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Private-Key Cryptography

* Traditional secret key cryptography uses one key
— shared by both sender and receiver

— if this key is disclosed communication secrecy is
compromised

* Traditional crypto is symmetric, parties are equal

— hence does not protect sender from receiver forging a
message & claiming it was sent by the sender

Public-Key Cryptography M. Barmi, University of Siena
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Public-Key Cryptography

* Probably most significant advance in the 3000
years history of cryptography

 Based on number theoretic concepts rather than
on substitutions and permutations

« Uses two keys — a public & a private key
* |tis asymmetric since parties are not equal

Public-Key Cryptography M. Barmi, University of Siena
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Public-Key Cryptography

* Public-key schemes are typically slower than
symmetric-key algorithms

— most commonly used in practice for the transport of
keys used for data encryption by symmetric
algorithms

— for encrypting small data items such as credit card
numbers and PINs.

« Complements rather than replaces private key
crypto

* |t is not intrinsically more secure than private key
crypto

Public-Key Cryptography M. Barmi, University of Siena
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Public-Key Cryptography

« Public-key/asymmetric cryptography involves the use of
two keys:

— a public-key, distributed by the owner to anybody,
— a private-key, known only to the owner.

« Each user will thus have a collection of public keys of all
the other users.

* |tis asymmetric because

— keys used to encrypt messages cannot be used to
decrypt them

Public-Key Cryptography M.%ﬁgii, University of Siena
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Asymmetrlc Cryptography
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Public-Key Cryptography M. Barmi, University of Siena
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Why Public-Key Crypto?

* |t was developed to address two key issues:
— key distribution
* how to communicate securely without trusting a KDC
— digital signatures

+ verify that a message is intact and comes from the
claimed sender

 Public invention due to Diffie & Hellman at Stanford
University in 1976

— The concept had been previously described in a classified
reportin 1970 by James Ellis (UK CESG) - and
subsequently declassified in 1987

Public-Key Cryptography M. Barmi, University of Siena
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Public-Key Applications

We can classify its uses into 3 categories:
* encryption/decryption (secrecy)
— sender encrypts the msg with recipient’s public key
 digital signatures (authentication & data integrity)
— sender encrypts msg with his/her private key
« key exchange (of session keys)
— several approaches, using one or two private keys .

Public-Key Cryptography M. Barmi, University of Siena
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Confidentiality, key distribution
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Public-Key Cryptography M. Barmi, University of Siena
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Cryptanalyst
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Public-Key Cryptography

M. Barmi, University of Siena
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Confidentiality and authentication

Source A Destination B
Encryption Y Encryption Z Decryption Y Decryption X Message
Algorithm Algorithm Algorithm Algorithm Dest.
A Z=Eub [Exra(X A
kub [Exra(X)] X= Dgua [Dkrb (Z)]
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Key Pair
Source

Key Pair
Source

Computationally expensive (4 operations of enc./dec.)

Public-Key Cryptography M. Barmi, University of Siena
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Public-Key Applications

Some algorithms are suitable for all uses, others are
specific to one

Table 9.2 Applications for Public-Key Cryptosystems

Algorithm Encryption/Decryption  Digital Signature Key Exchange
RSA Yes Yes Yes
Elliptic Curve Yes Yes Yes
Diffie-Hellman No No Yes
DSS No Yes No

Public-Key Cryptography M. Barmi, University of Siena



Requirements of Pub. Key Algorithms (DH)

1. Computationally easy to generate a key pair

2. Computationally easy for sender A to generate the
encrypted msg Y=Exp(X)

3. Computationally easy for recipient B to decrypt the
encrypted msg X=Dygry(Y)

4. Computationally impossible for an intruder, by knowing
KUDb, to determine the key KRb

5. Computationally impossible for an intruder, by knowing
KUb and Y, to determine msg X

6. It should be possible to apply encryption/decryption in
whatever order

Public-Key Cryptography M. Barmi, University of Siena
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Requirements of Pub. Key Algorithms (DH)

* These requirements are very difficult to be satisfied: only
elliptic curves and RSA have been accepted !

 These regs can be satisfied if we can find a
monodirectional “trapdoor function” f.

Public-Key Cryptography M. Barmi, University of Siena
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Trapdoor function

« A trapdoor function is a function easy to compute in
one direction, yet believed to be difficult to compute in the
opposite direction (finding its inverse) without special
information, called the "trapdoor”.

Public-Key Cryptography M. Barmi, University of Siena
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Trapdoor function

* |n mathematical terms, fis a trapdoor function if there
exists some secret information K, such that given f(x) and
K it is easy to compute x.
— Consider taking an engine apart: not very easy to put it

together again unless you had the assembly instructions
(the trapdoor).

— A mathematical example: the multiplication of two large
prime numbers. Multiplication is easy; but factoring the
resultant product can be very difficult.

Public-Key Cryptography M. Barmi, University of Siena
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Trapdoor function

« This monodirectional “trap function” f maps a domain into
an interval such that each function value has an
unambiguous inverse, and such that:

- Y=f (X) easy;
— X=1f1(Y) easyif kand Y are known;
— X=f-1(Y) hard if Y is known, but k unknown ;

* The precise meanings of "easy" and "hard" can be
specified mathematically:

Public-Key Cryptography M. Barmi, University of Siena
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Trapdoor function

* easy. a problem that we can solve within a polynomial
time with respect to the input length: if input is n bits, the
time to compute a function is proportional to n? where a
is a fixed constant (Class P problems);

* hard: a problem that we can solve only within a time
larger than polynomial (hopefully exponential): if input is
n bits, the time to compute a function is proportional to
2an,

* To determine the level of complexity of a problem is
extremely complicated !!!!

Public-Key Cryptography M. Barni, University of Siena
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Security of Public Key Schemes

« Security relies on a large enough difference in difficulty
between easy (en/decrypt) and hard (cryptanalysis)
problems

 The hard problem is known, it's just made too hard to
solve it in practice
— requires the use of very large numbers

— hence public key crypto is slower than secret key schemes

* Like secret key schemes brute force attack is always
theoretically possible, but keys used are too large
(>= 1024Dbits)

Public-Key Cryptography M. Barmi, University of Siena
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From a trapdoorto a cryptosystem

« Construct public-key cryptosystem from trapdoor-
one way function f:

— Encryption requires evaluation of f
— Decryption uses trapdoor to invert f

— Trapdoor is secret key
— Attacker has to invert f

Public-Key Cryptography M. Barmi, University of Siena
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In search for a trapdoor

« Examples of potential trapdoor one-way functions
— f(x,a,n) =y = xmod n
« Hard problem: compute x = f(y,a,n)
» Trapdoor: factors of n=pq
« Basis for RSA encryption
— f(g,x,p) =y =g*mod p
* Hard problem: x = logy(y)

« Basis for EIGamal encryption, and DH key
exchange

Public-Key Cryptography M. Barmi, University of Siena
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RSA algorithm

* |nvented by Rivest, Shamir & Adleman at MIT in 1977
« Best known & widely used public-key scheme

« Security based on the intractability of the integer
factorization problem.

Public-Key Cryptography M. Barmi, University of Siena
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RSA algorithm

« Currently used in a wide variety of products,
platforms, and industries around the world.

— RSA is built into current operating systems by Microsoft,
Apple, Sun, and Novell.

— In hardware, RSA can be found in secure telephones, on
Ethernet network cards, and on smart cards.

— RSA is incorporated into all of the major protocols for

secure Internet communications, including S/IMIME, SSL,
and S/WAN.

Public-Key Cryptography M. Barmi, University of Siena
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RSA algorithm

« RSA is a block cipher:

* The plaintext is divided into blocks, where each
block is represented as an integer value between
0 and n-1, n being the modulus.

— nis a very big number, represented with k bits, i.e.
2k-1 < N < 2k

— Usually k=1024 bits, i.e. n is composed by 309
decimal figures (n < 21024),

* The ciphertext is obtained by a proper exponentiation
of the plaintext modulo n.

Public-Key Cryptography M. Barmi, University of Siena



sy University of Siena

fsud’

RSA Key Setup

Each user generates a public/private key pair by:
— selecting two large primes at random: p,q
— computing the system modulus n=pq
— compute Euler totient function a(n)=(p-1)(g-1)
— selecting at random a value e
* where 1 <e <g(n), gcd(e, a(n))=1
— solving the following equation to find a value d.:
* ed =1 mod a(n) <=>d =e"mod g(n), 0<d<n

Public-Key Cryptography M. Barmi, University of Siena
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RSA Key Setup

* e Is called the encryption exponent, d the decryption
exponent, n the modulus.

 Each user:
— publishes the public key: KU={e,n}
— keeps secret the private key: KR={d,n}
« So if we encrypt with the recipient’s public key:
— Sender will know e and n
— Recipient will know d and n

Public-Key Cryptography M. Barmi, University of Siena
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RSA encryption/decryption

* To encrypt a message block m (0O<m<n), the sender:
— obtains public key of recipient KU={e,n}
— computes: ¢ =m® mod n

* To decrypt the ciphertext c the owner:
— uses his private key KR={d,n}
— computes: m=c9 mod n

« Remember: message block is represented as an
integer m smaller than the modulus n and
relatively prime with n (for security reason) !

Public-Key Cryptography M. Barmi, University of Siena



sy University of Siena

fsud’

Why does RSA work ?

Because of Euler's Theorem in number theory:

* given two prime numbers p and q, n and m integers
such that n=pq, and m<n:

« mkeM*T=m mod n, where g(n) is the Euler totient
function,

Public-Key Cryptography M. Barmi, University of Siena
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Why does RSA work ?

In RSA we have:
— N =p(g
— @(n) = (p-1)(g-1)
— Integers e and d are chosen to be inverse mod @(n)
— Then ed=1+kg(n) for some k

Hence :
cd = (me)d = m'*ke(M = m mod n=m

since 0<m<n

Public-Key Cryptography M. Barmi, University of Siena



RSA - toy example

« Selectprimes: p =17, g =11
« Compute n=pqg =17x11=187
« Compute @(n)=(p—1)(g-1)=16x10=160

 Selecte : 1<e <160, gcd(e,160)=1; choose e =7
 Determine d: de=1 mod 160 and d < 160
— d =23 since 23x7=161 =1 mod 160
* Publish public key: KU= {7,187}
« Keep secret private key: KR= {23,187}

Public-Key Cryptography M. Barmi, University of Siena
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RSA - toy example

e given message m =88 (n.b. 88 <187)
* encryption:

c = 88" mod 187 = 11
» decryption:

m = 1123 mod 187 = 88

Encryption Decryption

: ciphertext .
plaintext I plaintext

88— » SSOim)d@= 11 1 115 mod{87= 88 1—» 88

[
/ |

KU =17, 187 KR =23, 187

Public-Key Cryptography M. Barmi, University of Siena
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Computational aspects: enc/dec

* Encryption/decryption require the computation of
exponentiation between large integers mod n.

« A fast, efficient algorithm for exponentiation exists

* Due to the modular operator properties, we can compute
(@xb)modn)as [(@amodn)x (b modn )] modn

« Example: 7° mod 11 = 747" mod 11 = (727%)7" mod 11 =
[((7%7%) mod 11) x 7mod11] mod 11 = [(49 mod 11)(49
mod 11) mod 11 x7 ] mod 11 = [((5x5)mod11)x7] mod 11
= 3x7 mod 11 =10

« Exercise: compute 3'%° mod 11

Public-Key Cryptography M. Barmi, University of Siena
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Computational aspects: Key Generation

« Users of RSA must:
— determine two primes at random p,q
— select either e or d and compute the other

* Primes p,q must be secure, i.e. not easily
recoverable from modulus n=pq

— Prime numbers must be sufficiently large

— An efficient method to obtain big prime numbers does
not exist

Public-Key Cryptography M. Barmi, University of Siena
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Computational aspects: Key Generation

 EXponents e, d are inverse each other, so,
chosen e value, it is possible to use the extended
Euclidean algorithm to compute d:

* e: gcd(e,a(n)) =1 (randomly generated)
« d =e"mod g(n) (ext. Euclidean alg.)
* Possible (easy) iff p and q are known

Public-Key Cryptography M. Barmi, University of Siena
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Euclidean GCD algorithm

 Letaand b be two integers (a > b)
« |fgisadivisorofaandb italso dividesr=amodDb
 The we can proceed as follows

rr =amodb
ifrr=0MCD =b
else (a,b) -=> (b,ry)

, = o modr,
if r,=0MCD =r,

else (o, M) => (g, 1)

« Convergence is ensured

Public-Key Cryptography M. Barmi, University of Siena
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Extended euclidean GCD algorithm

« Going backword it is always possible to write MCD as an
integer linear combination of a and b, that is:

MCD =s-a+tb

 We can find s and t proceeding as fgollows:
M1 = 3= On2 M2 = M3 - Ane2 (s = i3 Mes)
= (1+ 0n-20n-3) M-3~ An-2 -4
= (1+ 9n-29n-3)("n-5 — An-4 Tn-4) = An-2 Tnes -

« The extended Euclidean GCD can be used to find the
modular inverse for coprime numbers

GCD(a,n) =1 -> 1 =sa-tn ->sa =tn +1
samodn=1->s=a’'modn

Public-Key Cryptography M. Barmi, University of Siena
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RSA example: key generation

* Letthe primes 5 and 11 to be our p and q.
« n=55,and @(55) = (5-1)(11-1) = 4x10 = 40.
 Now, we need to find e, d such that: ed = 1 (mod 40).

— There are many pairs fitting this equation. We need to find
one of them.

— Our only constraint is that e and d are both relatively prime
to 3(55) = 40. So, we can't use numbers that are multiples
of 2 and/or 5. ldeally, in fact, we'd prefer that e and d be
relatively prime to each other. Letus try withe =7

Public-Key Cryptography M. Barmi, University of Siena
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RSA example: key generation

 Now we need to find d such that 7d = 1 (mod 40). This
means find d and K such that :

— 7d =40K + 1.
— The first value for d that works is 23
—7%*23=161=4*40+1. Sowe havee =7 ford = 23
* Publish public key: KU {7,55}
 Keep secret private key: KR = {23,55}

Public-Key Cryptography M. Barmi, University of Siena
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RSA example: the plaintext

* To put the cipher at work, we must recall that the values
we use for the plaintext m must be less than n=55, and
also relatively prime to 55.

* We also do not want to use m = 1, because 1 raised to
any power whatsoever is going to remain 1.

* Finally, the same holds true forn - 1, because n - 1 is
congruent to -1 mod n.

* Then the valid messages are the numbers m such that:

—1<m<54
— Not multiple of 5,11.

Public-Key Cryptography M. Barmi, University of Siena
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RSA example: the plaintext

« So, we'll take what's left and create the following
character set:

-23467 891213141617 18
-ABCDEFGHIJK L M
— 192123 24 26 27 28 29 31 32 34 36 37
-NO P QRS TUVW XY Z
— 383941424346 47 4849 51 52 53
-sp0 1 23 456 7 89 *

Public-Key Cryptography M. Barmi, University of Siena
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RSA example: encryption

 The message we will encrypt is VENIO :
VENIO =31, 7, 19, 13, 21

To encode it, we simply need to raise each number to
the power of e modulo n.

V =317 (mod 55) = 27512614111 (mod 55) =26

E =77 (mod 55) = 823543 (mod 55) =28

« N =19’ (mod 55) = 893871739 (mod 55) =24

« | =137 (mod 55) = 62748517 (mod 55) =7

« O =217 (mod 55) = 1801088541 (mod 55) = 21

The encrypted message is 26, 28, 24, 7, 21 = RTQEO

Public-Key Cryptography M. Barmi, University of Siena
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RSA example: decryption

* To decrypt the message RTQEO we repeat the same
process using d instead than e

« R =26%(mod 55)
= 350257144982200575261531309080576 (mod 55) = 31
« T=28%(mod 55) =
1925904380037276068854119113162752 (mod 55) =7
¢ Q =242 (mod 55)
= 55572324035428505185378394701824 (mod 55) = 19
+ E =72 (mod 55) = 27368747340080916343 (mod 55) = 13
« O =212 (mod 55)
= 2576580875108218291929075869661 (mod 55) = 21
* Yielding: 31, 7, 19, 13, 21 = VENIO

Public-Key Cryptography M. Barmi, University of Siena
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A not-so-simple example

« This time, to make life slightly less easy, we group the
characters into blocks of three and compute a

representative integer for each block.

« ATTACKXATXSEVEN = ATT ACK XAT XSE VEN
* We could represent our blocks of three characters in base

26 using A=0, B=1,C=2, ..., Z=25

— ATT=0x26"2 +19x 26" + 19 =513
ACK=0x26"2+2x26" +10 =62
XAT =23 x26"2 + 0 x 26" + 19 = 15567
XSE =23 x26"2 + 18 x 26" + 4 = 16020
VEN =21 x26%2 + 4 x 26" + 13 = 14313

Public-Key Cryptography

M. Barmi, University of Siena
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A not-so-simple example

In this system of encoding, the maximum value of a group
(ZZZ) would be 263-1 = 17575, so we require a modulus n
greater than this value.

We can use p=137 and q=131 (we cheated by looking for
suitable primes around Vn, which is not good for security
reasons)

n=pqg=137x131= 17947

ag(n) = (p-1)(g-1) = 136x130 = 17680

Selecte =3

check gcd(e, p-1) = gcd(3, 136) = 1, OK and

check gcd(e, g-1) = gcd(3, 130) = 1, OK.

Compute d = e' mod @(n) = 3" mod 17680 = 11787.

Hence public key = (17947, 3), private key = (17947, 11787).

Public-Key Cryptography M. Barmi, University of Siena
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A not-so-simple example

To encrypt the first integer representing ATT, we
have c =m® mod n = 5133 mod 17947 = 8363.

We can verify that our private key is valid by
computing

m' = cdmod n = 8363""78" mod 17947 = 513.
Overall, our plaintext is represented by the set of
integers m = {513, 62, 15567, 16020, 14313}
Yielding c = m® mod n = {8363, 5017, 11884, 9546,
13366}

You are welcome to compute the inverse of these
integers using m = c? mod n to verify that RSA works

Public-Key Cryptography M. Barmi, University of Siena
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Practical considerations

 |f we know only the public key, how can we be sure
that GCD(m,n) = 1?
— Use Euclide’s algorithm...
— Note that Pr{GCD(m,n) = 1} = g(n)/n = (p-1)(g-1)/pg
— P{GCD(m,n) # 1} =1 - (p-1)(9-1)/pq = (p+g-1)/pq
— If p,q have 512 bits, Pr{GCD(m,n) # 1} ~ 2111

— The probability of picking a wrong message is almost
zero, so usually we do not care

Public-Key Cryptography M. Barmi, University of Siena
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How fast is RSA algorithm ?

|t is common to choose a small public exponent for
the public key

— This makes encryption faster than decryption and
verification faster than signing

« DES and other block ciphers are much faster than
the RSA algorithm.

— DES is generally at least 100 times faster in sw and
1,000 +10,000 times faster in hw

Public-Key Cryptography M. Barmi, University of Siena
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RSA Security

Theorem: Computing the secret key from the public key is
computationally equivalent to factoring n.

No efficient factorization algorithms is known
— general number field sieve (GNFS) algorithm:
— O(exp(k"3(log k)%3) complexity
— k is the number of bits of n

Exact security of RSA is unknown
— more efficient factorization algorithms may be found

— pay attention to choose secure primes

Public-Key Cryptography M. Barmi, University of Siena
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RSA Security

 Three approaches to attack RSA
— brute force key search (difficult given key size)

— mathematical attacks (it is difficult to compute
a(n), by factoring modulus n)

— timing attacks (based on measuring the time to
run the decryption)

* Yet, care must be taken to use RSA properly

Public-Key Cryptography M. Barmi, University of Siena
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Common Modulus attack

« Suppose that RSA is used by several parties who
share a common modulus (but different e and d)

 We can show that if the public exponents of the
participants are relatively prime, an attacker can
recover the message sent to at least two parties.

Public-Key Cryptography M. Barmi, University of Siena



Common Modulus attack

 Assume Alice and Bob generated keys using the same
modulus n: (e1, d1) and (e2, d2)

« Also suppose that GCD(e1,e2)=1

« Assume a third user sends to Alice and Bob the same
message m:

— ¢4 =mé" mod n,
— C, =m® mod n

Public-Key Cryptography M. Barmi, University of Siena



Common Modulus attack

* ¢, =m°¢" mod n,
* Cp,=m% mod n
« if gcd(e1,e2)=1, then it is possible to compute a,b so

that (e1) a + (e2) b = 1 mod n (extended Euclidean
algorithm)

* then
e c@c,t=mela*te2b mod n=mmod n=m

Never send identical messages to receivers with the
same modulus and relatively prime encryption exponents

Public-Key Cryptography M. Barmi, University of Siena
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Adaptive chosen-ciphertext attack

Suppose that an active adversary wishes to
decrypt c=m® mod n intended for the user A.

Suppose that A is available to decrypt an arbitrary
ciphertext for the adversary, other than c itself.

The adversary can select a random integer x and
compute c'=cx® mod n = (mx)® mod n.

Upon presentation of ¢’, A will compute for the adversary
m’= mx mod n.

The adversary can then compute m=m’x"' mod n .

This attack can be circumvented by imposing some
structural constraints on plaintext messages.

Public-Key Cryptography M. Barmi, University of Siena
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El Gamal

« El Gamal encryption system is based on the
discrete logarithm problem,

* Described by Taher El Gamal in 1984.

* Implemented in GnuPG. A similar signature scheme
is used in DSA (Digital Signature Algorithm,
standardized in 1993).

Public-Key Cryptography M.%§r§i, University of Siena
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« Let G be a cyclic group of order q, with generator g

* Usually G is Z,*, the multiplicative group of integers
modulo p, where p is a big prime (q=p-1)

* Let x be a random number taken in {2 ... p-2}, compute
h=g*mod p

* Public key: (g,h,p)

* Private key: x

Public-Key Cryptography M. Barmi, University of Siena
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El Gamal Encryption

 To encrypt a message m under Alice’s public key
(9,h,p),
* Bob converts m into an integer in G={1 ... p-1}

 Then he chooses a random yin {2 ... p-2}, and
computes ¢, = g¥ mod p and ¢, = mhY mod p .

« Bob sends the ciphertext (c4,c,) to Alice.
— E(m)= (¢4,¢2) :=(g¥ mod p ,mh¥Y mod p)

Public-Key Cryptography M. Barmi, University of Siena
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El Gamal Encryption

Encryption is probabilistic !!!
This means that a single plaintext can be encrypted to

many possible ciphertexts: for same m and different vy,
E(m) is different !

So we should write E(m,y)

A general ElIGamal encryption produces a 2:1 expansion
in size from plaintext to ciphertext.

Encryption requires 2 exponentiations (slow!)

Public-Key Cryptography M. Barmi, University of Siena
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El Gamal Decryption

« To decrypt a ciphertext (c4,c,) with her private key x,
Alice computes:

* D(cq,c2)=co(cq)* mod p
c,(c)) " =mh’ (g )" =mh’-g " =mg~-g " =m

« Remark: knowledge of the random number vy is not
needed !

Public-Key Cryptography M. Barmi, University of Siena
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El gamal: toy example

Key generation:

Choose prime number p = 2357, g = 2, private key x = 1751
and compute: h = g*mod p = 2" mod 2357 = 1185.

Encryption:

to encrypt the message m = 2035, choose y = 1520 and
compute:

ci=g¥y mod p = 2720 mod 2357 = 1430

c, = mhY mod p = 2035x1185'920 mod 2357 = 697
Decryption. Compute

c1X=¢cP 1™ = 143000 mod 2357 = 872

m = ¢, *c, = 872 * 697 mod 2357 = 2035

Public-Key Cryptography M. Barmi, University of Siena
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Key Management

* Public-key encryption helps addressing secret key
distribution problems

« Two aspects of public key methods used in key
distribution applications:

— distribution of public keys
— use of public-key encryption to distribute secret keys

Public-Key Cryptography M. Barmi, University of Siena
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Distribution of Public Keys

« All proposed solutions can be classified as belonging
to one of the following classes:

— Public announcement

— Publicly available directory

— Public-key distribution authority
— Public-key certificates

Public-Key Cryptography M. Barmi, University of Siena
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Public Announcement

« Users distribute public keys to recipients or broadcast to
all the community

— Append Pretty Good Privacy (PGP) keys to email
messages or post to news groups or mailing lists
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Public Announcement

« Major weakness is forgery

— anyone can create a key claiming to be someone else
and broadcast it

— until forgery is discovered can masquerade as claimed
user
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Publicly available directory

* A dynamic and public directory of keys, managed by a
trusted organization.

* Properties:
— it contains {name, public-key} entries

— participants register securelythe public
key with directory

— participants canreplace key at any time

— directory is periodically published

— directory can be accessed also /
electronically
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Public-Key Cryptography M. Barmi, University of Siena



Publicly available directory

« Greater security by registering
keys with a public directory
than with announcement

 Still vulnerable to tampering or

forgery:
— if someone can violate the db,
can distribute fake public keys ke
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Public-Key Cryptography M. Barmi, University of Siena
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Public-Key Authority

* Improves security by tightening control over distribution
of keys from directory: an authority manages the
directory.

* Requires users to know public key of the authority
* Then users interact with directory to obtain any desired
public key securely
— does require real-time access to directory when keys
are needed
— Secure interaction with authority can be complicated

Public-Key Cryptography M. Barmi, University of Siena
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Public-Key Certificates

« Certificates allow key exchange without real-time

access to public-key authority, but with same
reliability

« A certificate binds identity to public key

Public-Key Cryptography

— usually with other info such as period of validity, rights
of use, etc

Created and signed by a trusted Certificate
Authority (CA), delivered to the user

To distribute his/her public key, a user sends the
certificate

M. Barmi, University of Siena
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Public-Key Certificates

In this a way:

each user can read a certificate to determine the name
& public key of certificate’s owner;

every user can verify that the certificate has been
created by the CA, if he knows the CA public-key

only the CA can create or update a certificate.

every participant can verify that his/her own certificate
IS updated.

Public-Key Cryptography M. Barmi, University of Siena
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PUb|IC -Key Certificates Exchange
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Public-Key Cryptography M. Barmi, University of Siena
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Use of Public-Key to share Secret Keys

* Public-key, obtained with previous methods, can be
used for secrecy or authentication

* Public-key algorithms are slow, so usually users prefer
to use secret-key encryption.

« A session key is exchanged through a public key
protocol.
— several alternatives for negotiating a suitable

session

Public-Key Cryptography M. Barmi, University of Siena
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Simple Secret Key Distribution

* A generates a temporary key pair (KU,, KR,)
A sends to B his public key and his identity

B generates a session key K, sends it to A encrypted
using the supplied public key

* A decrypts the session key Kg and both can use it
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Public-Key Cryptography M. Barmi, University of Siena
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Simple Secret Key Distribution

* Vulnerable to man in the middle attack: an
opponent can intercept and impersonate both

USErs.

— E canintercept (1), create keys {KU.,KR.} and send KU,

| ID5 to B

— B generates K, and send Eg. [Ks] tO A
— E intercepts the message and decrypts it obtaining K

— E transmits Ex, [Ks] to A

— Now A and B have K, but they don’t know that also E
knows it, and that he can intercept their messages.
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Diffie-Hellman Key Exchange

« First public-key type scheme proposed by Diffie &
Hellman in 1976 along with the exposition of public
key concepts

— note: now known that James Ellis (UK CESG)
secretly proposed the concept in 1970

 |tis a practical method for public exchange of a
secret key

* |tis used in several commercial products

Public-Key Cryptography M. Barmi, University of Siena
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Diffie-Hellman Key Exchange

* |tis a public-key based key distribution scheme

— cannot be used to exchange an arbitrary message

— rather it can establish a common key known only to
the two participants

* |t is based on exponentiation modulo a prime - easy
to do

« Security relies on the difficulty of computing discrete
logarithms

Public-Key Cryptography M. Barmi, University of Siena
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Discrete Logarithm

« Given a prime number p:

— Primitive root of p = a number whose powers (mod p)
generate all the integers between 1 and p-1:

— amod p, a2mod p, a3 mod p, ..., a”' mod p are
distinct and are a permutation of all the integers 1 ...
p-1

« Given an integer b, and a primitive root of p, we
define discrete logarithm of b for the base a mod p,
the unique number | such that

b=a modp, 0=<i=<p-1

Public-Key Cryptography M. Barmi, University of Siena
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Diffie-Hellman Setup

« All users agree on global public parameters:
— ¢: large prime integer
— a: primitive root mod ¢

« Each user generates his/her pair of keys:

— A randomly chooses a private key (integer
number): X, < g

— Computes the public key: y, = a A mod g

— A makes y, public and keeps x, secret

— B does the same obtaining xg and yg

Public-Key Cryptography M. Barmi, University of Siena
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Diffie-Hellman Key Exchange

« Shared session key for users A & B is Kxg:
Ky =a ~®mod g
= yA B mod g (which B can compute by himself)
=yg *mod q (which A can compute by herself)

 Kag IS used as session key in a secret-key encryption
scheme between Alice and Bob

 if Alice and Bob subsequently communicate, they will
have the same key as before, unless they choose new
public-keys.

« Attacker needs to know one between x, or xg, but this
Implies solving a discrete log problem

Public-Key Cryptography M. Barmi, University of Siena
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Diffie-Hellman Example

« Alice & Bob wish to share a secret key:
They agree on prime =353 and a=3
Select random secret keys:

— A chooses x,=97, B chooses xg=233
Then compute public keys:

_ y,=3""mod 353 =40 (Alice)

— v5=3"" mod 353 = 248 (Bob)

Compute shared session key as:

— Kag=Yys A mod 353 = 248°" = 160 (Alice)

— Kag= YA B mod 353 = 40°> = 160 (Bob)

Public-Key Cryptography

M. Barmi, University of Siena



Diffie-Hellman Example

* An attacker knows q=353, a=3, y,=40, yg=248

* The brute force attack consists in computing the
exponentiation 3" mod 353, stopping when the result is
40 or 248 .

e The firstresultis x =97

 The complexity is linear in the size of g (exponential in
the number of bits k)

« With very big numbers (k = 1024) it is difficult!

Public-Key Cryptography M. Barmi, University of Siena
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