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What: the s.p.e.d. paradigm

I do not trust 
him but I need 

his help

I do not trust 
him but I need 

his help

Interactive 
s.p.e.d. 

protocol

private 
data private 

data
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secured data

result result



University of Siena

Computing with private data M. Barni, University of Siena

Why? Network and web security
• Privacy-Preserving Intrusion Detection

– Analysis of private log files, traffic monitoring

• Abuse detection in social networks
– Chat rooms or messaging services ensure user anonymity
– Users should be traceable if they severely violate the terms of 

usage.
– To limit traceability to severe instances, abuse detection could be 

carried out on encrypted data and anonymity revoked only in 
case of violation

• Oblivious Web Ratings
– The popularity of web pages is assessed by a third party 

analyzing the encrypted log files of a web server
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Why? Profiling / recommendation services
• Targeted Recommendations

– Personalized recommendations have high business value but 
open a privacy-problem

– Problems can be avoided by methods that analyze the relevant 
user habits in the encrypted domain (see position information)

• Data Mining for Marketing
– Knowledge of preferences of class of users is invaluable 

information in marketing.
– Performing classifications in the encrypted domain can prevent 

privacy concerns
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Why? Access control and biometrics
• Private Access control via encrypted queries

– Access to a service is granted upon inspection of a biometric 
template (BT)

– The BT is encrypted so to avoid revealing the biometry and the 
identity of the user accessing the service

• Biometric control in public places (airport …)
– An encrypted BT is used to look for criminals or terrorists in 

public locations
– Only if a match is found the identity is revealed thus avoiding 

tracing honest citizens
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Why? Biomedical data processing
• Storing biomedical data on remote servers

– Medical sensitive data/signals are stored under encryption
– Additional services are provided by processing the encrypted 

data
– Cloud services

• Privacy-preserving remote services
– a remote diagnosis services analyses encrypted data and 

provides recommendations without violating the users’ privacy

• Analysis of bio-signals
– by processing encrypted bio-signals the analysis reveals only the 

information it is intended for
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Why? Consumer electronics - entertainment
• Privacy preserving search for content

– again a case of searching with encrypted queries

• DRM
– the identity of the buyer is embedded in the purchased media 

without disclosing it to the seller

• Transcoding
– transcoding of (encrypted) multimedia data at non-trusted nodes

0111010001
11101010

Transcoding without decryption key
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How ? The tools

• Homomorphic encryption
• Blinding / obfuscation
• Oblivious transfer
• Garbled circuits
• Hybrid approach

• Before describing them we need to consider 
more carefully what do we mean by security in 
a s.p.e.d. framework



University of Siena

Computing with private data M. Barni, University of Siena

Security model
• What does security mean in s.p.e.d. ? How do we prove security ?
• A huge zoo of security definitions exist

– what do we want to impede to the attacker ?
– what is the attacker allowed to know ?
– what is the (computing) power of the attacker ?

• In s.p.e.d. applications where the message space is small, semantic 
security (IND-CPA) is needed

Choose 2 messagesm0, m1 and sends them to Bob

Epk[mb ]

Pick one message, encrypts it and sends it back

b = ?

Which message
did Bob pick ?
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Probabilistic encryption
• Randomness of the encryption is needed for semantic security 

(assume we want to componentwise encrypt a sequence of bits … 
some sort of randomness is needed)

1 1

2 2

[ , ]

[ , ]
pk

pk

c E x r
c E x r
=

=

• In a probabilistic encryption scheme the encrypted message 
depends on a secret key and a random parameter r …

• … however decryption does depend on r

1

2

[ ]
[ ]

sk

sk

x D c
x D c
=
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Security model
• In a s.p.e.d. setting further details must be specified: will

the adversary follow the protocol or not ?

Semi-honest (honest but curious) adversary: he follows the 
protocol but tries to infer secret information

Malicious (active) adversary: any action is allowed even
departing from the protocol

Covert adversary: he is willing to deviate from the protocol
but does not want to be caught
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s.p.e.d. tools

• Homomorphic encryption
• Blinding / obfuscation
• Oblivious transfer
• Garbled circuits
• Hybrid approach
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The homomorphic route to s.p.e.d.

a•b = Dsk [Epk (a)Epk (b)]

if •= +
 = ×

"
#
$

⇒ a+ b = Dsk [Epk (a)×Epk (b)] additive HE

if •= ×
 = ×

"
#
$

⇒ a×b = Dsk[Epk (a)×Epk (b)] multiplicative HE

An algebraic operation on the plain messages is mapped into a 
(possibly different) algebraic operation on the encrypted messages

Ka = Dsk [Epk (a)×Epk (a). .. Epk (a)
K times

  
]= Dsk[Epk (a)

K ]
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RSA homomorphism

In RSA we have

c1 = m1
e mod n

c2 = m2
e mod n

c12 = c1c2 = m1
em2

e mod n = (m1m2)e mod n
D[c12] = (m1m2)ed mod n = m1m2 mod n

Multiplicative homomorphism

Possible problems with malleability
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Pailler’s cryptosystem

Given c,γ  and n find m such that
c = γ mrn modn2   for some r

Composite residuosity problem

Public key

Plain message
Randomization

Additive Homomorphism follows from properties of 
exponentials
Security -> c at least 2048 bits

(p,q) : n = pq, secret key
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The homomorphic route to s.p.e.d.

Scalar product (knownvectorb): a,b = ai
i=1

n

∑ bi ⇒ E[ a,b ]= E[ai ]
bi

i=1

n

∏

With additive HE a number of interesting operators can be applied 
to signals:

€ 

FIR filtering :  an = an−k
k=1

L

∑ hk ⇒ E[an ] = E[an−k ]
hk

k=1

L

∏

€ 

Linear transforms:  Xk = ak,i
i=1

n

∑ xi ⇒ E[Xk] = E[xi]
ak,i

i=1

L

∏

Component-wise encryption ⇒ E[(a1,a2... an )]= (E[a1],E[a1]... E[an ])
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Non-linear functions and full HE

€ 

if ⊗and ⊕∃ :
a+ b = D[E(a)⊕ E(b)]
a × b = D[E(a)⊗ E(b)]
⎧ 
⎨ 
⎩ 

full HE

Kind of holy Graal in cryptography
recent breakthrough by Gentry

…
still impractical

…
For the moment s.p.e.d. designers can rely on 

additive HE only
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Non-linear functions: HE + blinding
• Assume an additive cryptosystem is available
• Bob needs to apply a non-linear function f () to x

available to him in encrypted format

obtains E[f(x)] from E[g(y)]

g(y)
E[g(y)]

• Works if ),(),()(),()( baxbaygbaxf γβα ++=

• … and is difficult (impossible) to recover x from y

Generates a and b randomly
E[y] = E[ax+b]: blinding

Alice Bob
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Example: squaring an encrypted number

E[x]
E[y]= E[x + b]= E[x]E[b]y = D[E[y]]

g(y) = y2 = x2 + b2 + 2xb
E[g(y)]

E[x2 ]= E[g(y)− b2 − 2bx]
= E[g(y)]E[−b2 ]E[x]−2b

E[y]

E[g(y)]

Alice Bob
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s.p.e.d. tools

• Homomorphic encryption
• Blinding / obfuscation
• Oblivious transfer
• Garbled circuits
• Hybrid approach
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An alternative approach: Garbled Circuits (GC)

• Private computation of any function expressed as 
a Boolean (non recursive) circuit

• Symmetric cryptography
• Inputs at the bit level
• Thought to be impractical until 4-5 years ago

– now: > 100.000 gates per second
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Oblivious transfer (OT)

• 1-out-n, parallel version
• Base for a large number of s.p.e.d. protocols
• No details for sake of brevity

m0,m1b

mb nothing
OT

Client Server
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General structure of a GC protocol

Client Server

CreateGC()

input secrets
Circuit  

description

Oblivious transfer ()

W

Input bits

EvalGC()

Result

Circuit  
description

Garbled circuit



University of Siena

Computing with private data M. Barni, University of Siena

Circuit description

• A file containing
– the list of gates together with their truth tables and 

input ond output wires
– the list of wires connecting the gates
– the list of variables associated to the wires split into:

• Server’s input bits
• Client’s input bits
• Internal variables
• Server’s output bits
• Client’s output bits
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Creation of the GC
• Choose a random t-bit value R
• For each input wire i generate 2 t-bit secrets associated

to bit 0 and 1 respectively

wi
0 , wi

1 = wi
0 ⊕ R

• For each input wire i generate a random permutation bit 
associated to bit 0 and 1

π i
0 , π i

1 = π i
0 ⊕1

• Note that the above secrets do not reveal any information about
the actual input bits
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Creation of the GC
• Given a gate and given the secrets associates to the input wires (say

i, and j) the secrets associated to the output wire (say k) are created

wk
0 , wk

1 = wk
0 ⊕ R

π k
0, π k

1 = π k
0 ⊕1

• For each gate a garble
table is constructed as
follows (exemplified for an 
AND gate)

0,0 wi
0,wj

0 π i
0,π j

0 (wk
0 ||π k

0 )⊕H (wi
0 ||wj

0 )

0,1 wi
0,wj

1 π i
0,π j

1 (wk
0 ||π k

0 )⊕H (wi
0 ||wj

1)

1, 0 wi
1,wj

0 π i
1,π j

0 (wk
0 ||π k

0 )⊕H (wi
1 ||wj

0 )

1,1 wi
1,wj

1 π i
1,π j

1 (wk
1 ||π k

1 )⊕H (wi
1 ||wj

1)

Inputs Garbled table

• Table rows are rearranged
according to the input 
permutation bits
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Creation of the GC
• Garbled tables are built gate by gate as soon as the 

corresponding secrets are generated
• For the output wires belonging to the client a simplified

conversion table consisting of 2 rows only is built

0⊕H (wk
0 )

1⊕H (wk
1 )

• A simplified construction for XOR and NOT gates exists,  we
skip it for sake of brevity
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Data exchange phase
Client Server

EvalGC()

Result

CreateGC()

input secrets
Circuit  

description

Oblivious transfer ()

W

Input bits
Circuit  

description

Garbled circuit

• Secrets associated to client’s inputs are passed by means of OT: the 
clients inputs his bits and receives the corresponding secrets (and 
nothing else), the server obtains nothing

• OT is heavy -> better that the client has less inputs

• During the data exchange
phase the serves passes to the 
clients the data necessary to 
evaluate the GC

• The passed data includes: the 
garbled tables, the secrets
relative to the Server’s input, 
and the secrets relative to the 
Client’s inputs
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Circuit evaluation

0,0 wi
0,wj

0 π i
0,π j

0 (wk
0 ||π k

0 )⊕H (wi
0 ||wj

0 )

0,1 wi
0,wj

1 π i
0,π j

1 (wk
0 ||π k

0 )⊕H (wi
0 ||wj

1)

1, 0 wi
1,wj

0 π i
1,π j

0 (wk
0 ||π k

0 )⊕H (wi
1 ||wj

0 )

1,1 wi
1,wj

1 π i
1,π j

1 (wk
1 ||π k

1 )⊕H (wi
1 ||wj

1)

Inputs Garbled table

• Suppose that the client knows the input secrets of a certain gate 
(surely true for input gates)

• He can compute the output secrets as follows

• Select the row indexed by (π i ,π j )
• Compute the output secret as (assume the input is (0,0):

(wk
0 ||π k

0 ) = [(wk
0 ||π k

0 )⊕H (wi
0 ||wj

0 )]⊕H (wi
0 ||wj

0 )

Known since inputs are known

• Iterating until the output gates, 
the client obtains the output 
secrets
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Circuit evaluation
• If the output belongs to the server, the client sends the 

corresponding secret, the server retrieves the bits since he knows
the secrets

• If the output belongs to the client, he retrieves it by using the output 
conversion table

• The correct row is selected thanks to the permutation bit, then

0⊕H (wk
0 )

1⊕H (wk
1 )

[0⊕H (wk
0 )]⊕H (wk

0 ) = 0
[1⊕H (wk

1 )]⊕H (wk
1 ) =1

for a 0

for a 1

1. Loops are not allowed since the GC must be evaluated sequentially

2. The GC can be evaluated only once, for a second evaluation a new GC 
must be built

3. Precomputation may help reducing the on-line computation time
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HE vs GC
• HE:

– pros: no interaction for linear operations, no need 
of bit-wise representation

– cons: difficulty with non-linear operations, 
asymmetric encryption, expansion factor

• GC:
– pros: universal computing, symmetric crypto
– cons: bit-wise representation, size of logic circuit 

may grow more than linearly

Security: most protocols secure against semi-honest adversaries

HE without interaction: secure against any adversary

GC secure against malicious client
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Hybrid solution

• Recent trend:
– combine GC and HE to take the best of 

the two worlds
– transcoding overhead
– two protocols are needed

• to pass from GC to HE
• to pass from HE to GC
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HE -> GC
We assume that a value x is available under encryption and we want to 
generate the bit-wise secrets to go on with a GC computation
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GC -> HE
We assume that the secrets relative to the bits of x are available. We 
want to obtain an encrypted version of x
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What is the role SP designers ?
• Optimize algorithms in terms of

– bit length and number of variables
• All cryptographic primitives work only on integer values -> 

data quantization necessary
• Integer representation allowed but no truncation
• Representation complexity may grow during the computation
• Possible surprises: DFT more efficient than FFT

– Representation accuracy has a strong impact on
• Accuracy of results
• Complexity of the protocol
• Trade-off needed
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What is the role SP designers ?
• Optimize algorithms in terms of

– adopted tools in view of available s.p.e.d.primitives
– Simple operations in the plain domain may be very

complex when applied on encrypted signals
• Comparisons, if-then-else, sorting: very complex

operations with HE
• Multiplications and divisions: very complex with GC

THE – RELATIVE - PRICE TO PAY TO PASS FROM 

PLAIN DOMAIN COMPUTATION TO SPEED IS ALWAYS 

QUITE LARGE
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s.p.e.d. at work
[1] M. Barni, et al. “A Privacy-compliant Fingerprint Recognition System Based on 
Homomorphic Encryption and Fingercode Templates”, Proceedings of BTAS 2010, IEEE Fourth 
International Conference On Biometrics: Theory, Applications And Systems, Washington DC, 
USA, September 27-29, 2010.

[2] M. Barni, P. Failla, R. Lazzeretti, A-R. Sadeghi, T. Schneider, “Privacy-Preserving ECG 
Classification with Branching Programs and Neural Networks”, IEEE Trans. on Information 
Forensics and Security, vol. 6, no. 2, June 2011, pp. 452-468. 
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Biometric-based authentication

Is the owner 
of this 

fingerprint  in 
the database ?

• Criminal tracking with privacy protection for 
citizens: if you are not a criminal the system 
will not track you

• Privacy preserving access control: I know 
you can access a service but don’t know who 
you are

Client Server

Mary Ann

…

John Jack
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Biometric-based authentication
Client Server

x3 xm

x1 x2

Feature
extraction

E[t]=E[t1] … E[tn] Distance
computation

E[d1] … E[dm]

Comparison with 
threshold

T

YES / NO YES / NO
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SP choices
• Choice of feature set and distance function that ease a 

s.p.e.d. implementation
• Classical approaches based on minutiae are difficult to 

implement
• Our choice:

– Fingercode
• Energy contained in different areas of the 

fingerprint image in different frequency bands
• Minimize number of features
• Optimize representation accuracy

– Euclidean distance
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Fingercode representaion of fingerprints
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Optimization of fingercode representation

Size of feature vector
– NR = number of rings
– NA = number of arcs
– NS = NR x NA = number of sectors
– NF = number of filters
– NV = NF x NS = size of feature vector
– Nθ = number of rotated templates for enrolled user (9)

Representation accuracy
– Nb= number of bits for each feature (from 1 to 8)
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Optimization of fingercode representation
We evaluated the impact on matching accuracy (EER) by relying on a database 
with 408 fingerprints acquired by a CrossMatch verifier 300 sensor (500 dpi, 
512x480 pixels).
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Selected configuration

Size of feature vector
– NR = 3
– NA = 8
– NS = 24
– NF = 8 (configuration C) or 4 (configuration D)
– NV = 192 (C) or 96 (D)
– Nθ = number of rotate templates for enrolled user (9)

Representation accuracy
– Nb= 1bit, 2 bits
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Distance computation: classical approach
• The Squared Euclidean distance between an encrypted 

and a known vector is easy to compute by relying on HE

€ 

d(t,x)2 = (ti − xi)
2

1=1

n

∑ = t1
2

i=1

n

∑ + x1
2

i=1

n

∑ − 2 ti xi
i=1

n

∑

computed by 
the client

computed by 
the server

computed by the 
server via HE

E[d 2 ]= E t1
2

i=1

n

∑
"

#
$

%

&
'E x1

2

i=1

n

∑
"

#
$

%

&
' E[ti ]

−2 xi

i=1

n

∏
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Threshold comparison
• Comparison is by far easier through GC’s

• Hybrid solution
• distances computed via HE are converted into

(secret) bits
• Pass from HE to GC representation
• Run the GC
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Comparison circuit

xi yi

ci+1

ci∧
>

z

. . .

x ℓ yℓ x 1 y1y2x 2

>>> c2c3 0
CMP
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Performance (bandwidth)
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Performance (execution time)
• Set-up

– Java-based implementation
– PC-platform (clock 2GHz, RAM 2GByte)
– Pailler (key = 1024 bits) + GC (t = 80 bits)
– 96 features, 2 bits per feature

• Computing time:
– time: < 0.1 sec for template

• Similar performance with
– face recognition, iris recognition
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Remote classification of ECG signals

ECG

Response

Features Classifier

Client Server
• Remote diagnosis

service
• Alert service based on 
medical data repository
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Client
The SSP protocol

• The client protects
• ECG data (features)

• Server protects
• NN weights

NN 
parameters

Server
Result

neural net classification

ECG
Preprocessing

Feature
extraction(AR model)

ECG
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Secure computing with NN

f1

f2

f3

f4

Hidden
Layer
nh = 6

Output
Layer
no = 6

Output
Layer
n = 4

A
rg

M
ax

o

bh,1

wh,11

yh,1 yo,1

wh,21

wh,31

wh,41

wh,51

wh,61

bh,2

bh,3

bh,4

bh,5

bh,6

yh,2

yh,3

yh,4

yh,5

yh,6

wb,11

wb,21

wb,31

wb,41

wb,51

wb,61

bo,1

bo,2

bo,3

bo,4

bo,5

bo,6

yo,2

yo,3

yo,4

yo,5

yo,6

Pailler
Homomorphic

encryption

GC 
approach
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NN topology
• The number of nodes in the input and output layers are set by the 

problem
• The number of internal nodes is determined experimentally
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Representation accuracy

Representing the input 
and intermediate values 
with 12 bits is enough to 

achieve the best 
classification accuracy

7-8 bits are enough to 
represent the output of 
the NN (before taking 

the max)
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Performance
• Set-up

– Java-based implementation
– PC-platform (clock 2GHz, RAM 2GByte)
– Pailler + GC

• Communication complexity (per heart beat)
– 80 Kbit (for short term security)
– 120 Kbit (for long-term security)

• Running time
– 3-4 seconds per heart beat
– Almost real-time
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Other applications
• s.p.e.d. technology has been applied to several other

fields (to mention a few):
– Privacy-preserving K-means clustering for social grouping

• Z. Erkin. T.Veugen. T. Toft, R. L. Lagendijk, «Privacy preserving user
clustering in a social network», Proc. of IEEE WIFS 2009, pp. 96-100

– Privacy-preserving collaborative filtering for content
recommendation

• Z. Erkin. T.Veugen. T. Toft, R. L. Lagendijk,, «Generating private 
recommendations efficiently using homomorphic encryption and data 
packing», IEEE Trans. on Information Forensics and Security, vol. 7, no. 3, 
June 2012.

– Smart grids
• A. Rial, G. Danezis, “Privacy-preserving smart metering”, in Proceedings of 

the 10th annual ACM workshop on Privacy in the Electronic Society, 2011, 
pp. 49-60.
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On-going research
• Efficiency, efficiency, efficiency

– Crypto-level
• more efficient primitives: fully homomorphic encryption

– SP level
• s.p.e.d. oriented algorithm design
• Ad-hoc security measures

• Security against malicious adversaries
– recent breakthrough: GC construction against malicious 

adversary at 7000 gates/s
– FHE is becoming feasible

• System-level solutions, new applications
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