pmf’s of the two sources. Specifically, given the sources X and Y , the
Defender is able to distinguish between them if and only if

max
(i,j)∈SNWC

XY (i,j)6=0
|i− j| > L. (4.20)

Condition (4.20) can be used to determine the maximum attack distor-
tion for which D is able to distinguish the two sources X and Y , i.e.,
the Security Margin.

Definition 4.2 (Security Margin in the DG-KS Setup with L∞ Distortion).
Let X ∼ PX and Y ∼ PY be two discrete memoryless sources. The max-
imum distortion for which the two sources can be reliably distinguished
in the DG-KS setting with L∞ distortion is given by

SML∞(PX , PY ) = max
(i,j):SNWC

XY (i,j)6=0
|i− j|, (4.21)

where SNWC
XY is obtained by applying the NWC rule to map PX into PY .
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5
Binary Detection Game with Training Data

In this chapter, we consider a more close-to-reality scenario and study
the case in which the sources are not fully known to Defender and
Attacker.

The analysis is motivated by the fact that the assumption of full
knowledge of the sources, made in Chapter 3,1 is rarely met in real
applications, where the statistical model of the sources is often not
available to the Defender. In this scenario, it is likely that the Defender
can build a suitable model to characterize H0 by relying on a number
of samples drawn from the sources.

For the above reasons, in this section we remove the assumption
that PX and PY are known and study the detection game when training
data is available to the two players. Specifically, we first formally define
the binary detection game with training data, then we solve the game
by determining the equilibrium point in the case in which equal training
sequences are available to the players. The payoff at the equilibrium of
the game is computed and the performance are compared with those
achieved by the game with known sources. The case of different training

1We remind that, in the asymptotic case, only the knowledge of PX is required.
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sequences available to the players is also addressed at the end of the
chapter.

5.1 Detection Game with Training Data (DG-TR)

5.1.1 Problem Definition

By sticking to the notation introduced in Section 2.1, let C be the class
of discrete memoryless sources with alphabet X , and let X ∼ PX be
a source in C characterizing H0. As for the DG-KS game, the purpose
of the Defender is to decide whether a test sequence zn was drawn
from X or not. To make his decision, D relies on the knowledge of a
training sequence of a given length N , namely tND , drawn from X. On
his side, the Attacker takes a sequence yn emitted by another source
Y ∼ PY still belonging to C and tries to modify it in such a way that
D thinks that the modified sequence was generated by the same source
that generated tND . As usual, A must satisfy a distortion constraint
stating that the distance between the modified sequence and yn must
be lower than a threshold. Like the Defender, the Attacker derives
his knowledge about the statistics of the sequences generated under
H0 through a training sequence tKA drawn from PX , that in general
may not coincide with tND . We assume that tND , tKA , and yn, as well as
the observed sequence under H0, i.e., xn, are generated independently.
With regard to PY , we could also assume that it is known through two
training sequences, one available to A and one to D , however we will
see that – as for the case of known sources, and, at least asymptotically –
such an assumption is not necessary, and hence we make the simplifying
assumption that PY is known to neither D nor A .

In the above framework, H0 is equivalent to the hypothesis that the
test sequence has been generated by the same source that generated tND .
We denote with Λn

tr the acceptance region for H0.2 Throughout this
chapter, we find convenient to think of Λn

tr as a subset of X n × XN ,

2For the sake of clarity, we add the subscript “ks” to denote the quantities Λ, Γ
and ε for the game with known sources and the subscript “tr” for the game with
training data.
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i.e., as the set of all the pairs of sequences (zn, tND) that the Defender
considers to be drawn from the same, unknown, source.

5.1.2 DG-TR with Independent Training Data (DG-TRa)

In order to confine the analysis to a case in which the analysis of the game
is tractable, we follow the same approach adopted for the known sources
case and consider a version of the game in which D bases his decision on
a limited set of statistics computed on the test and training sequences:
specifically, we require that D relies only on the relative frequencies with
which the symbols in X appear in zn and tN , i.e., Pzn and PtN . Note
that, as in the KS case, Pzn and PtN are not sufficient statistics for D ,
since even if Y is a memoryless source, the Attacker could introduce
some memory within the sequence as a result of the attack. In the
same way, he could introduce some dependencies between the attacked
sequence zn and tN . It is then necessary to treat the assumption that
D relies only on Pzn and PtN as an explicit requirement.

As a consequence of the limited resources assumption, the acceptance
region Λn

tr can only be a union of Cartesian products of pairs of type
classes, i.e., if the pair of sequences (zn, tN ) belongs to Λn

tr, then any
pair of sequences belonging to the Cartesian product T (Pzn)× T (PtN )
will also be contained in Λn

tr.3 Since a type class is univocally defined
by the empirical pmf of the sequences contained in it, we can redefine
Λntr as a union of pairs of types (P,Q) with P ∈ Pn and Q ∈ PN . In the
following, we will use the two interpretations of Λntr (as a set of pairs of
sequences or pairs of types) interchangeably, the exact meaning being
always recoverable from the context.

As in the previous case, we are interested in studying the asymptotic
behavior of the game when n, N , and K tend to infinity. Rather than
considering the limits with n, N , and K tending to infinity indepen-
dently, we will express N and K as a function of n, and study what
happens when n tends to infinity. In this way, the exponents of the
Type I and II error probability are still defined as in (2.5) (Section 1.2).

3Strictly speaking, Λntr should depend on both n and N : however, in the following
we will express N as a function of n, thus making the dependence on N implicit.
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With the above ideas in mind, we are now ready to define a first
version of the binary decision game with training sequences. We will
do so by directly rewriting the set of strategies for the Attacker in
terms of transportation maps. As done in Chapter 3, in fact, we assume
that the distance measure d(·, ·) defining the distortion introduced by
the Attacker is additive, and hence we can adopt the transportation
theoretic formalism introduced in Section 3.2.1.

Definition 5.1. The DG-TRa (SD ,SA , u) game is a zero-sum, strategic,
game played by D and A , defined by the following strategies and payoff.

• Defender’s strategies. The set of strategies D can choose from
is the set of acceptance regions for which the maximum false
positive probability across all possible PX ∈ P is lower than a
given threshold:4

SD =
{

Λntr ⊂ Pn×PN : max
PX∈P

PX((zn, tND) /∈ Λntr) ≤ 2−λn
}
, (5.1)

where the quantity PX((zn, tND) /∈ Λntr) is the false positive error
probability, that is the probability that two independent sequences
generated by X do not belong to Λntr.

• Attacker’s strategies. The set of strategies A can choose from
consists of all the possible ways of choosing an admissible trans-
portation map to transform yn into zn:

SA = {SnYZ(yn, tKA ): SnYZ ∈ An(L,Pyn)}, (5.2)

whereAn(L,Pyn) is the set of admissible maps given the maximum
allowed per-letter distortion L, and where we have explicitly
indicated that the choice of the map depends on tKA , since, when
performing the attack, A can exploit the knowledge of his training
sequence.

• The payoff function. Adopting again the Neyman–Pearson ap-
proach, the payoff is defined in terms of the false negative error

4To simplify the notation, when it is not strictly necessary, we will omit to
indicate explicitly the dependence of N , res. K, on n.
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probability, that is:

u(Λntr, SnYZ) = −
∑

tND∈X
N , tKA∈X

K

yn: (SnZ(yn,tKA ),tND)∈Λntr

PY (yn)PX(tND)PX(tKA ),

(5.3)
where the error probability is averaged across all possible yn and
training sequences and where we have exploited the independence
of yn, tND and tKA . Once again, we adopted D ’s perspective in the
definition of the payoff.

We stress that the (apparently weird) dependence of the false positive
and false negative probabilities on the training sequence tND is because
D bases the decision on both the observation and the training sequences,
the decision made by D being on whether test and training sequences
are generated by the same source or not.

Before going on with the analysis, we pause to discuss some of the
choices we implicitly made in the above definition. A first observation
regards the payoff function. As a matter of fact, the expression in (5.3)
looks problematic, since its evaluation requires that the pmf’s PX and
PY are known, however this is not the case in our scenario since we
have assumed that PX is known only through tND and tKA , and that PY
is not known at all. As a consequence it may seem that the players
of the game are not able to compute the payoff associated to a given
profile and hence they have no arguments upon which they can base
their choice. While this is indeed a problem in a generic setup, we will
show later on that asymptotically (when n, N and K tend to infinity)
the optimal strategies of D and A are uniformly optimum across all
PX and PY and hence the ignorance of PX and PY is not a problem.
One may wonder why we did not define the payoff under a worst case
assumption (from D ’s perspective) on PX and/or PY . The reason is
that doing so would result in a meaningless game since the worst case
for D would always correspond to PY = PX for which no decision is
possible.

As a second remark, we stress that, as in the DG-KS case, limiting
the strategies of the Attacker to deterministic mapping is not a restrictive
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choice since, at least asymptotically, the optimal strategy of D depends
neither on the strategy chosen by A (hence on tKA ) nor on PY .

5.1.3 DG-TR with Identical Training Data (DG-TRb)

An interesting variant of the DG-TRa game is obtained by assuming
that the training sequence available to A is equal to that available
to D , leading to the following definition.

Definition 5.2. The DG-TRb (SD ,SA , u) game is a zero-sum, strategic,
game defined as the DG-TRa with the only difference that K = N and
tKA = tND (simply referred to as tN in the following)

SD =
{

Λntr ⊂ Pn × PN : max
PX∈P

PX{(zn, tN ) /∈ Λntr} ≤ 2−λn
}
, (5.4)

SA = {SnYZ(yn, tN ): SnYZ ∈ An(L,Pyn)}, (5.5)

u(Λntr, SnYZ) = −
∑

(yn,tN )∈Xn×XN :
(Sn
Z

(yn,tN ),tN )∈Λn
tr

PY (yn)PX(tN ). (5.6)

The set of strategies of D and A are the same as in the DG-TRa game,
and only the payoff is defined differently.

Due to its simplicity, in the rest of the section we will first focus on
version b of the game, and then extend our results so to cover version a
as well.

5.2 Asymptotic Equilibrium of the DG-TRb Game

We start the analysis by determining the optimal acceptance region
for D . The derivation of the optimal strategy for D passes through
the definition of the generalized log-likelihood ratio function h(zn, tN )
([80, Chapter 24], [81, p. 403]).

Given the test and training sequences zn and tN , that may or may
not come from the same source, the generalized log-likelihood ratio
function is defined as:5

h(zn, tN ) = D(Pzn‖Prn+N ) + N

n
D(PtN ‖Prn+N ), (5.7)

5We observe that the h function resembles the Jensen–Shannon divergence
(JSD) [82], where the two divergence terms in (5.7) are taken with equal weights.
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where Prn+N denotes the empirical pmf of the sequence rn+N , obtained
by concatenating zn and tN , i.e.,

ri =
{
zi i ≤ n
ti−n n < i ≤ n+N.

(5.8)

By observing that h(zn, tN ) depends on the test and the training se-
quences only through their empirical pmf, we can also use the nota-
tion h(Pzn , PtN ). The study of the equilibrium for the DG-TRb passes
through the following lemma.

Lemma 5.1. For any PX we have:

nD(Pzn‖Prn+N ) +ND(PtN ‖Prn+N ) ≤ nD(Pzn‖PX) +ND(PtN ‖PX),
(5.9)

where equality holds if and only if PX = Prn+N .

Proof. We rewrite (5.9) by moving all the non-zero terms to the left-
hand side:

nD(Pzn‖Prn+N ) +ND(PtN ‖Prn+N )
− nD(Pzn‖PX)−ND(PtN ‖PX) ≤ 0. (5.10)

By using the definition of the empirical KL divergence and grouping
the first term with the third and the second with the fourth, the left
hand side of (5.10) is equivalent to

n
∑
a∈X

Pzn(a) log PX(a)
Prn+N (a) +N

∑
a∈X

PtN (a) log PX(a)
Prn+N (a) . (5.11)

Being rn+N the concatenation of zn and tN , we argue that nPzn(a) +
NPtN (a) = (n+N)Prn+N (a) ∀a ∈ X , which permits to rewrite the sum
in (5.11) as follows:

(n+N)
∑
a∈X

Prn+N (a) log PX(a)
Prn+N (a) = −(n+N)D(Prn+N ‖PX). (5.12)

Hence, the proof of relation (5.9) follows from the positivity of the
divergence function, which equals zero if and only if PX = Prn+N .

In hindsight, relation (5.9) derives from the property that the em-
pirical probability distribution Prn+N maximizes the probability that
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a source outputs the concatenation of xn and tN , i.e., PX(rn+N ) ≤
Prn+N (rn+N ) ∀PX . To show this, from (5.12) we write:∑

a∈X
Nrn+N (a) log PX(a)

Prn+N (a) ≤ 0. (5.13)

By exploiting the properties of the logarithm, Equation (5.13) can be
rewritten as follows:

log
∏
a∈X

PX(a)Nrn+N (a) ≤ log
∏
a∈X

Prn+N (a)Nrn+N (a), (5.14)

which implies

PX(rn+N ) ≤
∏
a∈X

Prn+N (a)Nrn+N (a) = Prn+N (rn+N ). (5.15)

Given the above, we are now ready to prove the following result.

Lemma 5.2. Let Λn,∗tr be defined as follows:

Λn,∗tr =
{

(Pzn , PtN ): h(Pzn , PtN ) < λ− |X | log(n+ 1)(N + 1)
n

}
,

(5.16)

with
lim
n→∞

log(N(n) + 1)
n

= 0. (5.17)

Then:

1. maxPX PX{(zn, tN ) /∈ Λn,∗tr } ≤ 2−n(λ−νn), with lim
n→∞

νn = 0,

2. ∀Λntr ∈ SD , we have Λ̄ntr ⊆ Λ̄n,∗tr .

Proof. Being Λn,∗tr a union of pairs of types (or, equivalently, a union of
Cartesian products of type classes), we have:

max
PX

PFP = max
PX

∑
(zn,tN )∈Λ̄n,∗tr

PX(zn, tN )

= max
PX

∑
(Pzn ,PtN )∈Λ̄∗tr

PX(T (Pzn)× T (PtN )). (5.18)
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For the class of discrete memoryless sources, the number of types
with denominators n and N is bounded by (n+ 1)|X | and (N + 1)|X |
respectively (see Section 2.4.1), so we can write:

max
PX

PFP ≤ max
PX

max
(Pzn ,PtN )∈Λ̄n,∗tr

[(n+ 1)|X |(N + 1)|X |PX(T (Pzn)× T (PtN ))]
≤ (n+ 1)|X |(N + 1)|X | ·max

PX

max
(Pzn ,PtN )∈Λ̄∗tr

2−n[D(Pzn‖PX)+N
n
D(P

tN
‖PX)], (5.19)

where in the second inequality we have exploited the independence
of zn and tN and the property of types according to which for any
sequence zn we have PX(T (Pzn)) ≤ 2−nD(Pzn‖PX) (see Section 2.4.1).
By exploiting Lemma 5.1, we can write:

max
PX

PFP ≤ (n+ 1)|X |(N + 1)|X | · max
(Pzn ,PtN )∈Λ̄∗tr

2−n[D(Pzn‖Prn+N )+N
n
D(P

tN
‖P
rn+N )]

≤ (n+ 1)|X |(N + 1)|X | 2−n
(
λ−|X | log(n+1)(N+1)

n

)
= 2−n

(
λ−2|X | log(n+1)(N+1)

n

)
, (5.20)

where the last inequality derives from the definition of Λn,∗tr . Together
with (5.17), Equation (5.20) proves the first part of the lemma with
νn = 2|X | log(n+1)(N+1)

n .6
For any Λn

tr ∈ SD , let (zn, tN ) be a generic pair of sequences con-
tained in Λ̄ntr. Due to the limited resources assumption the Cartesian
product between T (Pzn) and T (PtN ) will be entirely contained in Λ̄ntr.
Then we have:

2−λn ≥ max
PX

PX(Λ̄)

(a)
≥ max

PX
PX(T (Pzn)× T (PtN ))

6We notice that νn → 0 as n→∞ thanks to the condition in (5.17).
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(b)
≥ max

PX

2−n[D(Pzn‖PX)+N
n
D(P

tN
‖PX)]

(n+ 1)|X |(N + 1)|X |

(c)= 2−n[D(Pzn‖Prn+N )+N
n
D(P

tN
‖P
rn+N )]

(n+ 1)|X |(N + 1)|X |
, (5.21)

where (a) is due to the limited resources assumption, (b) follows from the
independence of zn and tN and a the lower bound on the probability of a
pair of type classes (see Section 2.4.1), and (c) derives from Lemma 5.1.
By taking the logarithm of both sides we find that (zn, tN ) ∈ Λ̄n,∗tr , thus
completing the proof.

The first part of Lemma 5.2 shows that, at least asymptotically, Λn,∗tr
is an admissible strategy for the Defender; in fact, the constraint in (5.4)
is fulfilled asymptotically and then Λn,∗tr belongs to SD for sufficiently
large n. Then, the optimality of Λn,∗

tr follows from the second part of
the lemma.

An important observation is that the optimal strategy of D is
univocally determined by the false positive constraint. This solves the
apparent problem that we pointed out when defining the payoff of the
game, namely that the payoff depends on PX and PY and hence it is
not fully known to D . According to the lemma, the optimal strategy of
D does not depend on the strategy chosen by A (then, neither on the
training sequence available to him), that is Λn,∗tr is a strictly dominant
strategy for D . As a consequence, Λn,∗tr is the optimal Defender’s strategy
even for version a of the DG-TR game.

As it happened for the DG-KS game, due to the existence of a
dominant strategy for the Defender, the derivation of the optimal attack
strategy is an easy task. We only need to observe that the goal of A

is to take a sequence yn drawn from Y and modify it by applying an
admissible transportation map, trying to reach the condition

h(SnZ(yn, tN ), PtN ) < λ− |X | log(n+ 1)(N + 1)
n

. (5.22)

The optimal attack strategy, then, can be expressed as a minimization
problem, i.e.,

Sn,∗YZ(yn, tN ) = arg min
SnYZ∈An(L,Pyn )

h(SnZ , PtN ). (5.23)
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Note that to implement this strategy A needs to know tN , i.e., (5.23)
determines the optimal strategy only for version b of the game. Since
Sn,∗YZ (yn, tN ) (res. SnZ(yn, tN )) depends on the sequences yn and tN only
through their empirical pmf, we can also use the notation Sn,∗YZ (Pyn , PtN )
(res. SnZ(Pyn , PtN )).

Finally, we observe that the optimization problem the Attacker must
solve is the same as for the KS case with the only difference that the
objective function is the h function instead of D, the convexity of the h
function in the n(i, j) variables following by the same arguments.

Having determined the optimal strategies for D and A , we can state
the first main result of this chapter.

Theorem 5.3 (Equilibrium Point of DG-TRb Game). The DG-TRb game
is a dominance solvable game and the profile (Λn,∗tr , S

n,∗
YZ(yn, tN )) is the

only rationalizable equilibrium.

5.2.1 Comparison between the KS and TR Setups

To get a better insight into the meaning of the equilibrium point of the
DG-TRb game, it is instructive to compare it with the equilibrium of
the corresponding game with known sources, namely the DG-KS.

To start with, we observe that the use of the h function instead of
the divergence D derives from the fact that, for the DG-TR case, the
Defender must ensure that the false positive probability stays below the
desired threshold for all possible discrete memoryless sources. To do so,
he has to estimate the pmf that better explains the evidence provided
by zn and tN , that is the pmf maximizing the probability of observing
zn and tN . We know (see relation (5.15)) that such a maximizing pmf
corresponds to the empirical pmf of the concatenation of zn and tN , i.e.,
Prn+N (rn+N ), and the generalized log-likelihood function corresponds
to 1 over n the log of the (asymptotic) probability that a source with
pmf equal to Prn+N outputs the sequences zn and tN . A geometric
illustration of the difference between the D and the h functions is given
in Figure 5.1. Another observation regards the optimal strategy of the
Attacker. As a matter of fact, the functions h(Pzn , PtN ) and D(Pzn‖PtN )
share a similar behavior: they are both positive and convex functions
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PX

PX

Pt N

Pz n Pz n

D(Pz n )
D(Pt N PrN+n)

D(Pzn PrN + n)
PrN + n

Figure 5.1: Geometric interpretation of the difference between D (left) and h (right)
functions. The position of PrN+n in the segment joining Pzn to PtN depends on the
ratio between N and n.

achieving the absolute minimum when Pzn = PtN ,7 so one may be
tempted to think that from the Attacker’s point of view minimizing
D(Pzn‖PtN ) is equivalent to minimizing h(Pzn , PtN ). While this is the
case in some situations, essentially, when the absolute minimum can
be reached, in general the two minimization problems yield different
solutions.

To further compare the DG-TRb and the DG-KS games, it is useful
to rewrite the generalized log-likelihood function in a more convenient
way. By applying some algebra, it is easy to prove the following equiva-
lent expression for h:

h(Pzn , PtN ) = D(Pzn‖PtN )− N + n

n
D(Prn+N ‖PtN ), (5.24)

showing that h(Pzn , PtN ) ≤ D(Pzn‖PtN ), with the equality holding only
in the trivial case Pzn = PtN . This suggests that, at least for large n, it
should be easier for the Attacker to bring a sequence generated by Y
within Λn,∗tr than to bring it within Λn,∗ks . This is indeed the case, as it
will be shown in Section 5.3.1, where we will provide a rigorous proof
that the DG-TRb game is actually more favorable to the Attacker than
the DG-KS game.

7Since h is the difference of two divergence functions with the same absolute
minimum, the convexity of h directly follows from the convexity of D.
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We conclude this section by investigating the behavior of the optimal
acceptance strategy for different values of the ratio N

n . To do so, we
introduce the two quantities cz = n

n+N and ct = N
n+N , representing the

weights of the sequences zn and tN in rn+N . It is easy to show, in fact,
that

Prn+N = czPzn + ctPtN . (5.25)

In the simplest case, n and N tends to infinity with the same speed,
hence we can assume that the ratio between N and n is fixed, namely,
N
n = c 6= 0 (we obviously have cz = 1

1+c and ct = c
1+c). Under this

assumption, the decision of the Defender is dictated by (5.16) and no
particular behavior can be noticed. This is not the case when N/n tends
to zero or ∞.

If N/n → 0, then Prn+N → Pzn and h(Pzn , PtN ) → 0. This means
that the Defender will always decide in favor of H0. This makes sense
since when the test sequence is infinitely longer than the training
sequence, the evidence provided by the training sequence is not strong
enough to let the Defender reject hypothesis 0.

If N/n → ∞, the analysis is slightly more involved. In this case
ct → 1 and Prn+N → PtN , hence the first term in (5.7) tends to
D(Pzn‖PtN ). To understand the behavior of the second term of (5.7)
when n → ∞, we can use the Taylor expansion of D(P‖Q) when P

approaches Q (see [83, Chapter 4]), which applied to the second term
of the h function yields:

N

n
·D(PtN ‖Prn+N ) ≈ N

2n ·
∑
x

(PtN (x)− Prn+N (x))2

Prn+N (x)

= N

2n ·
∑
x

(cxPtN (x)− cxPzn(x))2

Prn+N (x)

=
n
N

2( nN + 1)2

∑
x

(PtN (x)− Pzn(x))2

Prn+N (x) . (5.26)

When N/n→∞, the above expression clearly tends to zero, and hence
h(Pzn , PtN ) → D(Pzn‖PtN ). In other words, the optimal acceptance
region tends to be equal to the one obtained for the case of know sources
with PX replaced by PtN . This is also an intuitively reasonable result:
when the training sequence is much longer than the test sequence, the
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empirical pmf of the training sequence provides such a reliable estimate
of PX that the Defender can treat it as the “true” pmf.

In the following we will always assume that N/n = c, since from
the above analysis this turns out to be the most interesting case.

5.3 Analysis of the Payoff at the Equilibrium

Having derived the equilibrium point of the DG-TRb game, we are ready
to analyze the payoff at the equilibrium to understand who, between
the Defender and the Attacker is going to win the game. Our aim is to
derive a result similar to the one derived in Chapter 3, so that given
two pmf’s PX and PY , a false positive error exponent λ and a distortion
constraint L, we can derive the ultimate achievable false negative error
exponent at the equilibrium ε∗tr,b.8 Specifically, we would like to know
whether it is possible for D to obtain a strictly positive value of ε∗tr,b,
thus ensuring that the false negative error probability tends to zero
exponentially fast for increasing values of n.

From the knowledge of the equilibrium point, we can define the set
Γntr,b containing all the pairs of sequences (yn, tN ), for which A is able
to bring yn within Λn,∗tr . By adopting the transportation formulation of
the attack strategy, Γntr,b can be expressed as a set of pairs of pmf’s or
types (Pyn , PtN ), that is:

Γntr,b(λ, L) = {(P,Q) ∈ Pn × PN :
∃ SnPV ∈ An(L,P ) s.t. (V,Q) ∈ Λn,∗tr (λ)}. (5.27)

We will find it convenient to fix the type Q and consider the set of types
Pzn for which (Pzn , Q) belongs to the sets Λn,∗tr and Γntr,b, that is:

Λn,∗tr (Q,λ) = {P ∈ Pn: (P,Q) ∈ Λn,∗tr (λ)}, (5.28)
Γntr,b(Q,λ, L) = {P ∈ Pn: ∃ SPV ∈ An(L,P ) s.t. V ∈ Λn,∗tr (Q,λ)}.

(5.29)

To go on, we need to generalize the above sets. To start with, we
generalize the h function so that it can be applied to pmf’s that do not

8For the sake of clarity, we specify the version of the game (i.e., b) in the subscript
of the exponent, since this quantity will take a different value in the various setups.
We will do the same for the set Γ.
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necessarily belong to Pn or PN . By remembering that N/n = c, we
introduce the following definition:

hc(P,Q) = D(P‖U) + cD(Q‖U), (5.30)

with
U = 1

1 + c
P + c

1 + c
Q. (5.31)

Note that when P ∈ Pn and Q ∈ PN , the above definition is equivalent
to (5.7). By using hc instead of h, we can extend the definitions (5.29)
and (5.28) to a generic pmf Q in P .

The derivation of the false negative error exponent at the equilibrium
passes through the asymptotic extensions of the sets:

Γtr,b(Q,λ, L) = {P ∈ P : ∃ SPV ∈ A(L,P ) s.t. V ∈ Λ∗tr(Q,λ)}, (5.32)

where
Λ∗tr(Q,λ) = {P : hc(P,Q) < λ} . (5.33)

Of course, when P and Q are not empirical pmf’s, the meaning of Λn,∗tr
as the acceptance region for H0 (and that of Γtr,b(Q,λ, L) as the set of
points that can be moved inside the acceptance region by the Attacker)
is lost.

The importance of the above definition is that for any source PX ,
decay rate λ and maximum allowed per-letter distortion L, the set
Γtr,b(Q,λ, L), evaluated for Q = PX , corresponds to the indistinguisha-
bility region of the DG-TRb game, i.e., the set of all the pmf’s for which
D does not succeed in distinguishing between H0 and H1 ensuring a
false negative error probability that tends to zero exponentially fast.
Equivalently, if PY ∈ Γtr,b(PX , λ, L), no strictly positive false negative
error exponent can be achieved by D . The above conclusions follow
from the following theorem:

Theorem 5.4 (Asymptotic Payoff of the DG-TRb Game). For the DG-
TRb game, with N/n = c, the false negative error exponent at the
equilibrium is given by

ε∗tr,b(λ) = min
Q

[
c ·D(Q‖PX) + min

P∈Γtr,b(Q,λ,L)
D(P‖PY )

]
, (5.34)
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leading to the following cases:

1. ε∗tr,b = 0, if PY ∈ Γtr,b(PX , λ, L),

2. ε∗tr,b > 0, if PY /∈ Γtr,b(PX , λ, L).

Proof. The theorem is an application of the generalized Sanov’s theorem
(Section 2.4.2). The false negative error probability at the equilibrium,
for a given n, can be written as

PFN =
∑
Q∈PN

PX(T (Q))PY (Γntr,b(Q,λ, L))

=
∑
Q∈PN

PX(T (Q))
∑

P∈Γn
tr,b

(Q,λ,L)
PY (T (P )). (5.35)

We start by deriving an upper bound of the false negative error proba-
bility. By exploiting the usual bounds on the probability of a type class
and the number of types in Pn (see Section 2.4.1), we can write:

PFN ≤
∑
Q∈PN

PX(T (Q))
∑

P∈Γn
tr,b

(Q,λ,L)
2−nD(P‖PY )

≤
∑
Q∈PN

PX(T (Q))(n+ 1)|X |2
−n min

P∈Γn
tr,b

(Q,λ,L)
D(P‖PY )

≤
∑
Q∈PN

PX(T (Q))(n+ 1)|X |2
−n min

P∈Γtr,b(Q,λ,L)
D(P‖PY )

≤ (n+ 1)|X |(N + 1)|X | · 2
−n min

Q∈PN
[N
n
D(Q‖PX)+ min

P∈Γtr,b(Q,λ,L)
D(P‖PY )]

≤ (n+ 1)|X |(N + 1)|X | · 2
−nmin

Q
[cD(Q‖PX)+ min

P∈Γtr,b(Q,λ,L)
D(P‖PY )]

,

(5.36)

where the last inequality is obtained by minimizing over Q without
requiring that Q ∈ PN and where the use of the minimum instead of
the infimum is justified by the fact that Γntr,b(Q,λ, L) and Γtr,b(Q,λ, L)
are compact sets. By taking the log and dividing by n we find:

− logPFN
n

≥ min
Q∈C

[
cD(Q‖PX) + min

P∈Γtr,b(Q,λ,L)
D(P‖PY )

]
+ αn, (5.37)

with αn = |X | log(n+1)(N+1)
n tending to 0 when n tends to infinity.
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We now turn to the analysis of a lower bound for PFN. Let Q∗ be
the pmf achieving the minimum in (5.34). Due to the density of rational
numbers within real numbers, we can find a sequence of pmf’s Qn ∈ Pn
that tends to Q∗ when n tends to infinity. By remembering that N = nc,
the subsequence QN = Qnc also tends to Q∗ when n (and hence N)
tends to infinity.9 We can write:

PFN =
∑
Q∈PN

PX(T (Q))PY (Γntr,b(Q,λ, L))

≥ PX(T (QN ))PY (Γntr,b(QN , λ, L)),

≥ 2−ND(QN‖PX)

(N + 1)|X |
PY (Γntr,b(QN , λ, L)), (5.38)

where in the first inequality we have replaced the sum with the single
element of the subsequence QN defined previously, and the second
inequality derives from the usual lower bound on the probability of
a type class (see Section 2.4.1). From (5.38), by taking the log and
dividing by n, we obtain

− logPFN
n

≤ cD(QN‖PX)− 1
n

logPY (Γntr,b(QN , λ, L)) + α′n, (5.39)

where, as in (5.37), α′n = |X | log(N+1)
n tends to zero when n tends to

infinity.
We now apply the generalized Sanov limit (see Theorem 2.1 in

Section 2.4.2) for computing the term PY (Γntr,b(QN , λ, L)) in (5.39).
To do so, we must show that Γntr,b(QN , λ, L) → Γtr,b(Q∗, λ, L), in the
Hausdorff sense. This can be done by reasoning as in the proof of
Theorem 3.4 (where we proved that Γnks(PX , λ, L) H→ Γks(PX , λ, L)).
The only difference with respect to that case is the form of the acceptance
region and its asymptotic counterpart. However, since the generalized
test function hc has a similar behavior to D and QN tends to Q∗ as
n → ∞, it easy to see that δH(Λn,∗

tr (QN ),Λ∗tr(Q∗)) → 0. Hence, the
proof of the Hausdorff convergence of Γntr,b to set Γtr,b follows from the
same arguments used for the know sources case.

9In order to simplify the analysis, we assume that c is a non-null integer value,
the extension of the proof to non-integer values of c is tedious but straightforward.
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Then, from the generalized Sanov’s theorem, we get:

− lim
n→∞

1
n

logPY (Γntr,b(QN , λ, L)) = min
P∈Γtr,b(Q∗,λ,L)

D(P‖PY ). (5.40)

Hence, by exploiting the continuity of the divergence function, for n
large enough, we can write

− logPFN
n

≤ cD(Q∗‖PX) + β′n + min
P∈Γtr,b(Q∗,λ,L)

D(P‖PY ) + β′′n + α′n,

(5.41)

where all the sequences α′n, β′n and β′′n tend to zero when n tends to
infinity. By coupling Equations (5.37) and (5.41) and by letting n→∞,
we eventually obtain:

− lim
n→∞

logPFN
n

= min
Q

[c ·D(Q‖PX) + min
P∈Γtr,b(Q∗,λ,L)

D(P‖PY )], (5.42)

thus proving the theorem.

According to Theorem 5.4, we can distinguish two cases depending
on the relationship between PX and PY . In the former case, for which the
minimum in (5.34) is obtained by letting Q = PX , it is not possible for D

to obtain a strictly positive false negative error exponent while ensuring
that the false positive error exponent is at least equal to λ. In the latter
case, the two divergences in (5.34) can not be made simultaneously equal
to zero, hence PFN tends to zero exponentially fast. In other words, given
λ and L, the condition PY /∈ Γtr,b(PX , λ, L) ensures that the distance
between PY and PX is large enough to allow a reliable discrimination
between H0 and H1, notwithstanding the presence of the adversary. As
anticipated, then, Γtr,b(PX , λ, L) is the indistinguishability region of the
DG-TRb game. A pictorial representation of the sets Λn,∗tr and Γtr,b is
given in Figure 5.2.

5.3.1 DG-KS vs. DG-TRb

In this section we compare the performance achievable by D for the
DG-KS and DG-TRb games. We start the analysis by comparing the
indistinguishability regions of the two games, namely Γks(PX , λ, L) and
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Figure 5.2: Geometric interpretation of Λ∗tr and Γtr,b. When PY ∈ Γtr,b, a reliable
distinction between H0 and H1 is not possible and the Attacker wins the game.

Γtr,b(PX , λ, L), reported below

Γks(PX , λ, L) = {P ∈ P : ∃ SPV ∈ A(L,P ), s.t. V ∈ Λ∗ks(PX , λ)},
(5.43)

with
Λ∗ks(PX , λ) = {P ∈ P : D(P‖PX) ≤ λ}; (5.44)

and

Γtr,b(PX , λ, L) = {P ∈ P : ∃SPV ∈ A(L,P ), s.t. V ∈ Λ∗tr(PX , λ)},
(5.45)

with
Λ∗tr(PX , λ) = {P ∈ P : hc(P, PX) ≤ λ}. (5.46)

We observe that the comparison between the two regions relies on the
comparison between the divergence and the generalized log-likelihood
function stated by the following:

Lemma 5.5 (Relationship between hc and D). Let N/n = c, with c 6= 0,
c 6=∞, for any P 6= PX we have,

hc(P, PX) < D(P‖PX). (5.47)

Proof. By rewriting hc(P, PX) as in (5.24), we have:

hc(P, PX) = D(P‖PX)− (1 + c)D(U‖PX), (5.48)
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with U = P/(1 + c) + cPX/(1 + c), which is equal to PX if and only
if P = PX , when we have D(U‖PX) = 0 thus yielding hc(P, PX) =
D(P‖PX) = 0.

From the above lemma, the strict inclusion between the acceptance
regions, that is Λ∗ks(PX , λ) ⊂ Λ∗tr(PX , λ), follows immediately.

From Lemma 5.5, we can prove the following theorem.

Theorem 5.6 (DG-TRb vs. DG-KS). For any finite, non-null value of c,
any PX , λ > 0 and L, the following results hold:

• For any pmf P belonging to the boundary of Γtr,b(PX , λ, L) there
exists a positive value τ such that B(P, τ) ⊂ Γks(PX , λ, L).

• For any pmf P belonging to the boundary of Γks(PX , λ, L) there
exists a positive value τ such that B(P, τ) ⊂ Γtr,b(PX , λ, L).

• Γks(PX , λ, L) ⊂ Γtr,b(PX , λ, L).

Proof. As an immediate consequence of Lemma 5.5, we have:

Γks(PX , λ, L) ⊆ Γtr,b(PX , λ, L). (5.49)

Point 1.
Let P ′ be a point on the boundary of Γtr,b(PX , λ, L). Since Γks(PX , λ, L)
is a closed set, we can prove that B(P ′, τ) ⊂ Γks(PX , λ, L) for some
τ > 0, by showing that P ′ ∈ Γks(PX , λ, L).

Let us assume, by contradiction, that P ′ ∈ Γks (be it inside or
on the boundary). Then, we have that D(R′‖PX) ≤ λ for some map
SP ′R′ ∈ A(L,P ′); consequently, from Lemma 5.5, hc(R′, PX) < λ, that
is, R′ is an internal point of Λ∗tr. Let δ be such that B(R′, δ) ⊂ Λ∗tr.
By exploiting Theorem A.2 in Appendix A, it is possible to fix τ > 0
such that for any P ∈ B(P ′, τ) a map SPR ∈ A(L,P ) exists such
that R ∈ B(R′, δ) (specifically, we can choose τ = δ/|X |2). Then, by
construction, B(P ′, τ) ⊂ Γtr,b, that is, P ′ is an internal point of Γtr,b,
thus raising the absurd.
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Point 2.
The proof of this point follows straightforwardly from Point 1. In fact,
having proved that any point on the boundary of Γtr,b lies outside Γks,
as a consequence, any point on the boundary of Γks is an internal point
of Γtr,b.10 By definition of internal point, there exists τ > 0 such that
B(P, τ) ⊂ Γtr,b, thus concluding the proof.
Point 3.
From the above points, it follows that there is at least one point (in
fact an infinite number of points) that belongs to Γtr,b but not to Γks,
thus proving that the inclusion relation in (5.49) is a strict one.

Theorem 5.6 has the following corollary.

Corollary 5.7. Let ε∗ks and ε∗tr,b denote the error exponents at the
equilibrium for the DG-KS and DG-TRb games. Then we have:

ε∗tr,b ≤ ε∗ks, (5.50)

where the equality holds if and only if PY ∈ Γks(PX , λ, L), in which
case both error exponents are equal to 0.

Proof. The corollary is obvious when PY ∈ Γtr,b(PX , λ, L), since in
this case ε∗tr,b = 0 while ε∗ks is equal to zero if PY ∈ Γks(PX , λ, L)
and nonzero otherwise. When PY /∈ Γtr,b(PX , λ, L), by considering the
expression of the error exponent for the DG-TRb game we have:

ε∗tr,b = min
Q

[
c ·D(Q‖PX) + min

P∈Γtr,b(Q,λ,L)
D(P‖PY )

]
≤ cD(PX‖PX) + min

P∈Γtr,b(PX ,λ,L)
D(P‖PY )

(a)= min
P∈Γtr,b(PX ,λ,L)

D(P‖PY )

< min
P∈Γks(PX ,λ,L)

D(P‖PY ) = ε∗ks, (5.51)

where the last strict inequality follows by the fact that the absolute
minimum of D(P‖PY ) is obtained for P = PY which we have assumed
to lie outside Γtr,b(PX , λ, L) and hence, due to the convexity of D, the

10Note that this is true since Γks ⊆ Γtr,b.
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value of P satisfying the minimization on the right-hand side of equality
(a) belongs to the boundary of Γtr,b(PX , λ, L) that, by Theorem 5.6, lies
outside the closed set Γks(PX , λ, L).

Theorem 5.6 and Corollary 5.7 permit to conclude that binary
detection with training data is more favorable to the Attacker than
binary detection with known sources. The reason behind such a result
is the use of the h function instead of the divergence, which in turn
stems from the need for the Defender to ensure that the constraint
on the false positive error probability is satisfied for all PX ∈ P . It is
such a worst case assumption that ultimately favors the Attacker in the
DG-TRb setup.

5.4 Game with Independent Training Sequences (DG-TRa)

We now pass to the analysis of version a of the detection game with
training data (Definition 5.1). In this case, D and A rely on independent
training sequences, namely tND and tKA . Similarly to version b, we assume
that bothN andK grow linearly with n and that the asymptotic analysis
is carried out by letting n go to infinity. As a matter of fact, assuming
that K grows faster than N with respect to n is not reasonable in
practical applications, since usually the Defender has a better knowledge
of the system than the Attacker. On the contrary, one could consider
the case where K grows less than linearly with n, thus considering a
situation which is more favorable to the Defender.

Given the above, in the following, we assume that N = cn and
K = dn. As we already noted in Section 5.2, the strategy Λn,∗tr identified
by Lemma 5.2 is optimum regardless of the relationship between tND
and tKA , hence the only difference between versions a and b of the game
is in the strategy of the Attacker. In fact, now the Attacker does not
have a perfect knowledge of the acceptance region adopted by the
Defender, since such a region depends on the empirical pmf of tND which
the Attacker does not know. In this case, finding the optimal attack
strategy is a difficult task.

A reasonable strategy for the Attacker could be to use the empirical
pmf of tKA , in place of the one derived from tND . More precisely, by
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using the notation introduced in Section 5.3 (Equation (5.28)), the
Attacker could try to move yn into Λn,∗

tr (PtKA ), while the acceptance
region adopted by the Defender is Λn,∗

tr (PtND ). Given that tND and tKA
are generated by the same source, their empirical pmf’s will both tend
to PX when n goes to infinity, and hence using Λn,∗

tr (PtKA ) should be
in some way equivalent to using Λn,∗

tr (PtND ). In fact, in the following
we will show that, given PX , L and λ, the indistinguishability region
for version a of the game, let us call it Γtr,a(PX , λ, L), is identical to
the indistinguishability region of version b. Of course, this does not
mean that the achievable payoff for the DG-TRa game is equal to that
of the DG-TRb, since outside the indistinguishability region, the false
negative error exponent for case a may be different (actually larger)
than that of case b.

5.4.1 Training Sequences of the Same Length

We start our analysis by assuming that c = d (and hence N = K), i.e.,
the training sequences available to the Defender and the Attacker have
the same length.

Our goal is to investigate the asymptotic behavior of the payoff
of the DG-TRa game for the profile (Λn,∗

tr (PtND ), S̃nYZ), where the, not
necessarily optimum, strategy S̃nYZ(yn, tNA ) played by the Attacker is
defined as:

S̃nYZ(Pyn , PtNA ) = arg min
SnYZ∈An(L,Pyn )

h(SnZ , PtNA ). (5.52)

We will use the map S̃nYZ to bound the false negative error exponent and
show that, even if the DG-TRa game is less favorable to the Attacker
than the DG-TRb game, the two games have the same indistinguisha-
bility region.

By following the same flow of ideas used in Section 5.3, we consider
the set of pmf’s for which the Attacker is able to move Pyn within the
acceptance region, that is

Γ̃ntr,a(λ, L) = {(Pyn , PtND , PtNA ): (S̃nZ(Pyn , PtNA ), PtND ) ∈ Λn,∗tr (λ)}. (5.53)
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Similarly to version b of the game, we find it useful to introduce the
following definition:

Γ̃ntr,a(PtND , PtNA , λ, L) = {Pyn ∈ Pn: S̃nZ(Pyn , PtNA ) ∈ Λn,∗tr (PtND , λ)}.
(5.54)

By using the generalized function hc instead of h in the definition of
the acceptance region, we can apply the above definition to any pair of
pmf’s. Specifically, given two pmf’s Q and R, we define:

Γ̃ntr,a(Q,R, λ, L) = {P ∈ Pn: S̃nZ(P,R) ∈ Λn,∗tr (Q,λ)}. (5.55)

It is easy to see that:

Γ̃ntr,a(Q,R, λ, L) ⊆ Γ̃ntr,a(Q,Q, λ, L)
Γ̃ntr,a(Q,Q, λ, L) = Γntr,b(Q,λ, L),

(5.56)

since when (and only when) Q = R, A performs his attack by using
exactly the same acceptance region adopted by D , while in all the
other cases he can rely only on an estimate based on his own training
sequence. Paralleling the analysis of the DG-TRb case, we introduce
the asymptotic set

Γ̃tr,a(Q,R, λ, L) = {P ∈ P : S̃Z(P,R) ∈ Λ∗tr(Q,λ)}, (5.57)

where Λ∗tr(Q,λ) is the same set defined in (5.33). Straightforwardly, the
relations in (5.56) also hold for Γ̃tr,a.

We are now ready to prove the following result.

Theorem 5.8 (Asymptotic Payoff of the DG-TRa Game). The error
exponent of the payoff associated to the profile (Λ∗,ntr (PtND ), S̃nZ(Pyn , PtNA ))
can be lower and upper bounded as follows11

ε̃tr,a ≥ min
Q,R

{
c[D(Q‖PX) +D(R‖PX)] + min

P∈Γ̃tr,a(Q,R,λ,L)
D(P‖PY ))

}
,

(5.58)

ε̃tr,a ≤ min
Q

[
2c ·D(Q‖PX) + min

P∈Γ̃tr,a(Q,Q,λ,L)
D(P‖PY )

]
. (5.59)

11Here we use ε̃tr,a = − lim sup
n→∞

1
n

log(PFN), since the limit may not exist.
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Proof. The proof is similar to the proof of Theorem 5.4, with the
noticeable difference that now the lower and upper bounds are different,
hence preventing us to derive a precise expression for the error exponent.
Let us start with the lower bound. By recalling the definition of the
false negative error probability, for any n we can write:

PFN =
∑
tND

∑
tNA

PX(tND)PX(tNA )PY (Γ̃ntr,a(PtND , PtNA , λ, L))

=
∑
tND

∑
tNA

PX(tND)PX(tNA )
∑

P∈Γ̃ntr,a(P
tN
D
,P
tN
A
,λ,L)

PY (T (P ))

=
∑
Q∈PN

∑
R∈PN

PX(T (Q))PX(T (R))
∑

P∈Γ̃ntr,a(Q,R,λ,L)

PY (T (P ))

≤
∑
Q∈PN

∑
R∈PN

PX(T (Q))PX(T (R)) · (n+ 1)|X |

· 2
−n min

P∈Γ̃n
tr,a

(Q,R,λ,L)
D(P‖PY )

≤
∑
Q∈PN

PX(T (Q)) · (n+ 1)|X |(N + 1)|X |

· 2
−n min

R∈PN

[
cD(R‖PX)+ min

P∈Γ̃n
tr,a

(Q,R,λ,L)
D(P‖PY )

]
≤ (n+ 1)|X |(N + 1)2|X |

· 2
−nmin

Q,R

[
cD(Q‖PX)+cD(R‖PX)+ min

P∈Γ̃n
tr,a

(Q,R,λ,L)
D(P‖PY ))

]
, (5.60)

where the use of the minimum instead of the infimum is justified by the
compactness of the involved sets, and where in the last inequality we
replaced the minimization over all Q and R in PN , with a minimization
over the entire space of pmf’s. By taking the logarithm of both sides
and letting n tend to infinity, we get the lower bound in (5.58).

We now turn the attention to the upper bound. To do so, let Q∗
be the pmf achieving the minimum in (5.59). Due to the density of
rational numbers within real numbers, we can find two sequences of
pmf’s Qn and Rn that tend to Q∗ when n tends to infinity, and such
that Qn ∈ Pn, Rn ∈ Pn,∀n. By remembering that N = nc, we can
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say that the subsequences QN = Qnc and RN = Rnc also tend to Q∗
when n (and hence N) tends to infinity. We can, then, consider the
subsequences QN and RN and write the following chain of inequalities:

PFN =
∑
Q∈PN

∑
R∈PN

PX(T (Q))PX(T (R))PY (Γ̃ntr,a(Q,R, λ, L))

≥ PX(T (QN ))PX(T (RN ))PY (Γ̃ntr,a(QN , RN , λ, L))

≥ 2−N(D(QN‖PX)+D(RN‖PX))

(N + 1)2|X | · PY (Γ̃ntr,a(QN , RN , λ, L)), (5.61)

where the first inequality has been obtained by replacing each summa-
tion with a single element of the sum (two elements of the sequences QN
and RN ), and the second relies on the usual lower bound on the prob-
ability of a type class (see Section 2.4.1). By taking the logarithm of
each side in (5.61) and dividing by n, we get:

−1/n log(PFN) ≤ cD(QN‖PX) + cD(RN‖PX)
− 1/n log(PY (Γ̃ntr,a(QN , RN , λ, L)))− βn, (5.62)

with βn = 2|X | log(N + 1) tending to 0 for n→∞.
In order to apply the generalized Sanov’s theorem for evaluating

the probability term in (5.62), we need to prove that

Γ̃ntr,a(QN , RN , λ, L) H→ Γtr,b(Q∗, λ, L). (5.63)

We observe that the proof of such convergence is more involved with
respect to the similar proofs in Theorems 3.4 and 5.4, due to the
complicated expression of Γ̃ntr,a. In fact, this time, the Attacker does
not know the exact form of the acceptance region adopted by D , i.e.,
Λn,∗
tr (QN ), and considers the estimated version Λn,∗

tr (RN ) to carry out
the minimization. Accordingly, set Γ̃ntr,a can not be written in a form
similar to (5.29) (and (3.20)), thus preventing us from directly using
the same arguments used therein. Instead, we will prove the Hausdorff
convergence of Γ̃ntr,a(QN , RN , λ, L) to Γtr,b(Q∗, λ, L) by resorting to the
definition of an auxiliary set.
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Figure 5.3: Geometric construction of Λn,∗tr (RN , λ′). For ease of graphical represen-
tation, the case with |X | = 2 is depicted. o(n) = (|X | log(n+ 1)(N + 1))/n.

Let λ′n = max{λ′: Λn,∗tr (RN , λ′) ⊆ Λn,∗tr (QN , λ)}.12 We can define the
following set:

Γ̇ntr,a(QN , RN , λ, L) = {P ∈ Pn: ∃ SPV ∈ A(L,P )
s.t. V ∈ Λn,∗tr (RN , λ′n)

}
. (5.64)

By the definition of λ′n, it is easy to see that the above set is contained
in Γ̃tr,a(QN , RN , λ, L). Then, the following chain of inclusions holds:

Γ̇ntr,a(QN , RN , λ, L) ⊆ Γ̃ntr,a(QN , RN , λ, L) ⊆ Γntr,b(QN , λ, L).

Since Γntr,b(QN , λ, L) H→ Γtr,b(Q∗, λ, L) (see the proof of Theorem 5.4),
by applying the squeeze theorem, (5.63) is proven if we show that13

Γ̇ntr,a(QN , RN , λ, L) H→ Γtr,b(Q∗, λ, L).

By reasoning as in the proof of Theorems 3.4 and 5.4, the above relation
follows by proving that δH(Λn,∗

tr (RN , λ′n),Λ∗(Q∗, λ)) → 0 as n → ∞,
which derives easily from the density of rational numbers into real
ones, the continuity of the hc function and the fact that RN → Q∗ and
λ′n → λ as n tends to infinity.

12Notice that, since QN and RN tend to the same pmf Q∗ as n tends to infinity,
and λ > 0, if n is sufficiently large, the set is non-empty (see Figure 5.3).

13The squeeze theorem (known also as sandwich theorem) also holds in the case
of Hausdorff convergence [84].
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The assumptions of the generalized Sanov’s theorem are then satis-
fied and we can write:

− lim
n→∞

1/n log(PY (Γ̃ntr,a(QN , RN , λ, L)) = min
P∈Γ̃tr,a(Q∗,Q∗,λ,L)

D(P‖PY ).

(5.65)
Therefore, by going on from (5.62), letting n→∞ and exploiting the
continuity of D with respect to its arguments, we have

ε̃tr,a ≤ cD(Q∗‖PX) + cD(Q∗‖PX) + min
P∈Γ̃tr,a(Q∗,Q∗λ,L)

D(P‖PY ).

(5.66)

By recalling that

Q∗ = arg min
Q

[
2c ·D(Q‖PX) + min

P∈Γ̃tr,a(Q,Q,λ,L)
D(P‖PY )

]
, (5.67)

we get the upper bound in (5.59).

Theorem 5.8 has an important corollary.

Corollary 5.9 (Indistinguishability Region of the DG-TRa Game). The false
negative error exponent associated to the profile (Λn,∗tr (PtND ), S̃YZ(·, PtNA ))
is equal to zero if and only if PY ∈ Γtr,b(PX , λ, L), and hence the
indistinguishability region of the DG-TRa game is equal to that of the
DG-TRb game.

Proof. From the upper bound in Theorem 5.8, it follows that ε̃tr,a = 0
if PY ∈ Γ̃tr,a(PX , PX , λ, L), whereas from the lower bound we see
that ε̃tr,a = 0 implies PY ∈ Γ̃tr,a(PX , PX , λ, L). By remembering that
Γ̃tr,a(PX , PX , λ, L) = Γtr,b(PX , L, λ), the corollary is proven.

Corollary 5.9 provides an interesting insight into the achievable per-
formance of the DG-TRa game. While, in general, version a of the game
is less favorable to the Attacker than version b, since in the latter case
the Attacker knows exactly the acceptance region adopted by the De-
fender, if the Attacker adopts the strategy S̃YZ, the indistinguishability
regions of the two games are the same. Such a strategy, then, is optimal
at least as far as the indistinguishability region is concerned. Outside
that region, the Attacker could achieve a higher payoff (i.e., a lower
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error exponent) by adopting a different strategy. On the other hand, a
strategy that allows the Attacker to reach the same payoff as for version
b may not exist.

5.4.2 Training Sequences with Different Length

We conclude this section by briefly discussing the case in which the
training sequences tND and tKA have different lengths, i.e., c 6= d. To
simplify the analysis we assume that the length of tND , i.e., c, is known
to the Attacker; in this way A knows at least the form the hc function
used by D . We focus on the following attack strategy: use the train-
ing sequence tKA to estimate PtND and use such estimate to attack the
sequence yn. Specifically, the Attacker may use the following estimate
of PtND :

P̃tND
(i) = 1

N
bPtKA (i) ·Nc ∀i = 1 . . . |X | − 1,

P̃tND
(|X |) = 1−

|X |−1∑
i=1

P̃tND
(i), (5.68)

to implement the attack function:

S̃nYZ(Pyn , PtKA ) = arg min
SnYZ∈An(L,Pyn )

hc(Pzn , P̃tND ). (5.69)

With the above definitions, we can easily extend the analysis carried
out for the case c = d and obtain very similar results. Specifically, the
upper bound in Theorem 5.8 can be rewritten as:

ε̃tr,a ≤ min
Q

[
(c+ d) ·D(Q‖PX) + min

P∈Γ̃tr,a(Q,Q,λ,L)
D(P‖PY )

]
, (5.70)

whose proof is practically identical to the proof of Theorem 5.8 and
is omitted for sake of brevity. By observing that the performance
achievable by the Defender in version a of the game are at least as
good as those achievable in version b (since in the latter case A knows
exactly the acceptance region adopted by D and hence his attacks will
surely be more effective), Equation (5.70) permits to conclude that the
indistinguishability region is equal to that obtained for the case c = d.
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5.5 Security Margin in the DG-TR Setup

As we did for the game with known sources, we now study the behavior
of the DG-TR game when λ tends to zero in order to investigate the
best achievable performance for the Defender and compute the Security
Margin in this case. The analysis goes along the same steps as for the
DG-KS case.

We derive our results by focusing on the game with equal training
sequences (DG-TRb). From the analysis carried out in the previous
sections, we know that, as long as the length of the sequences tND and
tKA grows linearly with n, the indistinguishability region is the same for
both versions of the game. By relying on this result, it is straightforward
to prove that the Security Margin is the same even for the DG-TRa
case.

We start by rewriting the set Γtr(Q,λ, L) in (5.32)–(5.33) by ex-
ploiting the optimal transport interpretation:14

Γtr(Q,λ, L) = {P ∈ P : ∃ R ∈ Λ∗tr(Q,λ) s.t. EMD(P,R) ≤ L}, (5.71)

where
Λ∗tr(Q,λ) = {P ∈ P : hc(P,Q) ≤ λ}. (5.72)

From Section 5.3, we know that, when Q = PX the above set corre-
sponds to the indistinguishability region for the DG-TR game, namely
Γtr(PX , λ, L).

Then, we observe that the D and hc have a similar behavior, in that
both D(P‖Q) and hc(P,Q) are convex functions in P and are equal to
zero if and only if P = Q. Hence, Proposition 4.1 can be extended to
the set Γtr(Q,λ, L), yielding the following.

Proposition 5.1. For any two values λ1 and λ2 such that λ2 < λ1,
Γtr(Q,λ2, L) ⊆ Γtr(Q,λ1, L).

In a similar way, Lemma B.1 (Appendix B.1) can be extended to
the set Γtr(Q,λ, L) (see discussion at the end of the same appendix),
permitting to prove the counterpart of Theorem 4.1 for the detection
game with training data.

14Since the indistinguishability region is the same for all the versions of the game
with training data, from now on we adopt the notation Γtr instead of Γtr,b.
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Theorem 5.10. Given two sources X ∼ PX and Y ∼ PY and a maxi-
mum allowable average per-letter distortion L, the maximum achievable
false negative error exponent for the DG-TRb game is:

lim
λ→0

ε∗tr,b(λ) = min
Q

[
c ·D(Q‖PX) + min

P∈Γ(Q,L)
D(P‖PY )

]
, (5.73)

where Γ(Q,L) is defined as in (4.2) by replacing PX with Q.

Proof. The proof goes along the same line of the proof of Theorem 4.1
in Section 4.2. We know from Theorem 5.4 that the expression of the
false negative error exponent of the DG-TRb game at the equilibrium
is given by

ε∗tr,b(λ) = min
Q

[
c ·D(Q‖PX) + min

P∈Γtr(Q,λ,L)
D(P‖PY )

]
. (5.74)

From Proposition 5.1, we see immediately that ε∗tr,b(λ) is non-increasing
when λ decreases, since the innermost minimization in (5.74) is taken
over a smaller set when λ decreases. Then, by the same token, we have:

ε∗tr,b(λ) ≤ min
Q

(
cD(Q‖PX) + min

P∈Γ(Q,L)
D(P‖PY )

)
. (5.75)

This implies that limλ→0 ε
∗
tr,b(λ) exists and is finite. Given that

Lemma B.1 still holds for the set Γtr(Q,λ, L) ∀Q, we can reason as in
the proof of Theorem 4.1 to conclude that:

min
P∈Γtr(Q,λ,L)

D(P‖PY ) ≥ min
P∈Γ(Q,L)

D(P‖PY )− δ(τ), (5.76)

where δ(τ) can be made arbitrarily small by decreasing λ. By adding
the term cD(Q‖PX) to both sides of (5.76) and considering that the
relation holds for any Q ∈ P , we can write:

ε∗tr,b(λ) = min
Q

[
cD(Q‖PX) + min

P∈Γtr(Q,λ,L)
D(P‖PY )

]
≥ min

Q

[
cD(Q‖PX) + min

P∈Γ(Q,L)
D(P‖PY )

]
− δ(τ), (5.77)

which concludes the proof due to the arbitrariness of δ(τ).

A consequence of Theorem 5.10 is that limλ→0 ε
∗
tr,b(λ) = 0 if and

only if PY ∈ Γ(PX , L), which then can be seen as the smallest indistin-
guishability region for the TRb setting.
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From the above theorem, we can conclude that the smallest indistin-
guishability regions for the setup with known sources and training data
are the same,15 thus implying that the Security Margin in the DG-TR
setting, say SMtr, is the same of the Security Margin in the DG-KS
case, that is

SMtr(PX , PY ) = EMD(PX , PY ). (5.78)

We remark that, for any allowed distortion L < EMD(PX , PY ), the
minimum value of the false positive error exponent (λ) which allows the
Defender to take a reliable decision in the DG-TR setting is lower than
that in the DG-KS setting. However, as a result, the difference between
the two settings regards the decay rate of the error probabilities and
not the ultimate distinguishability of the sources.

15Then, when λ tends to zero, we do not need to differentiate anymore between
DG-KS and DG-TR in the definition of Γ.
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6
Binary Detection Games with Corrupted Training

In this chapter, we extend the analysis of the binary detection game
with training data by considering a scenario in which the Attacker
interferes with the learning phase by corrupting part of the training
sequence.

From a theoretical point of view, this represents a major deviation
from the analysis carried out in the previous chapters. The first and
most important consequence of the possibility that the training sequence
has been corrupted by the Attacker, is that now the attack influences
also the accuracy of the decision under H0. In other words, the action of
the Attacker has an impact on both the false positive and false negative
error probabilities. This was not the case in the previous setups, where
the false positive error probability was independent of the strategy
chosen by the Attacker. As a result, the fulfilment of the constraint on
the false positive error probability requires that the possible actions of
the attacker are taken into account, by adopting a worst case approach.
Such a fundamental modification of the structure of the game influences
all the rest of the analysis, thus calling for the adoption of more complex
tools, and leading to more general results that incorporate those derived
in Chapters 3–5 as limit cases, but substantially depart from them.

104
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More specifically, by modeling the interplay between A and D as a
game, the set of strategies available to the Defender corresponds to the
possible detection rules he can adopt, while the Attacker must decide
how to corrupt the training data, up to his maximum capacity, and the
test data, subject to a distortion constraint, so to induce a decision error.
After providing a rigorous definition of the game, we derive the optimal
strategy for the Defender and the optimal corruption strategy for the
Attacker when the length of the training and the observed sequences
tend to infinity. Then, we compute the payoff at the equilibrium and
analyze the best achievable performance when the Type I and II error
probabilities tend to zero exponentially fast. Specifically, by mimicking
and extending the analysis in Chapter 4, we study the distinguishability
of any two sources as a function of the percentage of training samples
corrupted by the Attacker and when the test sequence can be modified
up to a certain distortion level. It turns out that the distinguishability of
the sources can be summarized by two parameters, namely the Security
Margin, which now depends of the corruption level of the training data,
and the blinding corruption level, defined as the maximum portion of the
training sequence corrupted by the Attacker that still allows a reliable
distinction between the sources (i.e., ensuring positive error exponents
for the two kinds of errors of the test).

We consider two different scenarios wherein the Attacker is allowed
respectively to add some fake samples to the training sequence and
to replace some samples of the training sequence with fake ones. As
we will see, the second case is more favorable to the Attacker, since a
lower distortion and a lower number of corrupted training samples are
necessary to prevent the correct decision.

6.1 Discussion and Link with Adversarial Machine Learning

Before going on with the formalization of the game, we briefly pause to
discuss the setting studied in this chapter. From a practical point of
view, encompassing the case of a corrupted training sequence permits
to extend the applicability of the theoretical analysis to situations in
which the collection of the training data is not under the full control of
the analyst. This is the case in many modern applications of machine
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learning, wherein the data used in the training phase is collected in
a non-controlled environment, e.g., by resorting to crowdsourcing or
on-line learning with the risk that part of the data is altered with the
aim of facilitating a subsequent attack [85]–[88]. In this sense, the results
presented in this chapter are strongly related to adversarial machine
learning [15]. Due to the natural vulnerability of machine learning
systems, in fact, the Attacker may take an important advantage if no
countermeasures are adopted by the Defender. The use of a training
sequence to gather information about the statistical characterization of
the sources can be seen as a very simple learning mechanism, therefore,
the analysis of the impact that an attack carried out in such a phase
has on the performance of a decision system, may help shedding new
light on this important problem.

By referring to the taxonomy introduced in adversarial machine
learning [15], the scenario considered in this chapter (and in the mono-
graph) corresponds to a case of integrity violation attack, that is, an
attack aiming at causing a false negative error at test time.

6.2 Detection Game with Corrupted Training (DG-CTR)

We now formalize the problem of binary detection in the presence of
corrupted training samples.

Given a discrete and memoryless source X ∼ PX and a test se-
quence zn, the goal of D is to decide whether zn has been drawn from
X (hypothesis H0) or not (alternative hypothesis H1). By adopting a
Neyman–Pearson perspective, we assume that D must ensure that the
Type-I error probability is lower than a given threshold. Similarly to
the previous versions of the game, we assume that D relies only on first
order statistics to make a decision. In addition, we study the asymptotic
version of the game when n tends to infinity, by requiring that PFP
decays exponentially fast when n increases, with an error exponent at
least equal to λ, i.e., PFP ≤ 2−nλ. On his side, the Attacker aims at
inducing a Type-II error. Specifically, A takes a sequence yn drawn
from a source Y ∼ PY and modifies it in such a way that D decides
that the modified sequence zn has been generated by X. In doing so, A

must respect a distortion constraint requiring that the average per-letter
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distortion between yn and zn is lower than L. Both A and D know
the statistics of X through a training sequence, which can be partly
corrupted by A . Depending on how the training sequence is modified by
the Attacker, we can define different versions of the game. Specifically,
we focus on the following two cases: in the first case, hereafter referred to
as detection game with addition of corrupted samples, namely DG-CTRa
game, the Attacker can add some fake samples to the original training
sequence. This case is studied in Sections 6.3 through 6.5. In the second
case, analyzed in Sections 6.6 through 6.8, the Attacker can replace
some of the training samples with fake values. In the following, this case
is referred to as detection game with replacement of training samples,
namely DG-CTRr game. It is worth stressing that, even if the goal
of the Attacker is to increase the false negative error probability, the
training sequence is corrupted regardless of whether H0 or H1 holds,
hence, in general, this part of the attack also affects the false positive
error probability. As it will be clear later on, this forces the Defender
to adopt a worst case perspective to ensure that PFP is surely lower
than 2−λn.

As to Y , we assume that the Attacker knows PY exactly. For a
proper definition of the payoff of the game, we also assume that the
Defender knows PY , with the understanding that, as it was the case with
the previous games, the optimal strategy of D does not depend on PY
thus allowing us to relax the assumption that the Defender knows PY .

6.3 The DG-CTRa Game

6.3.1 The Adversarial Setup

A schematic representation of the scenario addressed in this section is
given in Figure 6.1.

Let τm1 be a sequence drawn from X. We assume that τm1 is
accessible to A , who corrupts it by concatenating to it a sequence of
fake samples τm2 . Then A reorders the overall sequence in a random way
in order to hide the position of the fake samples. Note that reordering
does not alter the statistics of the training sequence since the sequence
is supposed to be generated from a memoryless source. In the following,
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Figure 6.1: Schematic representation of the DG-CTRa setup. The Attacker corrupts
both the training and the test sequence. The symbol ‖ denotes sequence concatenation,
while σ denotes a random permutation of the sequence samples.

we denote by m the final length of the training sequence (m = m1 +m2),
and by α = m2

m1+m2
the fraction of fake samples within it. The corrupted

training sequence observed by D is denoted by tm. Eventually, we
hypothesize a linear relationship between the lengths of the test and
the corrupted training sequence, i.e., m = cn, for some constant value c.
Since we are interested in studying the equilibrium point of the game
when the length of the test and training sequences tend to infinity,
strictly speaking, we should ensure that when n grows, all the quantities
m, m1 and m2 are integer numbers for the given c and α. In practice,
we will neglect such an issue, since when n grows the ratios m/n
and m2/(m1 + m2) can approximate any real values c and α. More
rigorously, we could consider only rational values of c and α, and focus
on subsequences of n including only those values for which m/n = c

and m2/(m1 +m2) = α.
The goal of D is to decide if an observed sequence has been drawn

from the same source that generated tm (H0) or not (H1). We assume
that D knows that a certain percentage of samples in the training
sequence has been corrupted, but he has no clue about the position
of the corrupted samples. The Attacker can also modify the sequence
generated by Y so to induce a decision error. The possibly corrupted
sequence observed by D is denoted by zn. With regard to the two phases
of the attack, we assume that A first corrupts the training sequence,
then he modifies the sequence yn. This means that, in general, zn will
depend both on yn and tm, while tm (noticeably τm2) does not depend
on yn. Stated in another way, the corruption of the training sequence
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can be seen as a preparatory part of the attack, whose goal is to ease
the subsequent camouflage of yn.

6.3.2 Definition of the DG-CTRa Game

The DG-CTRa (SD ,SA , u) game is a zero-sum game defined by the set
of strategies available to D and A , respectively SD and SA , and their
corresponding opposite payoffs, as detailed in the following.

Defender’s Strategies

Since D relies only on the first order statistics of zn and tm, the
acceptance region of hypothesis H0, hereafter referred to as Λn×m, is
a union of pairs of type classes,1 or equivalently, pairs of types (P,R),
where P ∈ Pn and R ∈ Pm. As in the previous games, D follows
a Neyman–Pearson approach, requiring that the false positive error
probability tends to zero exponentially fast with a decay rate at least
equal to λ. Given that the pmf PX ruling the emission of sequences
under H0 is not known and given that the corruption of the training
sequence is going to impair D ’s decision under H0, we adopt a worst
case approach and require that the constraint on the false positive error
probability holds for all possible PX and for all the possible strategies
available to the Attacker. In this way, the space of strategies available
to D is defined as follows:

SD =
{

Λn×m ⊂ Pn × Pm: max
PX∈P

max
s∈SA

PFP ≤ 2−λn
}
, (6.1)

where PFP = PXY((zn, tm) /∈ Λn×m).2
We will refine this definition at the end of the next section, after the

exact definition of the space of strategies the Attacker can choose from.

1We use the superscript n×m to indicate explicitly that Λn×m refers to n-long
test sequences and m-long training sequences (with m = cn).

2As it will be more clear in the sequel, the dependence of this probability term
on Y holds in the case of targeted attack (DG-CTRat setup), where the corruption
of the training sequence is targeted to the counterfeiting of the sequence yn.
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Attacker’s Strategies

The attack carried out by A consists of two parts. Given an original
training sequence τm1 , the Attacker first generates a sequence of fake
samples τm2 and mixes them up with those in τm1 , producing the
training sequence tm observed by D . Then, given a sequence yn drawn
from PY , he transforms yn into zn, eventually trying to generate a pair
of sequences (zn, tm)3 whose types belong to Λn×m. In doing so, he must
ensure that d(yn, zn) ≤ nL for some additive distortion function d.

Let us consider the corruption of the training sequence first. Given
that D makes his decision by relying only on the type of tm, we are
interested in the effect that the addition of the fake samples has on Ptm .
By considering the different lengths of τm1 and τm2 , we have:

Ptm = αPτm2 + (1− α)Pτm1 , (6.2)

where Ptm ∈ Pm, Pτm1 ∈ Pm1 and Pτm2 ∈ Pm2 . The first part of the
attack, then, is equivalent to choosing a pmf in Pm2 and mixing it up
with Pτm1 . By the same token, the choice of the Attacker depends only
on Pτm1 rather than on the single sequence τm1 . Arguably, the best
choice of the pmf in Pm2 will depend on PY , since the corruption of
the training sequence is instrumental to let the Defender think that
a sequence generated by Y has been drawn by the same source that
generated tm.

Regarding the second phase of the attack, that is, the attack applied
to the test sequence, we define the attack as the choice of a transportation
map SnYZ(yn, tm) among all the admissible maps An(L,Pyn) (clearly,
the choice of the transportation map will depend on both yn and tm).
As already noticed in Section 5.2, SnYZ(yn, tm) depends on the sequences
through their empirical pmf, then, in the following, we will use the
notation SnYZ(Pyn , Ptm).

3While reordering is essential to hide the position of fake samples to D , it does
not have any impact on the position of (zn, tm) with respect to Λn×m, since we
assumed that the Defender bases his decision only on the first order statistic of the
observed sequences. For this reason, we omit to indicate the reordering operator σ
in the attack procedure.
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With the above ideas in mind, the set of strategies of the Attacker
can be defined as follows:

SA = SA ,T × SA ,O, (6.3)

where SA ,T and SA ,O indicate, respectively, the part of the attack
affecting the training sequence and the observed sequence, and are
defined as:

SA ,T = {Q(Pτm1 ): Pm1 → Pm2}, (6.4)
SA ,O = {SnYZ(Pyn , Ptm): Pn × Pm → An(L,Pyn)}. (6.5)

Note that the first part of the attack (SA ,T ) is applied regardless of
whether H0 or H1 holds, while the second part (SA ,O) is applied only
under H1. We also stress that the choice of Q(Pτm1 ) depends only on
the training sequence τm1 , while the transportation map used in the
second phase of the attack depends on both yn and τm1 (through tm).

Given the above definitions, the set of strategies of the Defender
can be redefined by explicitly indicating that the constraint on the false
positive error probability must be verified for all possible choices of
Q(·) ∈ SA ,T , since this is the only part of the attack affecting PFP.
Specifically, we can rewrite (6.1) as follows:

SD =
{

Λn×m ⊂ Pn × Pm: max
PX

max
Q(·)∈SA ,T

PFP ≤ 2−λn
}
, (6.6)

where PFP = PX((zn, τm1): (Pzn , αQ(Pτm1 ) + (1− α)Pτm1 ) /∈ Λn×m).

Payoff

The payoff of the game is defined in terms of the false negative error
probability, namely:

u(Λn×m, (Q(·), SnYZ(·, ·))) = −PFN, (6.7)

where

PFN =PXY((yn, τm1): (SnZ(Pyn , Ptm), αQ(Pτm1 )+(1−α)Pτm1 ) ∈ Λn×m)
(6.8)

and, as usual, the Defender’s perspective is adopted, so that D aims at
maximising u while A wants to minimize it.
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6.3.3 The DG-CTRa Game with Targeted Corruption (DG-CTRat)

The DG-CTRa game is difficult to solve directly, because of the 2-step
attack strategy. We will work around this difficulty by tackling first
with a slightly different version of the game, namely the detection
game with targeted corruption of the training sequence, DG-CTRat,
depicted in Figure 6.2. According to the taxonomy introduced in [15],
the attack in this case is a targeted attack. While the strategies available
to the Defender remain the same, for the Attacker, the choice of Q(·) is
targeted to the counterfeiting of a given sequence yn. In other words,
we will assume that the Attacker corrupts the training sequence τm1 to
ease the counterfeiting of a specific sequence yn rather than to increase
the probability that the second part of the attack succeeds. This means
that the part of the attack aiming at corrupting the training sequence
also depends on yn, that is:

SA ,T = {Q(Pτm1 , Pyn): Pm1 × Pn → Pm2}. (6.9)

Even if this setup is not very realistic and more favorable to A , who can
exploit the exact knowledge of yn (rather than its statistical properties)
also for the corruption of the training sequence, in the next section we
will show that, at least for large n, the DG-CTRat game is equivalent
to the non-targeted version of the game we are interested in.

With the above ideas in mind, the DG-CTRat game is formally
defined as follows.

Definition 6.1. The DG-CTRat (SD ,SA , u) game is a zero-sum, strate-
gic, game played by D and A , defined by the following strategies and
payoff.

Figure 6.2: DG-CTRa game with targeted corruption of the training sequence
(DG-CTRat). The difference with Figure 6.1 is that now τm2 may also depend on yn.
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• Defender’s strategies.

SD =
{

Λn×m ⊂ Pn × Pm: max
PX

max
Q(·,·)∈SA ,T

PFP ≤ 2−λn
}
, (6.10)

where PFP = PXY((zn, τm1): (Pzn , αQ(Pτm1 , Pyn)+(1−α)Pτm1 ) /∈
Λn×m).

• Attacker’s strategies.

SA = SA ,T × SA ,O, (6.11)

with SA ,T and SA ,O defined as in (6.9) and (6.5) respectively.

• The payoff function. The payoff of the game is equal to the false
negative error probability:

u(Λn×m, (Q(·, ·), SnYZ(·, ·))) = −PFN, (6.12)

where PFN is defined as in (6.8) with the difference that now Q( )
depends also on yn.

An important observation regards the assumption that D knows α,
that is the (maximum) percentage of training samples that A may
corrupt. This is an implicit and necessary assumption in the definition
of the game, since, for a proper definition, it is necessary that the players
know the space of strategies of the other player. Assuming that the value
of α is not known to the Defender would require that we redefine the
game as a game with incomplete information, namely a Bayesian game.
In our case, the Bayesian formulation of the game would dramatically
complicate the analysis of the problem, so we decided to stick to a
classical definition and interpret the value of α as a kind of worst
case estimate that the Defender has on the capability of A to corrupt
the training data. As a matter of fact, in the Neyman–Pearson setup
adopted here, some estimate of the maximum percentage of samples
corrupted by the Attacker is necessary, since in the absence of such an
estimate the constraint on the false positive error probability could not
be satisfied, given that the possibility that all the training samples have
been corrupted could not be ruled out.
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6.4 Solution of the DG-CTRat and DG-CTRa Games

In this section, we first derive the equilibrium solution of the DG-CTRat
and DG-CTRa games and then evaluate the payoff at the equilibrium.
As in the other cases, we focus on the behavior of the game when the
lengths of the test and the training sequence tend to infinity.

6.4.1 Optimal Defender’s Strategy

We start by deriving the asymptotically optimal strategy for D . As for
the games studied in the previous sections, a dominant and universal
strategy with respect to PY exists for D ; hence, the optimum choice of
D depends neither on the strategy chosen by the Attacker to corrupt the
training and test sequences, nor on PY . In addition, since the constraint
on the false positive probability must be satisfied for all Attackers’
strategies, the optimal strategy for the Defender is the same for both
the targeted and non-targeted versions of the game.

As a first thing, we need to search for an explicit expression of
the false positive error probability. Such a probability depends on PX
and on the strategy used by A to corrupt the training sequence. In
fact, the mapping of yn into zn does not have any impact on D ’s
decision under H0. We carry out our derivations by focusing on the
game with targeted corruption. It will be clear from our analysis that
the dependence on yn has no impact on PFP, and hence the same results
hold for the game with non-targeted corruption.

For a given PX and Q(·, ·), PFP is equal to the probability that Y
generates a sequence yn and X generates two sequences xn and τm1 ,
such that the pair of type classes (Pxn , αQ(Pτm1 , Pyn) + (1− α)Pτm1 )
falls outside Λn×m. Such a probability can be expressed as:

PFP = P ((Pxn , αQ(Pτm1 , Pyn) + (1− α)Pτm1 ) ∈ Λ̄n×m)

=
∑

Pyn∈Pn
PY (T (Pyn))

·
∑

(Pxn ,Ptm )∈Λ̄n×m
PX(T (Pxn)) ·

∑
Pτm1∈Pm1 :

αQ(Pτm1 ,Pyn )+(1−α)Pτm1 =Ptm

PX(T (Pτm1 )), (6.13)
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where Λ̄n×m is the complement of Λn×m, and where we have exploited
the fact that under H0 the training sequence τm1 and the test sequence
xn are generated independently. Given the above formulation, the set
of strategies available to D can be rewritten as:

SD =
{

Λn×m: max
PX

max
Q(·,·)

∑
Pyn∈Pn

PY (T (Pyn))

·
∑

(Pxn ,Ptm )∈Λ̄n×m
PX(T (Pxn))

·
∑

Pτm1∈Pm1 :
αQ(Pτm1 ,Pyn )+(1−α)Pτm1 =Ptm

PX(T (Pτm1 )) ≤ 2−λn
}
. (6.14)

We are now ready to prove the following lemma, which provides the
asymptotically optimal strategy for the Defender for both versions of
the game.

Lemma 6.1. Let Λn×m,∗ be defined as follows:

Λn×m,∗ =
{

(Pzn , Ptm): min
Q∈Pm2

h

(
Pzn ,

Ptm − αQ
1− α

)
≤ λ− δn

}
(6.15)

with

δn = |X | log(n+ 1)((1− α)nc+ 1)
n

, (6.16)

where |X | is the cardinality of the source alphabet, c = m
n , and where

the minimization over Q is limited to all the Q’s such that Ptm − αQ is
nonnegative for all the symbols in X . Then:

1. max
PX

max
s∈SA

PFP ≤ 2−n(λ−νn), with lim
n→∞

νn = 0,

2. ∀Λn×m ∈ SD , we have Λ̄n×m ⊆ Λ̄n×m,∗,

where νn is an arbitrary sequence approaching 0 when n tends to
infinity.

The version of record is available at: http://dx.doi.org/10.1561/0100000102



116 Binary Detection Games with Corrupted Training

Proof. To prove the first part of the lemma, we observe that from the
false positive error probability given by (6.13), we can write:

max
PX

max
Q(·,·)

PFP (6.17)

≤ max
PX

∑
Pyn∈Pn

PY (T (Pyn)) ·
∑

(Pxn ,Ptm )
∈Λ̄n×m,∗

PX(T (Pxn))

·max
Q(·,·)

∑
Pτm1∈Pm1 :

αQ(Pτm1 ,Pyn )+(1−α)Pτm1 =Ptm

PX(T (Pτm1 )). (6.18)

Let us consider the term within the inner summation. For each Pτm1

such that αQ(Pτm1 , Pyn) + (1− α)Pτm1 = Ptm , we have:4

PX(T (Pτm1 )) ≤ max
Q∈Pm2

PX

(
T

(
Ptm − αQ

1− α

))
, (6.19)

with the understanding that the maximization is carried out only over
the Q’s such that Ptm − αQ is nonnegative for all the symbols in X .

Thanks to the above observation, we can upper bound the false
positive error probability as follows:

max
PX

max
Q(·,·)

PFP

≤ max
PX

∑
Pyn∈Pn

PY (T (Pyn))

·
∑

(Pxn ,Ptm )
∈Λ̄n×m,∗

PX(T (Pxn)) · |Pm1 | · max
Q∈Pm2

PX

(
T

(
Ptm − αQ

1− α

))

(a)= max
PX

∑
(Pxn ,Ptm )
∈Λ̄n×m,∗

PX(T (Pxn))|Pm1 | max
Q∈Pm2

PX

(
T

(
Ptm − αQ

1− α

))

≤ |Pm1 |
∑

(Pxn ,Ptm )
∈Λ̄n×m,∗

max
Q∈Pm2

max
PX

PX(T (Pxn))PX
(
T

(
Ptm − αQ

1− α

))
,

(6.20)

4It is easy to see that the bound (6.19) holds also for the non-targeted game,
when Q depends on the training sequence only (Q(Pτm1 )).
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where in (a) we exploited the fact that the second summation does not
depend on Pyn .

From this point, the proof goes along the same line of the proof
of Lemma 5.2 in Chapter 5, by observing that maxPX PX(T (Pxn))
PX
(
T
(Ptm−αQ

1−α
))

is upper bounded by 2−nh(Pxn ,
Ptm−αQ

1−α ), and that for
each pair of types in Λ̄n×m,∗, the quantity h

(
Pxn ,

Ptm−αQ
1−α

)
is larger than

λ− δn for every Q by the very definition of Λn×m,∗.
We now pass to the second part of the lemma. Let Λn×m be a

strategy in SD , and let (Pxn , Ptm) be a pair of types contained in Λ̄n×m.
Given that Λn×m is an admissible decision region (see (6.10)), the
probability that X emits a test sequence belonging to T (Pxn) and a
training sequence τm1 such that after the attack (τm1‖τm2) ∈ T (Ptm) is
lower than 2−λn for all PX and all possible attack strategies. In formula,
we have

2−λn > max
PX

max
Q(·,·)

∑
Pyn∈Pn

PY (T (Pyn))

·

PX(T (Pxn)) ·
∑
Pτm1 :

αQ(Pτm1 ,Pyn )+(1−α)Pτm1 =Ptm

PX(T (Pτm1 ))


(a)= max

PX

∑
Pyn∈Pn

PY (T (Pyn))

·

PX(T (Pxn)) · max
Q(·,Pyn )

∑
Pτm1 :

αQ(Pτm1 ,Pyn )+(1−α)Pτm1 =Ptm

PX(T (Pτm1 ))


(b)
≥ max

PX

∑
Pyn∈Pn

PY (T (Pyn)) ·
[
PX(T (Pxn))

· max
Q(Pτm1 ,Pyn )

PX

(
T

(
Ptm − αQ(Pτm1 , Pyn)

1− α

))]
(c)= max

PX
PX(T (Pxn)) max

Q∈Pm2
PX

(
T

(
Ptm − αQ

1− α

))
, (6.21)
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where (a) is obtained by replacing the maximization over all possible
strategies Q(·, ·), with a maximization over Q(·, Pyn) for each specific
Pyn , and (b) is obtained by considering only one term Pτm1 of the
inner summation and optimising Q(Pτm1 , Pyn) for that term. Finally,
(c) follows by observing that the optimum Q(·, Pyn) is the same for
all Pyn . As usual, the maximization over Q in the last expression is
restricted to the Q’s for which Ptm − αQ ≥ 0 for all the symbols in X .5

By lower bounding the probability that a memoryless source X
generates a sequence belonging to a certain type class, we can continue
the above chain of inequalities as follows:

2−λn >
maxPX maxQ∈Pm2

2−n
[
D(Pxn‖PX)+m1

n
D
(
Ptm−αQ

1−α ‖PX
)]

(n+ 1)|X |(m1 + 1)|X |

≥ 2−nminQ∈Pm2
minPX

[
D(Pxn‖PX)+m1

n
D
(
Ptm−αQ

1−α ‖PX
)]

(n+ 1)|X |(m1 + 1)|X |

(a)= 2−nminQ∈Pm2
h
(
Pxn ,

Ptm−αQ
1−α

)
(n+ 1)|X |(m1 + 1)|X |

, (6.22)

where (a) derives from the minimization properties of the generalized
log-likelihood ratio function h( ) (see Lemma 5.1). By taking the log of
both terms we have:

min
Q∈Pm2

h

(
Pxn ,

Ptm − αQ
1− α

)
> λ− δn, (6.23)

thus completing the proof of the lemma.

Lemma 6.1 shows that the strategy Λn×m,∗ is asymptotically admis-
sible (point 1) and optimal (point 2), regardless of the attack; hence,
it is a dominant strategy for D . In addition, the optimal strategy is
semi-universal, since it depends on PX but not on PY .

At first sight, the minimization required by the optimal Defender’s
strategy seems computationally prohibitive, however this is not the case
since the minimization can be carried out efficiently by exploiting the

5It is easy to see that the same lower bound can be derived also for the non-
targeted case, as the optimum Q in the second to last expression does not depend
on Pyn .
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convexity of the h function. To be more specific, since the minimisation
is limited to the Q’s such that Ptm − αQ is nonnegative for all the
symbols in X , that is within the set {Q ∈ Pm2 : Ptm−αQ

1−α ∈ Pm1}, the
log-sum inequality [58, Chapter 16, p. 483] can be invoked to show that
h
(
Pxn ,

Ptm−αQ
1−α

)
is a convex function with respect to Q. Being this set

of Q’s bounded (corresponding to a subset of the probability simplex
in R|X |), the optimization problem in (6.15) is a convex MINLP [70],
for which a global optimal solution exists. As we already said at the
end of Section 3.2, for this kind of problems there are several efficient
solvers yielding the optimal solution [72]. The number of optimization
variables, which determines the computational complexity, corresponds
to the cardinality of the alphabet, i.e., |X |, and hence the minimization
is viable in many practical scenarios.

From the proof of Lemma 6.1, it is clear that the same optimal
strategy holds for the targeted and non-targeted versions of the game.
The situation is rather different with regard to the optimal strategy
for the Attacker. Despite the existence of a dominant strategy for the
Defender, in fact, the identification of the optimal Attacker’s strategy
for the DG-CTRa game is not easy due to the 2-step nature of the
attack. In the following sections, we will focus on the targeted version of
the game, which is easier to study. We will then use the results obtained
for the DG-CTRat game to derive the best achievable performance for
the case of non-targeted attack.

6.4.2 The DG-CTRat Game: Optimal Attacker’s Strategy
and Equilibrium Point

Given the dominant strategy of D , for any given τm1 and yn, the optimal
Attacker’s strategy for the DG-CTRat game boils down to the following
double minimization:

(Q∗(Pτm1 , Pyn), Sn,∗YZ(Pyn , Ptm))

= arg min
Q∈Pm2

SnYZ∈A
n(L,Pyn )

(
min
Q′

h

(
Pzn ,

(1− α)Pτm1 + αQ− αQ′

1− α

))
,

(6.24)
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where Pzn is obtained by applying the transformation map SnYZ to Pyn ,
and where Ptm = (1− α)Pτm1 + αQ. As usual, the minimization over
Q′ is limited to the Q′ such that all the entries of the resulting pmf are
nonnegative.

Remark 6.1. Under corruption of the training sequence only (L = 0),
the optimal attack strategy for the DG-CTRat game is

Q∗(Pτm1 , Pyn)

= arg min
Q∈Pm2

[
min
Q′

h

(
Pyn , Pτm1 + α

1− α(Q−Q′)
)]

, (6.25)

while, in the game setup without corruption of the training sequence
(α = 0) we have

Sn,∗YZ(Pyn , Ptm) = arg min
SnYZ∈An(L,Pyn )

h(Pzn , Ptm), (6.26)

falling back to the known case of detection with uncorrupted training,
already studied in Chapter 5.

Having determined the optimal strategies of both players, it is
immediate to state the following:

Theorem 6.2 (Equilibrium Point of the DG-CTRat Game). The DG-
CTRat game is a dominance solvable game, whose only rationaliz-
able equilibrium corresponds to the profile (Λn×m,∗, (Q∗(·, ·), Sn,∗YZ (·, ·)))
given by Equations (6.15) and (6.24).

Proof. The theorem is an immediate consequence of the fact that Λn×m,∗
is a dominant strategy for D .

6.4.3 The DG-CTRat Game: Payoff at the Equilibrium

We now derive the asymptotic value of the payoff at the equilibrium, to
see who and under which conditions is going to win the game in the
DG-CTRat setup.
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To start with, we identify the set of pairs (Pyn , Pτm1 ) for which, as
a consequence of A ’s action, D accepts H0, that is

Γn(λ, α, L) = {(Pyn , Pτm1 ): ∃ (Pzn , Ptm) ∈ Λn×m,∗

s.t. Ptm = (1− α)Pτm1 + αQ and Pzn = SnZ

for some Q ∈ Pm2 and SnYZ ∈ A(L,Pyn)}. (6.27)

If we fix the type of the non-corrupted training sequence (Pτm1 ), we
obtain:

Γn(Pτm1 , λ, α, L) = {Pyn : ∃ Pzn ∈ Λn,∗((1− α)Pτm1 + αQ)
s.t. Pzn = SnZ

for some Q ∈ Pm2 and SnYZ ∈ A(L,Pyn)}, (6.28)

where Λn,∗(P ) denotes the acceptance region for a fixed type P of
the training sequence in Pm. It is interesting to notice that, since in
the current setting A has two degrees of freedom, the attack has a
twofold effect: the sequence yn is modified in order to bring it inside the
acceptance region Λn,∗(Ptm) and the acceptance region itself is modified
so to facilitate the former action.

To go on, we find it convenient to rewrite the set Γn(Pτm1 , λ, α, L)
as follows:

Γn(Pτm1 , λ, α, L)
= {Pyn : ∃ SnPV ∈ A(L,Pyn) s.t. SnV ∈ Γn0 (Pτm1 , λ, α)}, (6.29)

where

Γn0 (Pτm1 , λ, α)
= {Pyn : ∃Q ∈ Pm2 s.t. Pyn ∈ Λn,∗((1− α)Pτm1 + αQ)} , (6.30)

is the set containing all the test sequences (or, equivalently, test types)
for which it is possible to corrupt the training set in such a way that
they fall within the acceptance region. As the subscript 0 suggests, this
set corresponds to the set in (6.28) when A cannot modify the sequence
drawn from Y , i.e., L = 0, and then tries to hamper the decision by
corrupting the training sequence only.
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By considering the expression of the acceptance region, the set
Γn0 (Pτm1 , λ, α) can be expressed in a more explicit form as follows:

Γn0 (Pτm1 , λ, α) =
{
Pyn : ∃Q,Q′ ∈ Pm2 s.t. h

(
Pyn , Pτm1

+ α

(1− α)(Q−Q′)
)
≤ λ− δn

}
, (6.31)

where the second argument of h( ) denotes a type in Pm1 obtained from
the original training sequence τm1 by first adding m2 samples and later
removing (in a possibly different way) the same number of samples. Note
that in this formulation Q accounts for the fake samples introduced by
the Attacker and Q′ for the worst case guess, made by the Defender, of
the position of the corrupted samples. We also observe that since we are
considering the DG-CTRat version, in general Q will depend on Pyn .
As usual, we implicitly assume that Q and Q′ are chosen in such a way
that Pτm1 + α

(1−α)(Q−Q′) is nonnegative and smaller than or equal to
1 for all the alphabet symbols.

We are now ready to derive the asymptotic payoff of the game by
following similar steps to that used in Sections 3.3 and 5.3 for the game
with known sources and with training data, respectively. First of all,
we generalize the definition of the sets Λn×m,∗, Γn and Γn0 so that they
can be evaluated for a generic pmf in P (that is, without requiring that
the pmf’s are induced by sequences of finite length). This step passes
through the generalization of the h function. Specifically, given any pair
of pmf’s (P, P ′) ∈ P × P , we define the generalized h function as:

hc(P, P ′) = D(P‖U) + cD(P ′‖U);

U = 1
1 + c

P + c

1 + c
P ′,

(6.32)

where c ∈ [0, 1]. Note that when (P, P ′) ∈ Pn×Pn, hc(P, P ′) = h(P, P ′).
The asymptotic version of Λn×m,∗ is:

Λ∗ =
{

(P,R): min
Q

hc

(
P,

R− αQ
1− α

)
≤ λ

}
. (6.33)

In a similar way, we can derive the asymptotic versions of Γn and Γn0
in (6.29) and (6.30)–(6.31). To do so, we first observe that the trans-
portation map SnYZ depends on the sources only through their pmf’s.
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By denoting with SnPV a transportation map from a pmf P ∈ Pn to
another pmf V ∈ Pn and rewriting set Γn accordingly, we can easily
derive the asymptotic version of Γn as follows:

Γ(R, λ, α, L) = {P ∈ P : ∃SPV ∈ A(L,P ) s.t. V ∈ Γ0(R, λ, α)},
(6.34)

with
Γ0(R, λ, α)

= {P ∈ P : ∃ Q ∈ P s.t. P ∈ Λ∗((1− α)R+ αQ)}

=
{
P ∈ P : ∃Q,Q′ ∈ P s.t. hc

(
P, R+ α

(1− α)(Q−Q′)
)
≤ λ

}
,

(6.35)
where the definitions of SPV and A(L,P ) derive from those of SnPV
and An(L,P ) by relaxing the requirement that the terms SPV (i, j) and
P (i) are rational numbers with denominator n.

Given the above, we can prove the following theorem.
Theorem 6.3 (Asymptotic Payoff of the DG-CTRat Game). The false
negative error exponent of the DG-CTRat game at the equilibrium is
given by

ε∗ = min
R

[
(1− α)cD(R‖PX) + min

P∈Γ(R,λ,α,L)
D(P‖PY )

]
. (6.36)

Accordingly,
1. if PY ∈ Γ(PX , λ, α, L) then ε∗ = 0;

2. if PY /∈ Γ(PX , λ, α, L) then ε∗ > 0.

Proof. The theorem can be proven going along the same lines of the
proof of Theorems 3.4 and 5.4, i.e., by applying the generalized version
of Sanov’s theorem (see Section 2.4.2). In particular, let us consider

PFN =
∑

(Pyn ,Pτm1 )∈Γn(λ,α,L)
PX(T (Pτm1 ))PY (T (Pyn))

=
∑

R∈Pm1

PX(T (R))
∑

P∈Γn(R,λ,α,L)
PY (T (P ))

=
∑

R∈Pm1

PX(T (R))PY (Γn(R, λ, α, L)). (6.37)
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We start by deriving an upper bound of the false negative error
probability:

PFN ≤
∑

R∈Pm1

PX(T (R))
∑

P∈Γn(R,λ,α,L)
2−nD(P‖PY )

≤
∑

R∈Pm1

PX(T (R))(n+ 1)|X |2
−n min

P∈Γn(R,λ,α,L)
D(P‖PY )

≤
∑

R∈Pm1

PX(T (R))(n+ 1)|X |2
−n min

P∈Γ(R,λ,α,L)
D(P‖PY )

≤ (n+ 1)|X |(m1 + 1)|X |

· 2
−n min

R∈Pm1

[m1
n
D(R‖PX) + min

P∈Γ(R,λ,α,L)
D(P‖PY )

]
≤ (n+ 1)|X |(m1 + 1)|X |

· 2
−n min

R∈P

[
(1−α)cD(R‖PX)+ min

P∈Γ(R,λ,α,L)
D(P‖PY )

]
, (6.38)

where the use of the minimum instead of the infimum is justified by the
fact that Γn(R, λ, α, L) and Γ(R, λ, α, L) are compact sets. By taking
the log and dividing by n we find:

− logPFN
n

≥ min
R∈P

[
(1− α)cD(R‖PX) + min

P∈Γ(R,λ,α,L)
D(P‖PY )

]
− βn, (6.39)

where βn = |X | log(n+1)((1−α)nc+1)
n tends to zero when n tends to infinity.

We now turn to the analysis of a lower bound for PFN. Let R∗ be
the pmf achieving the minimum of the outer minimization of (6.36).
Due to the density of rational numbers within real numbers, we can find
a sequence of pmf’s Rm1 ∈ Pm1 that tends to R∗ when n (and hence
m1) tends to infinity. Then, we can write:

PFN =
∑

R∈Pm1

PX(T (R))PY (Γn(R, λ, α, L))

≥ PX(T (Rm1))PY (Γn(Rm1 , λ, α, L)),

≥ 2−m1D(Rm1‖PX)

(m1 + 1)|X |
PY (Γn(Rm1 , λ, α, L)), (6.40)
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where, in the first inequality, we have replaced the sum with the single
element of the subsequence Rm1 defined previously, and where the
second inequality derives again from the well known lower bound on the
probability of a type class. From (5.38), by taking the log and dividing
by n, we obtain:

− logPFN
n

≤ (1− α)cD(Rm1‖PX)− 1
n

logPY (Γn(Rm1 , λ, α, L)) + β′n, (6.41)

where β′n = |X | log(m1+1)
n tends to zero when n tends to infinity.

To assess the behavior of PY (Γn(Rm1 , λ, α, L)) as n tends to infinity,
we resort to Corollary 2.2 of the generalized version of Sanov’s theo-
rem proven in Section 2.4.2. In order to apply the corollary, we must
prove the Hausdorff convergence of Γn(Rm1 , λ, α, L) to Γ(R∗, λ, α, L).
First of all, we observe that by exploiting the continuity of the hc
function and the density of rational numbers into the real ones, it
is easy to prove that Γn0 (Rm1 , λ, α) H→ Γ0(R∗, λ, α). Then the Haus-
dorff convergence of Γn(Rm1 , λ, α, L) to Γ(R∗, λ, α, L) follows from the
regularity properties of the set of the transportation maps stated
in Appendix A. To see how, we observe that any transformation
SPV ∈ A(L,P ) mapping P into V can be applied in the reverse direc-
tion through the transformation SVP(i, j) = SPV (j, i). It is immediate
to see that SVP introduces the same distortion introduced by SPV , that
is SVP ∈ A(L, V ). Let now P be a point in Γ(R∗, λ, α, L). By definition,
we can find a map SPV ∈ A(L,P ) such that V ∈ Γ0(R∗, λ, α). Since
Γn0 (Rm1 , λ, α) H→ Γ0(R∗, λ, α), for large enough n, we can find a point
V ′ ∈ Γn0 (Rm1 , λ, α) which is arbitrarily close to V . Thanks to the second
part of Theorem A.2, we know that a map SV ′P ′ ∈ An(L, V ′) exists such
that P ′ is arbitrarily close to P and P ′ ∈ Pn. By applying the inverse
map SP ′V ′ to P ′, we see that P ′ ∈ Γn(Rm1 , λ, α, L), thus permitting us
to conclude that, when n increases, δΓ(R∗,λ,α,L)(Γn(Rm1 , λ, α, L))→ 0.
In a similar way, we can prove that δΓn(Rm1 ,λ,α,L)(Γ(R∗, λ, α, L))→ 0,
hence permitting us to conclude that Γn(Rm1 , λ, α, L) H→ Γ(R∗, λ, α, L).
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We can now apply the generalized version of Sanov’s theorem as
expressed in Corollary 2.2, yielding

− lim
n→∞

1
n

logPY (Γn(Rm1 , λ, α, L)) = min
P∈Γ(R∗,λ,α,L)

D(P‖PY ). (6.42)

Going back to (6.41), and exploiting the continuity of the divergence
function, we can conclude that for large n we have:

− logPFN
n

≤ (1− α)cD(R∗‖PX) + min
P∈Γ(R∗,λ,α,L)

D(P‖PY ) + νn,

(6.43)

where the sequence νn tends to zero when n tends to infinity. By coupling
Equations (6.39) and (6.43) and by letting n→∞, we eventually obtain:

− lim
n→∞

logPFN
n

= min
R

[
(1− α)c ·D(R‖PX) + min

P∈Γ(R,λ,α,L)
D(P‖PY )

]
, (6.44)

thus proving the theorem.

As an immediate consequence of Theorem 6.3, the set Γ(PX , λ, α, L)
defines the indistinguishability region of the test, that is the set of
all the sources for which A induces D to decide in favor of H0 even
if H1 holds. Moreover, by exploiting optimal transport theory, the
indistinguishability region can be rewritten as:

Γ(PX , λ, α, L) = {P : ∃ V ∈ Γ0(PX , λ, α) s.t. EMD(P, V ) ≤ L}.
(6.45)

6.4.4 Analysis of the DG-CTRa Game

We now get back to the original DG-CTRa formulation. For a given
choice of Q(Pτm1 ) ∈ SA ,T (and hence tm), given a sequence yn, the
optimal choice of the second part of the attack derives quite easily from
the definition of Λn×m,∗, namely

Sn,∗YZ(Pyn , Ptm)

= arg min
SnYZ∈An(L,Pyn )

(
min

Q∈Pm2
h

(
Pzn ,

Ptm − αQ
1− α

))
. (6.46)
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Now the point is to determine the strategy Q(Pτm1 ) which maximizes
the probability that the attack in (6.46) succeeds. To this purpose,
of course, the Attacker must exploit the knowledge of PY . Since solv-
ing such a maximization problem is not an easy task, we will pro-
ceed in a different way. We first introduce a simple (and possibly
suboptimal) strategy, then we argue that such a strategy is asymp-
totically optimal, in that the set of the sources that cannot be dis-
tinguished from X with this choice is the same set that we have
obtained for the DG-CTRat setup, which is known to be more fa-
vorable to the Attacker. More specifically, we consider the following
attack.

• In the first part, A does not know yn, hence he trusts the law
of large numbers and optimizes Q(Pτm1 ) by using PY as a proxy
for Pyn . To do so, he applies (6.24), by replacing Pyn with PY .
Specifically, denoting by Q† the resulting strategy for the first
part of the attack, we have

Q†(Pτm1 ) = arg min
Q∈Pm2

(6.47)

min
Q′∈Pm2

SYZ∈A(L,PY )

hc

(
PZ , Pτm1 + α

1− α(Q−Q′)
)
. (6.48)

As a by-product of the above minimization, the Attacker also finds
the map Sn,†YZ representing the optimal attack when Pyn = PY .
Let us denote the result of the application of such a map to PY
by P †Z .

• In the second part of the attack, A tries to move Pyn as close as
possible to P †Z , that is:

Sn,†YZ(Pyn , P †tm) = arg min
SnYZ∈An(L,Pyn )

d(SnZ , P
†
Z), (6.49)

where Sn,†YZ(Pyn , P †tm) depends upon the corrupted training
sequence obtained after the application of the first part of the
attack, namely P †tm = (1 − α)Pτm1 + αQ†(Pτm1 ),
through P †Z .
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The asymptotic optimality of the strategy (Q†(Pτm1 ), Sn,†YZ(Pyn , P †tm))
derives from the following theorem.

Theorem 6.4 (Indistinguishability Region of the DG-CTRa Game). The
indistinguishability region of DG-CTRa game is equal to that of the DG-
CTRat game (see (6.34)) and is asymptotically achieved by the attack
strategy (Q†(Pτm1 ), Sn,†YZ(Pyn , P †tm)).

Proof (Sketch). The theorem derives from the observation that due to
the law of large numbers, when n grows, Pyn tends to PY ; hence, for
large enough n, optimising the first part of the attack by replacing
Pyn with PY does not introduce a significant performance loss. The
rigorous proof goes along the same path of the proof of Theorem 6.3 and
ultimately relies on the continuity of the hc function and the regularity
properties of the set An(L,Pyn). The details of the proof are omitted
for sake of brevity.

Given the asymptotic equivalence of the DG-CTRa and the DG-
CTRat games, in the rest of the chapter, we will generally refer to the
DG-CTRa game without specifying if we are considering the targeted
or non-targeted case.

6.5 Source Distinguishability in the DG-CTRa Setup

We now study the behaviour of the DG-CTRa game when we decrease
the decay rate of the false positive error probability λ (by decreasing λ,
D can improve his payoff at the equilibrium) and derive the best
achievable performance of the Defender, when it is required only that
PFP tends to zero exponentially fast with an arbitrarily small – yet
strictly positive – error exponent, somehow extending the Chernoff-Stein
lemma [58, Chapter 12.8] to the adversarial setup considered in this
chapter. Afterwards, we will use such a result to derive the conditions
under which a reliable distinction between two sources is possible as a
function of the number of corrupted training samples α and maximum
allowed distortion L.
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6.5.1 Ultimate Achievable Performance of the DG-CTRa Game

The main result of this section is stated in the theorem below. Let
Γ(PX , α, L) = Γ(PX , λ = 0, α, L), that is,

Γ(PX , α, L) = {P : ∃ V ∈ Γ0(PX , α) s.t. EMD(P, V ) ≤ L} , (6.50)

where Γ0(PX , α) = Γ0(PX , α, L = 0). As implied by the following
theorem, Γ(PX , α, L) is the ultimate indistinguishability region of the
DG-CTRa game.

Theorem 6.5. Given two sources X and Y , a maximum allowed average
per-letter distortion L and a fraction α of training samples provided by
the Attacker, the maximum achievable false negative error exponent at
the equilibrium for the DG-CTRa game is:

lim
λ→0

lim
n→∞

− 1
n

log PFN

= min
R

[
(1− α)cD(R‖PX) + min

P∈Γ(R,α,L)
D(P‖PY )

]
. (6.51)

Moreover, the ultimate indistinguishability region Γ(PX , α, L) can
be written as

Γ(PX , α, L) =
{
P : min

V : EMD(P,V )≤L

∑
i

[V (i)–PX(i)]+ ≤ α

(1− α)

}

=
{
P : min

V : EMD(P,V )≤L
dL1(V, PX) ≤ 2α

(1− α)

}
.

(6.52)

Proof. The proof of the first part goes along the same steps of the proof
of Theorems 4.1 and 5.10 in Chapters 4 and 5 respectively, and is not
repeated here. We show, instead, that Γ(PX , α, L) can be rewritten as
in (6.52).

By observing that hc(P,Q) = 0 if and only if P = Q, it is immediate
to see that the set Γ0(PX , λ = 0, α) takes the following expression:

Γ0(PX , α) =
{
P : ∃ Q,Q′ ∈ P s.t. P = PX+ α

(1− α)(Q−Q′)
}
. (6.53)
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Expression (6.53) can be rewritten by avoiding the introduction of
the auxiliary pmf’s Q and Q′. To do so, we observe that Q(i) must
be larger than Q′(i) for all the bins i for which P (i) > PX(i) (and
viceversa). In addition, Q and Q′ must be valid pmf’s, hence we have∑
i[Q(i)−Q′(i)]+ =

∑
i[Q′(i)−Q(i)]+ ≤ 1. Then, it is easy to see that

(6.53) is equivalent to the following definition:

Γ0(PX , α) =
{
P :

∑
i

[P (i)− PX(i)]+ ≤ α

(1− α)

}

=
{
P : dL1(P, PX) ≤ 2α

(1− α)

}
, (6.54)

where the second equality follows by observing that dL1(P, PX) =∑
i[P (i)− PX(i)]+ +

∑
i[PX(i)− P (i)]+. Eventually, (6.52) derives im-

mediately from the expression of Γ0(PX , α) given in (6.54).

According to Theorem 6.5, Γ(PX , α, L) provides the ultimate indis-
tinguishability region of the test, that is, the set of all the pmf’s PY that
can not be distinguished from PX ensuring that the two types of error
probabilities tend to zero exponentially fast with vanishingly small, yet
positive, error exponents. These are the pmf’s for which A wins the
game (according to the meaning of “winning the game” stated at the
end of Section 3.3).

Before going on, we pause to discuss the geometrical meaning of
the set Γ0(PX , α) in (6.53). To do so, we introduce the set Λ∗0, obtained
from Λ∗ by letting λ tends to zero:

Λ∗0 =
{

(P, P ′): ∃ Q s.t. P ′ = P − αQ
(1− α)

}
. (6.55)

As usual, we can fix the pmf P and define:

Λ∗0(P ) =
{
P ′: ∃ Q s.t. P ′ = P − αQ

(1− α)

}
. (6.56)

By referring to Figure 6.3 (left part), we can geometrically interpret
Λ∗0(P ) as the set of the pmf’s P ′ such that P is a convex combination
(with coefficient α) of P ′ with a point Q of the probability simplex.
Starting from (6.35), we can then rewrite Γ0(PX , α) as follows:

Γ0(PX , α) = {P : ∃ Q ∈ P s.t. P ∈ Λ∗0((1− α)PX + αQ)}. (6.57)
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Figure 6.3: Geometrical representation of Λ∗0(P ) (left) and construction of Γ0(PX , α)
(right). The size of the sets are exaggerated for graphical purposes.

Accordingly, Γ0(PX , α) is geometrically obtained as the union of the
acceptance regions built from the points that can be written as a convex
combination of PX with some point Q in the simplex. As shown in
Figure 6.3 (right), such a region corresponds to a hexagon centered
in PX , which, in the probability simplex, is equivalent to the set of
points whose L1 distance from PX is smaller than or equal to 2α/(1−α)
(as stated in (6.54)). Of course, only the points of the hexagon that lie
inside the simplex are valid pmf’s and then must be accounted for.

A pictorial representation of the set Γ(PX , α, L) is given in
Figure 6.4.

6.5.2 Security Margin and Blinding Corruption Level

By closer inspection of the ultimate indistinguishability region we can
derive some interesting parameters characterizing the distinguishability
of two sources in adversarial setting.

Let X ∼ PX and Y ∼ PY be two sources. We first focus on the
case in which the Attacker can not modify the test sequence (L = 0).
In this scenario, the ultimate indistinguishability region boils down to
Γ0(PX , α). Then, D can tell the two sources apart if dL1(PY , PX) >

2α
(1−α) . On the contrary, if dL1(PY , PX) ≤ 2α

(1−α) , A is able to make the
sources indistinguishable by corrupting the training sequence. Clearly,
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Figure 6.4: Geometrical representation of Γ(PX , α, L) as stated in Theorem 6.5.

the larger the α the easier is for A to win the game. We can define the
blinding corruption level αb as the minimum value of α for which two
sources X and Y can not be distinguished. Specifically, we have:

αb(PX , PY ) = dL1(PY , PX)
2 + dL1(PY , PX) =

∑
i [PY (i)− PX(i)]+

1 +
∑
i [PY (i)− PX(i)]+

. (6.58)

From (6.58), it is easy to see that αb is always lower than 1/2, with
the limit case αb = 1/2 corresponding to a case in which PX and PY
have completely disjoint supports.6 It is interesting to notice that αb
is symmetric with respect to the two sources. Since the Attacker is
allowed only to add samples to the training sequence without removing
existing samples, this might seem a counterintuitive result. Actually, the
symmetry of αb is a consequence of the worst case approach adopted
by the Defender. In fact, D himself discards a subset of samples from
the training sequence in such a way as to maximize the probability that
the remaining part of the training sequence and the test sequence have
been drawn from the same source.

Let us now consider the general case in which L 6= 0. For a given
α < αb, we look for the maximum distortion for which the two sources
can be reliably distinguished. From Equation (6.52), we argue that the

6We remind that for any pair of pmf’s (P,Q), dL1 (P,Q) ≤ 2.
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attack does not succeed if the following condition holds:

min
V : EMD(PY ,V )≤L

dL1(V, PX) > 2α
(1− α) . (6.59)

This leads to the extension of the concept of Security Margin, introduced
in Chapter 4, to the more general setup considered in this chapter.

Definition 6.2 (Security Margin in the DG-CTRa Setup). Let X ∼ PX
and Y ∼ PY be two discrete memoryless sources. The maximum distor-
tion allowed to the Attacker for which the two sources can be reliably
distinguished in the DG-CTRa setup with a fraction α of possibly
corrupted samples is given by

SMα(PX , PY ) = L∗α, (6.60)

where L∗α = 0 if PY ∈ Γ0(PX , α), while, if PY /∈ Γ0(PX , α), L∗α is the
quantity that satisfies

min
V : EMD(PY ,V )≤L∗α

dL1(V, PX) = 2α
(1− α) . (6.61)

When L > SMα(PX , PY ), it is not possible for D to distinguish
between the two sources with positive error exponents of the two kinds.

A geometric interpretation of L∗α is given in Figure 6.5.

Remark 6.2. By focusing on the case PY /∈ Γ0(PX , α), and by observing
that

min
V : EMD(PY ,V )≤L

dL1(V, PX) (6.62)

is a monotonic non-increasing function of L, the Security Margin can
be expressed in explicit form as

SMα(PX , PY ) = arg min
L′

min
V : EMD(PY ,V )≤L′

∣∣∣∣dL1(V, PX)− 2α
(1− α)

∣∣∣∣ .
(6.63)

By looking at the behavior of the Security Margin as a function
of α, we see that SMαb(PX , PY ) = 0, meaning that, whenever the
fraction of corrupted samples reaches the critical value αb, the sources
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Figure 6.5: Geometrical interpretation of the Security Margin between two sources
X (∼ PX) and Y (∼ PY ).

can not be distinguished even if the Attacker does not introduce any
distortion. On the contrary, setting α = 0 corresponds to studying the
distinguishability of the sources with uncorrupted training; in this case
we have SM0(PX , PY ) = EMD(PX , PY ), in agreement with Defini-
tion 4.1. With reference to Figure 6.5, it is easy to see that when α = 0
the hexagon representing Γ0(PX , α) collapses into the single point PX
and the Security Margin corresponds to the EMD between Y and X.
Eventually, we notice that, for α > 0, the value of the Security Margin
in (6.63) is less than EMD(PX , PY ). This is also an expected behavior
since the general setting considered in this chapter is more favorable to
the Attacker than the setting of Chapters 3 and 5.

We conclude our discussion by arguing that, as for the settings
studied in the previous chapters, the Security Margin is symmetric
with respect to the two sources X and Y , that is, SMα(PY , PX) =
SMα(PX , PY ). To show that this is the case, we provide the following
informal argument. By looking at (6.63), we observe that the pmf V ′
associated with the minimum L, for which we have EMD(PY , V ′) =
SMα(PX , PY ), can be obtained through the application of a map
SPY V that works as follows: it does not modify a portion α/(1 − α)
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of PY and moves the remaining mass into an equal amount of PX
in a convenient way (i.e., in such a way as to minimize the overall
distance between the masses). The inverse map can be applied to
bring the same quantity of mass from PX to PY , while leaving as
untouched the remaining mass, thus obtaining a V ′′ which satisfies
EMD(PX , V ′′) = EMD(PY , V ′) (because of the symmetry of the per-
symbol distortion d) and dL1(V ′′, PY ) = dL1(V ′, PX) = 2α/(1 − α).
Arguably, V ′′ is the pmf for which EMD(PX , V ′′) = SMα(PY , PX);
hence, SMα(PY , PX) = SMα(PX , PY ).

Bernoulli Sources

In order to get some insights on the practical meaning of αb and SMα,
we consider the simple case of two Bernoulli sources with parameter
q = PX(1) and p = PY (1). Assuming that no distortion is allowed to the
Attacker, the minimum fraction of samples that A must add to induce
a decision error is, according to (6.58), αb = |p−q|

1+|p−q| . For instance, and
rather obviously, when |p− q| = 1, to win the game A must introduce
a number of fake samples equal to the number of samples of the correct
training sequence, i.e., α = 0.5. With regard to the Security Margin, we
have:

SMα(p, q) =


|q − p| − α

1− α α < αb

0 α ≥ αb.
(6.64)

Figure 6.6 illustrates the behavior of SMα(p, q) as a function of α
when p = 0.3 and q = 0.7. The blinding corruption value is αb = 0.286.
Obviously, when α = 0, we obtain the same expression derived in
Section 4.3 (Equation (4.10)).

6.6 The DG-CTRr Game

In this section, we study the second variant of the game with corrupted
training, in which A observes the training sequence and can replace a
selected fraction of samples.
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Figure 6.6: Security Margin as a function of α for Bernoulli sources with parameters
p = 0.3 and q = 0.7 (αb = 0.286).

6.6.1 The Adversarial Setup

Let τm denote the original m-sample long training sequence drawn
from X and let M be a subset of m2 = αm indexes in [1, 2, . . . ,m].
Let m1 = m − m2. The Attacker can choose the index set M and
replace the corresponding samples with m2 fake samples. More formally,
given the original training sequence τm, the training sequence observed
by the Defender is tm = σ(τm1

M̄ ‖τm2), where M̄ is the complement of
M in [1, 2 . . .m], τm1

M̄ is the set of original (non-attacked) samples, and
τm2 is the sequence with the fake samples introduced by the Attacker.
The adversarial decision setup is illustrated in Figure 6.7 for the case of
targeted attack, where the corruption of the training samples depends
on the to-be-attacked sequence yn. This is the version of the game we

Figure 6.7: Schematic representation of the DG-CTRr game (with targeted corrup-
tion). Given the original training sequence τm, the adversary can replace a selected
subset of m2 training samples with fake ones.
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focus on, the extension to the case of non-target attack being easily
obtained by following the same approach used in Section 6.4.4.

Arguably, this scenario with replacement of the samples is more
favorable to the Attacker with respect to the DG-CTRa setting.

6.6.2 Definition of the DG-CTRr Game

Below, we formally define the detection game with replacement of
selected samples, namely the DG-CTRr (SD ,SA , u) game.

Defender’s Strategies

As in the DG-CTRa game, in order to be sure that the false positive error
probability is lower than 2−nλ, the Defender adopts a worst case strategy
and considers the maximum of the false positive error probability over
all the possible PX and over all the possible attacks that the training
sequence may have undergone, yielding:

SD =
{

Λn×m ⊂ Pn × Pm: max
PX∈P

max
s∈SA ,T

PFP ≤ 2−λn
}
. (6.65)

While the above expression is formally equal to that of the DG-CTRa
game (see (6.6)), the maximization over SA ,T is now more cumbersome,
due to the additional degree of freedom available to the Attacker, who
can selectively remove the samples of the original training sequence.
In fact, even if D knew the position of the corrupted samples, simply
throwing them away would not guarantee that the remaining part of the
sequence would follow the same statistics of X, since the Attacker might
have deliberately altered them by selectively choosing the samples to
replace.

Attacker’s Strategies

With regard to the Attacker, the part of the attack working on the
test sequence yn is the same as for the DG-CTRa case, while the part
regarding the corruption of the training sequence must be redefined.
To this purpose, we observe that the corrupted training sequence may
be any sequence tm for which dH(tm, τm) ≤ αm, where dH denotes
the Hamming distance. Given that the Defender bases his decision
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on the type of tm, it is convenient to rewrite the constraint on the
Hamming distance between sequences as a constraint on the L1 distance
between the corresponding types. In fact, by looking at the empirical
distribution of the corrupted sequence, searching for a sequence tm s.t.
dH(tm, τm) ≤ αm is equivalent to searching for a pmf Ptm ∈ Pm for
which dL1(Ptm , Pτm) ≤ 2α (see the proof of Lemma 3.5 in Chapter 3).
Therefore, the set of strategies of the Attacker is defined by

SA = SA ,T × SA ,O, (6.66)

where

SA ,T = {Q(Pτm , Pyn): Pm × Pn → Pm
such that dL1(Q(Pτm , Pyn), Pτm) ≤ 2α}, (6.67)

SA ,O = {SnYZ(Pyn , Ptm): Pn × Pm → An(L,Pyn)}. (6.68)

Note that, in this case, the function Q(·, ·) gives the type of the whole
training sequence observed by D (not only the fake subpart, as it was
in the DG-CTRa case), that is, Ptm = Q(Pτm , Pyn).

In the following we find convenient to express the attack strategies
in SA ,T in an alternative way. Since the Attacker replaces the samples of
a subpart of the training sequence, the corruption strategy is equivalent
to first removing a subpart of the training sequence and then adding a
fake subsequence of the same length. Then, reordering is performed to
hide the position of the fake samples. By focusing on the type of the
observed training sequence, we can write:

Ptm = Pτm − αQR(Pτm , Pyn) + αQA(Pτm , Pyn). (6.69)

where QR(Pτm , Pyn) and QA(Pτm , Pyn) (both belonging to Pm2) are the
types of the removed and injected subsequences respectively. In order to
simplify the notation, in the following we will avoid to indicate explicitly
the dependence of QR(Pτm , Pyn) and QA(Pτm , Pyn) on Pτm , Pyn , and
will indicate them as QR( ) and QA( ). Furthermore, we will use the
notation QR and QA whenever the dependence on the arguments is
not relevant. By varying QR and QA, we obtain all the pmf’s that can
be produced from Pτm by first removing and later adding m2 samples.
Of course not all pairs (QR, QA) are admissible since the Ptm resulting
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from (6.69) must be a valid pmf, i.e., it must be nonnegative for all the
symbols of the alphabet X .

Payoff

The payoff function is defined as before, that is

u(Λn×m, (Q(·, ·), SnYZ(·, ·))) = −P FN. (6.70)

6.7 Solution of the DG-CTRr Game

Let us first rewrite the set of strategies available to D by using the
attack formulation given in (6.69). For given PX , QR and QA, PFP is
the probability that X generates two sequences xn and τm, such that
the pair of type classes (Pxn , Pτm−α(QR( )−QA( ))) falls outside Λn×m.
Therefore:

SD =
{

Λn×m: max
PX∈P

max
QR( ),QA( )

∑
Pyn∈Pn

PY (T (Pyn))

·
∑

(Pxn ,Ptm )∈Λ̄n×m
PX(T (Pxn))

·
∑

Pτm∈Pm:
Pτm−α(QR( )−QA( ))=Ptm

PX(T (Pτm)) ≤ 2−λn
}
. (6.71)

By proceeding as in the proof of Lemma 6.1, it is easy to prove that
the asymptotically optimal strategy for the Defender corresponds to
the following:

Λn×m,∗ =
{

(Pxn , Ptm):

min
QR,QA∈Pm2

h (Pxn , Ptm + α(QR −QA)) ≤ λ− δn
}
, (6.72)

where δn tends to zero as n → ∞ and the minimization is limited to
the QR and QA in Pm2 such that Ptm + α(QR − QA) is a valid pmf.
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Consequently, the optimal attack strategy is given by:

(Q∗(Pτm , Pyn), Sn,∗YZ(Pyn , Ptm))

= argmin
Ptm s.t. dL1 (Ptm ,Pτm )≤2α

SnYZ∈A
n(L,Pyn )

[
min
QR,QA

h (Pzn , Ptm + α(QR −QA))
]
,

(6.73)

hence resulting in the following theorem.

Theorem 6.6 (Equilibrium Point of the DG-CTRr Game). The DG-CTRr
game with targeted corruption is a dominance solvable game, whose only
rationalizable equilibrium corresponds to the profile (Λn×m,∗, (Q∗, Sn,∗YZ ))
given by Equations (6.72) and (6.73).

In order to study the asymptotic payoff of the DG-CTRr game at
the equilibrium, we parallel the analysis carried out in Section 6.4.3.
By considering the case L = 0, as a consequence of the attack to the
training sequence, the set of pairs of types for which D will accept H0
is given by

Γn0 (λ, α) = {(Pyn , Pτm): ∃ Ptm s.t. dL1(Ptm , Pτm) ≤ 2α
and (Pyn , Ptm) ∈ Λn×m,∗}. (6.74)

If we fix the type of the original training sequence, we get:

Γn0 (Pτm , λ, α) = {Pyn : ∃ Ptm s.t. dL1(Ptm , Pτm) ≤ 2α
and Pyn ∈ Λn,∗(Ptm)}

= {Pyn : ∃ Ptm , ∃ Q,Q′ ∈ Pm2 , s.t.
dL1(Ptm , Pτm) ≤ 2α
and h(Pxn , Ptm − αQ′ + αQ) ≤ λ− δn}. (6.75)

By letting n go to infinity, we obtain the asymptotic counterpart of the
above set, which, for a generic R ∈ P , takes the following expression:

Γ0(R, λ, α) = {P : ∃ P ′, Q,Q′, s.t. dL1(P ′, R) ≤ 2α
and hc(P, P ′ − αQ′ + αQ) ≤ λ}. (6.76)

When L 6= 0, we obtain:

Γ(R, λ, α, L) = {P : ∃V ∈ Γ0(R, λ, α) s.t. EMD(P, V ) ≤ L}. (6.77)
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Given the above definitions, it is straightforward to extend Theorem 6.3
to the DG-CTRr case, thus proving that the set in (6.77) evaluated
in R = PX represents the indistinguishability region of the DG-CTRr
game.

6.8 Source Distinguishability in the DG-CTRr Setup

We are now interested in studying the distinguishability of two sources
X and Y in the DG-CTRr setup and compare it with the result we have
obtained for the DG-CTRa case. To do so, we consider the behavior of
the indistinguishability region when λ tends to zero. We have:

Γ(PX , α, L) = {P : ∃ V ∈ Γ0(PX , α) s.t. EMD(P, V ) ≤ L}, (6.78)

where

Γ0(PX , α) = {P : ∃ P ′, Q,Q′ s.t. dL1(P ′, PX) ≤ 2α
and P = P ′ + α(Q−Q′)}

=
{
P : ∃ P ′ s.t. dL1(P ′, PX) ≤ 2α
and dL1(P, P ′) ≤ 2α}. (6.79)

We observe that, the set in (6.79) can be equivalently rewritten as

Γ0(PX , α) = {P : dL1(P, PX) ≤ 4α}. (6.80)

To see why, we first notice that the set in (6.79) is contained in
(6.80). Indeed, from the triangular inequality we have that, for any P ′,
d(P, PX) ≤ dL1(P, P ′) + dL1(P ′, PX). Then, if P belongs to Γ0(PX , α)
in (6.79), it also belongs to the set in (6.80). To see that the two sets are
indeed equivalent, it is sufficient to show that the reverse implication
also holds. To this purpose, we observe that, whenever dL1(P, PX) ≤ 4α,
a type P ∗ can be found such that its distance from both P and PX is
less or at most equal to 2α. In fact, by letting P ∗ = P+PX

2 , we have

dL1(P, P ∗) = dL1(P ∗, PX) =
∑
i

∣∣∣∣P (i)− PX(i)
2

∣∣∣∣,
dL1(P, PX) =

∑
i

|PX(i)− P (i)| = 2dL1(P, P ∗). (6.81)
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If dL1(P, PX) ≤ 4α, then

dL1(P, P ∗) = dL1(P ∗, PX) = dL1(P, PX)/2 ≤ 2α, (6.82)

permitting us to conclude that the sets in (6.79) and (6.80) are
equivalent.

Therefore, the set in (6.78) can be rewritten as

Γ(PX , α, L) =
{
P : min

V : EMD(P,V )≤L
dL1(V, PX) ≤ 4α

}
. (6.83)

Arguably, Γ(PX , α, L) corresponds to the ultimate indistinguishability
region of the DG-CTRr game (the extension of Theorem 6.5 to this
case going along the same steps).

Upon inspection of (6.80), we see that, as expected, the ultimate
indistinguishability region for L = 0 (and hence, also for the case L 6= 0
in (6.83)) is larger than that of the DG-CTRa game (see (6.54)), thus
confirming that the game with sample replacement is more favorable to
the Attacker (a graphical comparison between the indistinguishability
regions for the two setups is shown in Figure 6.8). As a matter of fact,
for the Attacker, the advantage of the DG-CTRr setup with respect
to the DG-CTRa setup depends on α. For small values of α and for
α close to 1/2, the indistinguishability regions of the two games are

Figure 6.8: Comparison of the ultimate indistinguishability regions for the DG-
CTRa and DG-CTRr games with L = 0 (no corruption of the test).
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very similar, while for intermediate values of α the indistinguishability
region of the DG-CTRr game is considerably larger than that of the
DG-CTRa game (the maximum difference between the two regions is
obtained for α ≈ 0.3). When α = 1/2 the Attacker always wins, since
he is able to bring any pmf inside the acceptance region regardless of
the corruption setup, while for α = 0, we fall back into the detection
game without corruption of the training sequence, thus making the two
versions of the game equivalent.

Given two sources X and Y , the blinding corruption level takes the
expression:

αb = dL1(PY , PX)
4 . (6.84)

Since dL1(PY , PX) ≤ 2 for any pair (PY , PX),7 the blinding value for
the DG-CTRr game is lower than the blinding value for the DG-CTRa
game. The two expressions are identical when the two sources have
disjoint support, in which case αb = 1/2.

Below, we give the definition of the Security Margin.

Definition 6.3 (Security Margin in the DG-CTRr Setup). LetX ∼ PX and
Y ∼ PY be two discrete memoryless sources. The maximum distortion
for which the two sources can be reliably distinguished in the DG-CTRr
setup, in the presence of a fraction α of corrupted samples, is given by

SMα(PX , PY ) = L∗α, (6.85)

where L∗α is the quantity which satisfies the following relation

min
V : EMD(PY ,V )≤L∗α

dL1(V, PX) = 4α, (6.86)

if PY /∈ Γ0(PX , α), and L∗α = 0 otherwise.

Considering again the case of two Bernoulli sources, and by adopting
the same notation of Section 6.5.2, we have that αb = |p− q|/4, while
the Security Margin is

SMα(p, q) =
{
|q − p| − 2α α < αb
0 α ≥ αb.

(6.87)

7The maximum value 2 is taken when the two distribution have disjoint support.
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Figure 6.9: Security Margin as a function of α for Bernoulli sources with parameters
p = 0.3 and q = 0.7 (αb = 0.1).

Figure 6.9 plots SMα as a function of α when p = 0.3 and q = 0.7.
The blinding value is αb = 0.1 which, as expected, is lower than the
value we found for the DG-CTRa setup.
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7
Summary and Outlook

Aiming at giving adversarial signal processing a sound theoretical basis,
in this monograph we lay the basis of a general theory that takes into
account the impact that an adversary has on the design of effective
signal processing tools, by focusing on the most common problem in
adversarial signal processing, namely binary detection or hypothesis
testing.

The main idea behind the theory consists in casting the adversarial
binary decision problem into a game-theoretic framework, which permits
to rigorously define the goals and the actions available to the contenders,
namely, the Defender and the Attacker, and study the interplay between
them by resorting to methods of information theory and large deviation
theory. The outcome of the game opens the way to the analysis of the
distinguishability of information sources in the presence of attacks by
resorting to concepts of optimal transport, which permits to summarize
the source distinguishability in a concise and elegant way. Specifically,
the theory permits to state a necessary and sufficient condition under
which it is possible to devise a detector for which both the false negative
and false positive error probabilities tend to zero exponentially fast. Such
a condition requires that the distortion introduced into the test sequence
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during the attack is lower than a quantity, which we called Security
Margin, strictly related to the Earth Mover Distance between the pdf’s
governing the generation of the test sequence under the two hypotheses
being tested. The theory also permits to derive the best achievable false
negative error exponent for a fixed false positive exponent, even though
a closed form expression can be obtained only in some specific cases.

Several versions of the binary detection game have been addressed,
depending on the knowledge available to the Defender and the Attacker
about the statistical characterization of the system under analysis, and
the behaviour of the Attacker. In all these cases, the game is solved
under some limiting, yet reasonable, assumptions on the statistics used
by the Defender to make a decision.

Overall, the bulk of theory summarized in this monograph con-
tributes to show the potentiality of game-theoretic concepts coupled
with tools of information theory and statistics, and points out interesting
synergies with optimization theory.

The study of signal processing in adversarial setup is an open
research field and several directions for future research can be pointed
out starting from the work of this monograph. To start with, efforts
can be made to relax some of the assumptions behind the theory. In
particular, the memoryless assumption for the sources could be removed
by considering more realistic models, e.g., Markov sources or renewal
processes, which are commonly used to describe a wide variety of sources
with memory and, at the same time, still amenable to be studied with
the method of types. Relaxing the other main assumption behind the
analysis, i.e., the assumption that the detection is based on a first-
order statistical analysis, would allow to extend the applicability of the
theory, especially for sources with memory, to cases wherein looking
at higher-order statistics may help in making a correct decision. This
extension – however comes with a number of additional difficulties,
since it complicates the derivation of the optimal attack and then the
analysis of the source distinguishability. We also mention the possibility
of extending the analysis to the case of continuous sources. While
the general ideas would remain the same, passing from discrete to
continuous sources is non trivial since it requires that the method of
types be extended to continuous sources. In a more elegant way, the
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case of continuous sources can be studied by resorting to the Laplace
integration method and, more generally, to the saddle point method
[89, Chapter 4, p. 101], representing an analog of the method of types
for the case of continuous sources.

More generally, adversarial classification or multiple hypothesis test-
ing is another interesting problem which is worth studying under a
unified framework, permitting to extend the theory to a large number
of practical applications where the detector must distinguish among
different classes of sources. Finally, it would be interesting to strengthen
the connection with the field of adversarial machine learning, by ex-
tending the theoretical framework and analysis to other problems of
adversarial binary detection with corruption of the training data, e.g.,
by considering a scenario where the Defender relies on multiple training
sequences, and the Adversary interferes with the learning process by
adopting a corruption strategy explicitly thought for such a case.
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A
Regularity Properties of the Admissibility Set

To derive the theorems on the asymptotic behavior of the payoff in
the various versions of the detection game, we need to prove some
regularity properties of the set of admissible transportation maps A
defined in (3.14), characterizing the set of strategies available to the
Attacker. Such properties hold since the admissible set A is a convex
polytope, i.e., the set of constraints defining A is linear.

To derive our results, we first need to define a distance measure be-
tween transportation maps, that is a function ds: R|X |×|X |×R|X |×|X | →
R+, where we remind that |X | corresponds to the cardinality of the
space the simplex P lives in Section 2.1. Let us (arbitrarily) consider
the L1 distance; then, given two maps (SPV , SQR), ds(SPV , SQR) =∑
i,j |SPV (i, j)− SQR(i, j)|.

Lemma A.1. Let P ∈ P and let P ′ be any pmf in the neighbor-
hood of P of radius τ , for some τ > 0, i.e., P ′ ∈ B(P, τ). Then,
δH(A(L,P ′),A(L,P )) ≤ |X |2 · τ , implying that δH(A(L,P ′),A(L,P ))
→ 0 as τ →∞, uniformly in P .

Furthermore, if we take P ′ ∈ Pn, the following result holds: for
any ε > 0, there exists τ∗ and n∗ such that ∀ τ < τ∗ and n > n∗,
δH(An(L,P ′),A(L,P )) ≤ ε, ∀P ′ ∈ B(P, τ) ∩ Pn, and ∀P ∈ P .
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Proof. The lemma follows from the fact that A(L,P ) is built by in-
tersecting a finite number of half-spaces and is also bounded, i.e., is a
convex polytope [90, Chapter 2], [91, p. 31]. By considering a P ′ close
to P , we are perturbing the vector of the known terms of the linear
constraints of the system which defines the admissibility set.

Given P ∈ P and P ′ ∈ B(P, τ), for any map in A(L,P ) we can
choose a map SP ′V ′ that works as follows: for the bins i such that
P ′(i) ≥ P (i), the same mass SPV (i, j) is moved from bin i to j, ∀j 6= i,
while for j = i, SP ′V ′(i, j) = SPV (i, j) + (P ′(i) − P (i)). For the bins
i such that P ′(i) < P (i), first the index set {j: SPV (i, j) 6= 0} is
sorted in decreasing order with respect to the amount of distortion
introduced per unit of mass delivered d(i, j); then, the mass is moved
from bin i to the first j in the ordered list, until the amount SPV (i, j)
is reached. Then, we pass to the second bin j in the list and go on
until all the mass is moved from bin i. It is easy to argue that the
map built in this way satisfies the distortion constraint (by construc-
tion, the distortion associated to SP ′V ′ is less than that introduced
by the admissible map SPV )1 both in the case of additive distortion
constraint (see (3.14)) and L∞ distortion constraint (see (3.43)), which
are the cases we focus on in this monograph. Then, SP ′V ′ ∈ A(L,P ′).
Besides, by construction |SP ′V ′(i, j)−SPV (i, j)| ≤ τ , ∀i, j. Accordingly,
maxSPV ∈A(L,P ) d(SPV ,A(L,P ′)) ≤ ds(SPV , SP ′V ′) ≤ |X |2 · τ and then
δH(A(L,P ′),A(L,P )) ≤ |X |2 · τ , thus concluding the proof of the first
part.2

Let us now take P ′ ∈ Pn. By exploiting the density of the rational
numbers within the real ones, for any given map SP ′V ∈ A(L,P ′), we can
find a map SnP ′V ′ ∈ An(L,P ′) (i.e., having the same input marginal P ′
and satisfying the distortion constraint), such that |SnP ′V ′(i, j)

1Remember that any move from a bin to itself does not increase the distortion.
2We are implicitly exploiting the symmetry of the problem w.r.t.

P and P ′, according to which maxSP V ∈A(L,P ) d(SPV ,A(L,P ′)) =
maxSP ′V ′∈A(L,P ′) d(SP ′V ′ ,A(L,P )) (see the definition of the Hausdorff dis-
tance in Section 2.1).
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− SP ′V (i, j)| ≤ 1/n. In fact, for any fixed i, we can define SnP ′V ′ as:

SnP ′V ′(i, j) = max{k: k/n ≤ SP ′V (i, j)}/n, ∀j 6= i, (A.1)

SnP ′V ′(i, i) = 1−
∑
j 6=i

SP ′V (i, j), (A.2)

where SnP ′V ′(i, i) ∈ Qn by construction (since the input distribution be-
longs to Pn). It is easy to argue that the map defined in (A.2) belongs to
An(L,P ′). By observing that SP ′V (i, j)−1/n ≤ SnP ′V ′(i, j) ≤ SP ′V (i, j),
∀i, j, j 6= i, and SP ′V (i, i) ≤ SnP ′V ′(i, i) ≤ SP ′V (i, i) + (|X | − 1)/n, ∀i,
we argue that ds(SnP ′V ′ , SP ′V ) ≤ 2|X |2/n. Therefore, by considering the
discrete set An, we can write

δH(An(L,P ′),A(L,P )) ≤ δH(An(L,P ′),A(L,P ′))
+ δH(A(L,P ′),A(L,P ))
≤ δH(An(L,P ′),A(L,P ′)) + |X |2 · τ
≤ 2|X |2/n+ |X |2 · τ. (A.3)

Then, for a fixed ε, by choosing τ∗ and n∗ such that |X |2 · (2/n∗ +
τ∗) = ε, we have that for any τ smaller than τ∗ and n larger than n∗,
δH(An(L,P ′),A(L,P )) ≤ ε, thus concluding the second part of the
proof.

From the above lemma, it is easy to prove the following theorem.

Theorem A.2. Let SPV ∈ A(L,P ) for some P ∈ P . For any point
P ′ ∈ B(P, τ), for some τ > 0, we can find a map SP ′V ′ ∈ A(L,P ′) such
that V ′ ∈ B(V, ε), with ε ≤ |X |2 · τ .

Similarly, for any ε′ > 0, there exists τ∗ and n∗ such that for all
τ < τ∗ and n > n∗ we have the following: for any map SPV ∈ A(L,P )
a map SnP ′V ′ in An(L,P ′) can be found such that V ′n ∈ B(V, ε′), ∀P ′ ∈
B(P, τ) ∩ Pn, and ∀P ∈ P .
Proof. It is easy to see that for any map SPV ∈ A(L,P ) we can choose
a map SP ′V ′ ∈ A(L,P ′) such that, for all j,

V ′(j) =
∑
i

SP ′V ′(i, j) <
∑
i

(SPV (i, j) + |SP ′V ′(i, j)− SPV (i, j)|)

≤ V (j) + ds(SP ′V ′ , SPV )
≤ V (j) + δH(A(L,P ′),A(L,P )), (A.4)
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and, similarly, V ′(j) ≥ V (j) − δH(A(L,P ′),A(L,P )). Accordingly, if
P ′ ∈ B(P, τ), by exploiting Lemma A.1, we get

|V ′(j)− V (j)| < δH(A(L,P ′),A(L,P )) < |X |2 · τ, (A.5)

and hence V ′ ∈ B(V, |X |2 · τ). Similarly, for the second part, we observe
that, from Lemma A.1, for a proper choice of the admissible map SnP ′V ′
we have

|V ′n(j)− V (j)| < δH(An(L,P ′),A(L,P )) ≤ 2|X |2/n+ |X |2 · τ. (A.6)

Then, for a fixed ε, we can choose τ∗ and n∗ such that 2|X |2/n∗+ |X |2 ·
τ∗ = ε.
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B
Asymptotic Behavior of the Indistinguishability

Regions

B.1 Behavior of Set Γ (and Γtr) for λ → 0

We start by studying the behavior of Γ(PX , λ, L) when λ → 0. More
specifically, we show that for small values of λ the set Γ(PX , λ, L)
approaches Γ(PX , L) smoothly.

As a first step, we highlight the following proposition.

Proposition B.1. EMD(P,Q) is a continuous and convex function of
P and Q.

Proof. The proposition follows immediately if we look at the EMD as
the solution of a LP problem, wherein P and Q are the known terms of
the linear constraints. In fact, the minimum of the objective function
of an LP problem is a continuous and convex function of the known
terms of the linear constraints (known result in operations research [90,
Chapter 2]).

By exploiting the continuity of the divergence and the continuity
and convexity of the EMD, we now show that when λ tends to zero,
the set Γ(PX , λ, L) tends to Γ(PX , L) regularly. More precisely, the
following lemma holds.

154
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Figure B.1: Graphical representation of the set Γτ (PX , L).

Lemma B.1. LetX ∼ PX be an information source and L the maximum
allowable average per-letter distortion in the DG-KS setup. The set
Γ(PX , λ, L), defined in (4.1), satisfies the following property:

∀τ > 0, ∃λ > 0 s.t. ∀P ∈ Γ(PX , λ, L) ∃P ′ ∈ Γ(PX , L)
s.t. P ∈ B(P ′, τ),

where Γ(PX , L) is defined as in (4.2) and B(P ′, τ) is a ball centered in
P ′ with radius τ .

Proof. Throughout the proof we will refer to Figure B.1 where all the
sets and quantities involved in the proof are sketched. For any τ > 0,
we consider the set:

Γτ (PX , L) = {P : ∃P ′ ∈ Γ(PX , L) s.t. P ∈ B(P ′, τ)}. (B.1)

With such a definition, we can rephrase (B.1) as follows:

∀τ > 0, ∃ λ > 0 s.t. Γks(PX , λ, L) ⊆ Γτ (PX , L). (B.2)

For the sake of simplicity, we will prove a slightly stronger version
of the lemma by means of the following 2-step proof. First, we will show
that a subset of Γτ (PX , L) exists having the following form:

Γsubτ (PX , L) = {P : EMD(P, PX) ≤ L+ δ(τ)}, (B.3)

for some δ(τ) > 0. Then, we will prove that for small enough λ, any
P ∈ Γ(PX , λ, L) belongs to Γsubτ (PX , L).
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To start with, let P ′ be any point on C(Γ(PX , L)), the boundary of
Γ(PX , L). Among all the points on the boundary of the ball of radius τ
and centered in P ′, consider the one, name it P ′′, lying along the direc-
tion given by the line joining PX and P ′ and falling outside Γ(PX , L)
(see Figure B.1). By the convexity of the EMD (Property B.1) and since
EMD = 0 if and only if P = PX , we conclude that EMD(P ′′, PX) >
EMD(P ′, PX). Since P ′ lies on the boundary of Γ(PX , L) we know
that EMD(P ′′, PX) = L+ µ, where µ = µ(P ′, τ) is a strictly positive
quantity. We now show that the first part the proof holds by letting
δ(τ) = minP ′∈C(Γ(PX ,L)) µ(P ′, τ). To this purpose, let P be any point in
set Γsubτ (PX , L) for the above choice of δ(τ). If P ∈ Γ(PX , L), then, by
definition, P also belongs to Γτ (PX , L). On the other side, if P lies out-
side Γ(PX , L), let us denote by P ∗ the point lying on the boundary of the
set Γ(PX , L) along the line joining P and PX , and let P ∗∗ be the point
where the same line crosses the ball B(P ∗, τ) outside Γ(PX , L). Now,
EMD(P, PX) ≤ L+ δ(τ) ≤ EMD(P ∗∗, PX) by construction. Because of
the convexity of EMD, then P ∈ B(P ∗, τ) as required.

Let us now pass to the second part of the proof. First, we notice
that set Γ(PX , λ, L) depends on λ only through the acceptance region
Λ∗(PX , λ). If λ is small, due to the continuity of the divergence, for
any Q ∈ Λ∗(PX , λ) we will have Q ∈ B(PX , κ(λ)) for some κ(λ) such
that κ(λ)→ 0 when λ→ 0. Let, then, P be a pmf in Γ(PX , λ, L). By
definition, a Q ∈ Λ∗(PX , λ) exists s.t. EMD(P,Q) ≤ L. If λ is small, due
to the proximity of Q to PX and the continuity of the EMD we have that
EMD(P, PX) < EMD(P,Q) + η(λ) ≤ L+ η(λ) with η(λ) approaching 0
when λ→ 0. In particular, if λ is small enough η(λ) < δ(τ) and hence
P ∈ Γsubτ (PX , L) which in turn is entirely contained in Γτ (PX , L) thus
completing the proof.

In the same way, we can prove that Lemma B.1 holds also when
Γ(PX , λ, L) is replaced by Γtr(Q,λ, L) and Γ(PX , L) by Γtr(Q,L) with
a generic Q instead of PX . To be convinced about that, it is sufficient to
note that the only difference between Γ and Γtr relies on the test function
which defines the acceptance region, respectively the divergence and
the hc function. Since the hc function is still a continuous and convex
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function and, likewise D, is equal to zero if and only if its arguments
are identical, the proof that we used for Lemma B.1 still holds.

B.2 Behavior of ΓL∞ for λ → 0

We prove that when λ → 0 ΓL∞(PX , λ, L) approaches ΓL∞(PX , L)
regularly, in the sense stated by the following lemma.
Lemma B.2 (Extension of Lemma B.1 to the L∞ Case). Let X ∼ PX
be an information source and L the maximum per-sample distortion
allowed to the Attacker. The set ΓL∞(PX , λ, L), defined in Section 3.5,
satisfies the following property:

∀τ > 0, ∃ λ > 0 s.t., ∀P ∈ ΓL∞(PX , λ, L)
∃P ′ ∈ ΓL∞(PX , L) s.t. P ∈ B(P ′, τ). (B.4)

Proof. We will prove the lemma by assuming that the distance defin-
ing the ball B(P ′, τ) is the L1 distance, extending the proof to other
distances being straightforward.

For a fixed τ > 0, let P be a pmf in ΓL∞(PX , λ, L) for some λ.
This means that at least one pmf Q ∈ Λ∗(PX , λ) exists, such that P
can be mapped into Q with maximum shipment distance lower than
or equal to L. From Equation (3.22) and by exploiting the continuity
of the divergence function, we argue that Q ∈ B(PX , γ(λ)) for some
positive γ(λ), and where γ(λ)→ 0 as λ→ 0. Accordingly, PX can be
written as PX(j) = Q(j) + γ(j), ∀j, where

∑
j∈X |γ(j)| < γ(λ). Note

that, by construction,
∑
j γ(j) = 0 and γ(j)→ 0 when λ→ 0. Let SPQ

be an admissible map bringing P into Q (such a map surely exists by
construction). We prove the lemma by explicitly building a pmf P ′ and
a new admissible transportation map S′, such that, P ′ is arbitrarily
close to P (for a small enough λ) and S′ maps P ′ into PX . We start by
introducing two new quantities, namely γ+(j), defined as follows:

γ+(j) = γ(j) if PX(j)−Q(j) ≥ 0
γ+(j) = 0 if PX(j)−Q(j) < 0, (B.5)

and γ−(j) defined as
γ−(j) = −γ(j) if PX(j)−Q(j) < 0
γ−(j) = 0 if PX(j)−Q(j) ≥ 0. (B.6)
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Figure B.2: Geometric interpretation of γ+, γ− and D(j).

A graphical interpretation of γ+ and γ− is given in Figure B.2. Clearly,∑
j γ
−(j) =

∑
j γ

+(j). With the above definitions, we can look at
the demand distribution Q as consisting of two amounts: the mass
distribution D, with D(j) = min{PX(j), Q(j)}, and γ−. According to
the superposition principle, the map SPQ can then be split into two
sub-maps: one that satisfies the demand of D (let us call it SDPQ), and
one that satisfies the demand of γ− (let us call it SγPQ). The same
distinction can be made in the source distribution:

P (i) =
∑
j

SDPQ(i, j) +
∑
j

SγPQ(i, j) = PD(i) + Pγ(i), (B.7)

where PD and Pγ are the masses in the source distribution which are
used to satisfy the mass demand pertaining to D and γ− according to
mapping SPQ. Then,

∑
i PD(i) = D and

∑
i Pγ(i) = γ−. In order to

construct the pmf P ′ we are looking for, we simply remove from P the
amount of mass Pγ used to fill γ− and redistribute it according to γ+.
Specifically, we have

P ′(i) = PD(i) + γ+(i) (B.8)
S′(i, j) = SDPQ(i, j) + γ+(j)δ(i, j), (B.9)

The version of record is available at: http://dx.doi.org/10.1561/0100000102



B.2. Behavior of ΓL∞ for λ→ 0 159

where δ(i, j) is equal to 1 if i = j and 0 otherwise. It is easy to see that
applying the transportation map S′(i, j) to P ′ yields PX . Besides, from
the procedure adopted to build S′, it is evident that

max
(i,j):S′(i,j)6=0

|i− j| ≤ max
(i,j):SPQ(i,j)6=0

|i− j| ≤ L, (B.10)

(the only new shipments introduced are from a bin to itself). In addition,
the distance between P ′ and P is, by construction, lower than γ(λ),
which can be made arbitrarily small by decreasing λ, thus completing
the proof of the lemma.
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C
Security Margin Computation as a Minimum

Cost Flow Problem

This appendix includes the proof of the closed form expression in (4.13)
for the Security Margin in the case of L1 distance (Section 4.4.3).

When d corresponds to the L1 distance, the per-letter distortion
(or cost) is d(i, j) = |i − j|, for i, j ∈ X , which obviously satisfies the
Monge property (see Section 2.3); hence, the EMD can be computed
by applying the NWC rule (see Section 2.3.2). By formulating the TP
problem as a minimum cost flow problem [50, Section 1.2], it is possible
to find a closed form expression for the minimum transportation cost,
which corresponds to (4.13).

To present the arguments, we refer to the example of TP problem
illustrated in Figure C.1(a) (w.l.o.g.). Specifically, Figure C.1(a) illus-
trates two pmf’s PX and PY defined on an alphabet X ; the graphical
representation of the optimum transportation map between PX (source)
and PY (sink) based on the NWC rule, namely S∗XY, is reported in
Figure C.1(b).1 Let us consider the flow graph representation associated
to the TP problem. In a flow graph representation, each bin of the
alphabet is represented as a node; if, at bin i, the value of PX(i) is

1Although we limit our discussion to probability distributions, the TP problem,
and hence the derivation in this appendix, holds for arbitrary mass functions (see
the general formulation of the Hitchcock TP in (2.17)).
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Figure C.1: Example of TP problem: (a) Two pmf’s, PX and PY , defined over
X ; (b) optimum transportation map from PX (source) to PY (sink). The arrows
represent (non-zero) mass shipments according to the optimum map S∗XY obtained
through the application of the NWC rule.

larger than PY (i), then the corresponding node i is a (so-called) surplus
node; conversely, if it is smaller, then i is a demand node. The quantity
SXY(i, j) denotes the amount of flow on the arc between node i and j.
For a surplus (demand) node, the sum of the output flows, i.e., the flows
leaving the node, is larger (smaller) than the sum of the incoming flows,
i.e., the flows entering the node.2 An admissible solution for the TP
problem corresponds to a feasible flow in the graph, i.e., a flow which
satisfies: (i) the constraint on the flow capacity, and non-negativity, that
is, 0 ≤ SXY(i, j) ≤ 1, ∀i, j; (ii) the flow conservations constraint at the
nodes, that is, ∀i:∑

j 6=i
SXY(i, j)−

∑
k 6=i

SXY(k, i) = PX(i)− PY (i), (C.1)

where the first term in the left-hand side denotes the sum of the output
flows at node i and the second term the sum of the incoming ones. The
overall cost can be computed by summing the costs for all the arc flows
between pairs of nodes.

Solving the TP problem corresponds to find the feasible flow SXY
that minimizes the cost. Figure C.2(a) illustrates the minimum cost

2If PX(i) = PY (i), the node i is called transhipment node.

The version of record is available at: http://dx.doi.org/10.1561/0100000102



162 Security Margin Computation as a Minimum Cost Flow Problem

Figure C.2: Optimal transport problem in Figure C.1 represented as a minimum
cost flow problem.

flow graph associated to the TP problem in Figure C.1 (the flows over
the arcs are not reported for ease of representation); the flow map
corresponds then to S∗XY, obtained with the NWC rule. According to
the flow decomposition principle [79], given any feasible flow map for a
graph G, adding (or removing) an amount of flow on a cycle (i.e., a path
from a node to the same node), as well as adding and removing a similar
amount at any intermediate node on a path, leads to a feasible flow map,
since the overall flows at the nodes are preserved (flow conservation
property) [50, Section 1.2, p. 5]. By following this principle, we can
decompose a flow over multiple hops into a series of flows over single
hops (i.e., hops between consecutive nodes), getting a new graph G′.
Given the particular cost function adopted, the cost of moving a unit
of flow from i to j, j > i+ 1 (i.e., a multiple hop move) is equivalent to
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the sum of the costs of the moves (of the same unit of flow) from i to h
and from h to j, for i ≤ h ≤ j. Then, G′ achieves the same cost of the
initial graph G.

Figure C.2(b) shows the graphs with single hops obtained from the
graph in Figure C.2(a) by decomposing the flows as detailed above.
Because of the flow conservation, it is easy to argue that, if G is the
minimum cost flow graph associated to a TP problem, then, considering
G′, the flow on the arc from node 1 to 2 equals (PX(1)− PY (1)), the
flow from node 2 to 3 equals (PX(1)− PY (1)) + (PX(2)− PY (2)), and
so on. When, for some node s,

∑
i≤s(PX(i) − PY (i)) is negative, this

corresponds to a (positive) flow in the opposite direction i.e., from s+ 1
to s. With reference to the graph in Figure C.2, this happens when
s = 6, 7.

Therefore, the overall cost associated to such a graph takes the
expression: ∑

s∈X

∣∣∣∣ s∑
i=1

(PX(i)− PY (i))
∣∣∣∣. (C.2)

Then, (4.13) follows immediately.
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