Broken
Authentication

How to lose your
password in 10

seconds

Andrea Costanzo

This course is designed solely for educational purposes to teach students
about the principles, techniques, and tools of ethical hacking. The knowledge
and skills acquired during this course are intended to be used responsibly,
legally, and ethically, in compliance with applicable laws and regulations.

Authorized Use Only: Students must only use the methods, techniques, and tools taught in this course on systems and networks for which they have explicit
authorization to test and analyze.

Personal Responsibility. Students are personally responsible for ensuring that their actions comply with all relevant laws and ethical guidelines. Neither the
instructor nor the institution will be held liable for any misuse of the information or tools taught during this course.

Professional Integrity: Students are expected to uphold the highest standards of integrity and professionalism, refraining from any activity that could harm
individuals, organizations, or systems

The plan

 First lesson: Cryptographic Failures
= We know everything about it by now!

* This & next lessons: Broken Authentication
= Offline (hashed password cracking)
= Online (login forms cracking)

* Next & last lessons: Malware Analysis

92 omome.
[

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

ETHICAL

*x KX * * * %k

YOUR PASSWORD IS
TOO SHORT SO |
CHANGED IT

Summary

Password training
= Are you (re)using terrible passwords?

Cracking with automated tools (John, Hashcat)
= Hashed passwords
= Unix and Windows passwords
= Password-protected Excel and ZIP files

Guessing passwords with automated tools (Hydra)
= Services (ssh, ftp, etc.)
= Login pages

Bypassing login using SQL injection (SQL.i)

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Broken authentication

Broken Authentication refers to a class of security vulnerabilities arising from improper implementation or
configuration of authentication mechanisms, allowing attackers to compromise user credentials, assume
identities, or gain unauthorized access to systems.

» Using default or weak credentials
= Admin:admin, root:toor, common passwords (123456)

« Credential stuffing / password spraying

= Reused passwords from breaches

= No rate-limiting or account lockout
« Session hijacking

= Tokens over HTTP or XSS stealing session cookies
» Brute force vulnerabilities

= No CAPTCHA, lockout, or throttling

= Unlimited login attempts

» Token leakage
= JWT/API tokens in localStorage or URLs
= Hardcoded secrets in frontend code

Broken authentication

Broken Authentication refers to a class of security vulnerabilities arising from improper implementation or
configuration of authentication mechanisms, allowing attackers to compromise user credentials, assume
identities, or gain unauthorized access to systems.

» Missing or weak MFA
= No MFA on privileged accounts
= |nsecure 2FA methods (e.g., SMS)
* Insecure password reset
= Guessable or expired tokens
« Improper session management
= Long-lived sessions or logout doesn't invalidate session
« Auth logic bypass
= Poor backend checks (e.g., role from client-side)
* Client-side Auth enforcement
= Hidden admin Ul elements without backend restrictions
« Hardcoded credentials
= Secrets exposed in code or app binaries
* Insecure “Remember Me”
= Plaintext passwords in cookies or no expiration

Password
attacks

The tough life
of a password

Password attacks

A password guessing attack is Password cracking refers to Credential phishing is an online
one where the attacker uses offline attempts to break hashed scam where a cybercriminal
some tool to guess the or encrypted passwords, devises tricks to steal the
password. Dictionary attacks, typically from stolen databases. credentials of the target to gain
credential stuffing, brute-force These attempts can include access to company network,
attacks and password spraying brute-force, rainbow tables or email, bank accounts, shopping
are all forms of guessing attacks. dictionaries. sites, tax forms, and more.

I_ 1

PASSWHEN

I— BRUTE FORCE ATTACK —l

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 24

Password
cracking

Breaking stolen
hashes offline

Cracking passwords

« Suppose you have obtained a list of passwords and you want to crack them

» Obtained, how?
= You exploited a SQLi vulnerability to gain access to the Users table on a web database
= You uploaded a webshell that allowed you to launch remote commands on the server
= You did some shopping on the Dark Web boutiques
& You found an open port on a server, checked the protocol version, found a weakness for that
version, uploaded a reverse shell, elevated your privileges and downloaded user password
hashes

- Systems and apps do not store passwords in clear (well, sometimes they do, right Filezilla?)
o They store more or less secure hash digests of passwords. Something like:

4a057a33f1d8158556eade51342786co6
ea8dbc7900082678e2e4£f7275¢c945902
48916b7eleb5cbf180db22dfc9e784dcd

* To recover the password in clear you need some specific tools and techniques
= Dictionary: try all the words from a HUGE list of password candidates
= Brute force: try all possible combinations of uppercase, lowercase, digits and special characters
= Rainbow tables: precomputed tables of hash candidates

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 26

Offline password cracking tools

HISHCAT

https://hashcat.net/hashcat https://www.openwall.com/Jjohn

The dictionaries: look no further

« SeclLists is a collection of multiple types of lists used during security assessments, collected in one place.
= List types include usernames, passwords, URLSs, sensitive patterns, fuzzing payloads, web shells etc.
= https://qgithub.com/danielmiessler/SecLists

- ‘ SeclLists Public ® Watch 1919 ~ % Fork 24.3k - Y7 Star 621k -
w O
-
iz ¥ master ~ ¥ 2Branches © 28 Tags Q Go to file t Add file ~ <> Code ~ About
w 0O Seclists is the security tester's
ommm O github-actions[bot] [Github Action] Automated trickest wordlists update. 31e2a22 - 8 minutes ago {Y) 4,509 Commits companion. It's a collection of multiple
wn types of lists used during security
o B .bin [Github Action] Automated trickest wordlists update. 4 hours ago assessments, collected in one place. List
L .
—) o o types include usernames, passwords,
v M .github fix(cicd): More descriptive workflow names 3 weeks ago .)
{J URLs, sensitive data patterns, fuzzing
L
— B8 Ai/LLM_Testing feat(wordlist): Added more LLM data-leakage payloads 4 months ago payloads, web shells, and many more.
Z
m ;14 I Discovery [Github Action] Automated trickest wordlists update. 8 minutes ago ¢ www.owasp.orgfindex.php/OWASP_Int...
L Readme
- B Fuzzin Update big-list-of-naughty-strings.txt last month @
g
= &3 MIT license
I8 Miscellaneous feat(wordlist): Expanded the List-Of-Swear-Words "fr-CA... 2 months ago A~ Activity
i B0 Passwords fix(wordlist): Fixed file extension of the 'corporate_passw... 3 weeks ago v 62k stars
® 1.9k watching
I Pattern-Matchin, Imported and cleaned php magic hashes last year
¢ : PhP Mag v % 24.3k forks
. b M Payloads docs: update Payloads/README.md 5 months ago Report repository
I Usernames fix(wordlist): Removed redundant linejumps from Commeo... 3 months ago
] Releases 27
I8 web-Shells updated to laudanum v1.0 2 years ago

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

28

https://github.com/danielmiessler/SecLists

Q
E
)

Q

)
o pum|
)

)

©

-
a¥

Using John

John has no GUI: a lot of command
line text is coming your way!

Bring your best reading glasses.

John the Ripper: help and supported formats

john -h

Usage: john [OPTIONS] [PASSWORD-FILES]

--single[=SECTION[,..]] "single crack" mode, using default or named

rules

--wordlist[=FILE] --stdin wordlist mode, read words from FILE or stdin
--pipe like --stdin, but bulk reads, and allows rules

--prince[=FILE] PRINCE mode, read words from FILE
--encoding=NAME input encoding (eg. UTF-8, ISO-8859-1)
--mask [=MASK] mask mode using MASK (or default from

john.conf)
--users=[-]LOGIN|UIDI[, ..] [do not] load this (these) user(s) only
--salts=[-]COUNT[: MAX] load salts with[out] COUNT [to MAX] hashes

john --list=formats

descrypt, bsdicrypt, mdScrypt, mdScrypt-long, bcrypt, scrypt, LM, AFS, tripcode, AndroidBackup, adxcrypt, agilekeychain, aix-sshal, aix-ssha256, aix-sshabl2, andOTP, ansible, argon2,
as400-des, as400-sshal, asa-md5, AxCrypt, AzureAD, BestCrypt, bfegg, Bitcoin, BitLocker, bitshares, Bitwarden, BKS, Blackberry-ES10, WoWSRP, Blockchain, chap, Clipperz, cloudkeychain,
dynamic n, cg, CRC32, shalcrypt, sha256crypt, sha5l2crypt, Citrix NS10, dahua, dashlane, diskcryptor, Django, django-scrypt, dmd5, dmg, dominosec, dominosec8, DPAPImk, dragonfly3-32,
dragonfly3-64, dragonfly4-32, dragonfly4-64, Drupal7, eCryptfs, eigrp, electrum, EncFS, enpass, EPI, EPiServer, ethereum, fde, Fortigate256, Fortigate, FormSpring, FVDE, geli, gost,
gpg, HAVAL-128-4, HAVAL-256-3, hdaa, hMailServer, hsrp, IKE, ipb2, itunes-backup, iwork, KeePass, keychain, keyring, keystore, known hosts, krb4, krb5, krbbSasrep, krbSpa-shal, krbb5tgs,
krb5-17, krb5-18, krb5-3, kwallet, lp, lpcli, leet, lotus5, lotus85, LUKS, MD2, mdc2, MediaWiki, monero, money, MongoDB, scram, Mozilla, mscash, mscash2, MSCHAPv2, mschapv2-naive,
krbS5pa-md5, mssgl, mssqgl05, mssqgll2, multibit, mysglna, mysgl-shal, mysgl, net-ah, nethalflm, netlm, netlmv2, net-md5, netntlmv2, netntlm, netntlm-naive, net-shal, nk, notes, mdbns,
nsec3, NT, ol0glogon, o3logon, o5logon, ODF, Office, oldoffice, OpenBSD-SoftRAID, openssl-enc, oracle, oraclell, Oraclel2C, osc, ospf, Padlock, Palshop, Panama, PBKDF2-HMAC-MD4, PBKDF2-
HMAC-MD5, PBKDF2-HMAC-SHA1l, PBKDF2-HMAC-SHA256, PBKDF2-HMAC-SHAS512, PDF, PEM, pfx, pgpdisk, pgpsda, pgpwde, phpass, PHPS, PHPS2, pix-md5, PKZIP, po, postgres, PST, PuTTY, pwsafe, gnx,
RACF, RACF-KDFAES, radius, RAdmin, RAKP, rar, RAR5, Raw-SHA512, Raw-Blake2, Raw-Keccak, Raw-Keccak-256, Raw-MD4, Raw-MD5, Raw-MD5u, Raw-SHAl, Raw-SHAl-AxCrypt, Raw-SHAl-Linkedin, Raw-
SHA224, Raw-SHA256, Raw-SHA3, Raw-SHA384, ripemd-128, ripemd-160, rsvp, Siemens-S7, Salted-SHAl, SSHA512, sapb, sapg, saph, sappse, securezip, 7z, Signal, SIP, skein-256, skein-512,
skey, SL3, Snefru-128, Snefru-256, LastPass, SNMP, solarwinds, SSH, sspr, STRIP, SunMD5, SybaseASE, Sybase-PROP, tacacs-plus, tcp-md5, telegram, tezos, Tiger, tc aes xts, tc ripemdl6O,
tc ripemdl60boot, tc sha5l2, tc whirlpool, wvdi, OpenVMS, vmx, VNC, vtp, wbb3, whirlpool, whirlpool0O, whirlpooll, wpapsk, wpapsk-pmk, xmpp-scram, xsha, xsha5l12, ZIP, ZipMonster,
plaintext, has-160, HMAC-MD5, HMAC-SHAl, HMAC-SHA224, HMAC-SHA256, HMAC-SHA384, HMAC-SHA512, shalcrypt-opencl, KeePass-opencl, oldoffice-opencl, PBKDF2-HMAC-MD4-opencl, PBKDF2-HMAC-MD5-
opencl, PBKDF2-HMAC-SHAl-opencl, rar-opencl, RARS5-opencl, TrueCrypt-opencl, lotus5-opencl, AndroidBackup-opencl, agilekeychain-opencl, ansible-opencl, axcrypt-opencl, axcrypt2-opencl,
bcrypt-opencl, BitLocker-opencl, bitwarden-opencl, blockchain-opencl, cloudkeychain-opencl, md5Scrypt-opencl, sha256crypt-opencl, shab5l2crypt-opencl, dashlane-opencl, descrypt-opencl,
diskcryptor-opencl, diskcryptor-aes-opencl, dmg-opencl, electrum-modern-opencl, EncFS-opencl, enpass-opencl, ethereum-opencl, ethereum-presale-opencl, FVDE-opencl, geli-opencl, gpg-
opencl, iwork-opencl, keychain-opencl, keyring-opencl, keystore-opencl, krbSpa-md5-opencl, krb5pa-shal-opencl, krbSasrep-aes-opencl, lp-opencl, lpcli-opencl, LM-opencl, mscash-opencl,
mscash2-opencl, mysgl-shal-opencl, notes-opencl, NT-opencl, ntlmv2-opencl, o5logon-opencl, ODF-opencl, office-opencl, OpenBSD-SoftRAID-opencl, PBKDF2-HMAC-SHA256-opencl, PBKDF2-HMAC-
SHA512-opencl, pem-opencl, pfx-opencl, pgpdisk-opencl, pgpsda-opencl, pgpwde-opencl, PHPass-opencl, pwsafe-opencl, RAKP-opencl, raw-MD4-opencl, raw-MD5-opencl, raw-SHAl-opencl, raw-
SHA256-opencl, raw-SHAS512-free-opencl, raw-SHAS512-opencl, salted-SHAl-opencl, sappse-opencl, 7z-opencl, SL3-opencl, solarwinds-opencl, ssh-opencl, sspr-opencl, strip-opencl, telegram-
opencl, tezos-opencl, vmx-opencl, wpapsk-opencl, wpapsk-pmk-opencl, XSHA512-free-opencl, XSHALl2-opencl, ZIP-opencl, dummy, crypt

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 32

Using John for a dictionary attacks (wordlists)

john --format=<HASH FORMAT> --wordlist=<WORDLIST FILE> <HASHES FILE>

For example: john --format=raw-shal --wordlist=leaked passwords.txt to be cracked.txt

1. Suppose we want to crack the following hash: 078bbb4bf0£7117fb131ec45£15b5b87

2. First, we need to identify the type of hash we are trying to crack
= Offline tools such as hash-identifier or hash-id (Unix)
= CyberChef: https://cyberchef.io/#recipe=Analyse_hash()
= Online services, e.qg.: https://hashes.com/en/tools/hash_identifier

3. Then, we make sure that John supports format
= Unix, MacOS: john --show-formats | grep -i <HASH TYPE>
= Windows: john --show-formats | findstr /I <HASH TYPE>

4. Then, we save the hash to a text file
= With any notepad
= Orfromterminal: echo 078bbb4bf0£f7117fbl31lec45f15b5b87 > hashes.txt

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

33

https://cyberchef.io/
https://hashes.com/en/tools/hash_identifier

Using John for a dictionary attacks (wordlists)

5. We choose a dictionary
= Weusethe xato-net-10-million-passwords-100000.txt wordlist,thatyou can findinthe

John directory of the lab material

6. Now, we can start cracking

john --format=Raw-MD5 —--fork=4 --wordlist=xato-net-10-million-passwords-
100000. txt hashes. txt

7. When John ended cracking

john --show —-format=Raw-MD5 hashes. txt

« John saves cracked passwords in a database, so that you don’t have to crack them twice
" Linux: /etc/john/john.pot or~/.john/john.pot
= Windows: C: \ProgramData\JohnTheRipper\john.pot

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 34

Using Python to crack hashes with dictionary (from previous lesson)

@ P (re)Check exercise in CryptographicFailures/CryptFail_dictionary_md5.py

« We have seen this in the previous lesson: simply read the wordlist into an array and then loop all the words
by computing their hash and comparing it with the to-be-cracked hash. End when the hashes are the same
= This approach clearly misses all the optimizations of tools like John and it is extremely slower

def crack_hash(hash_to_crack, hash_function, hash_name):

password_list = [line.rstrip() for line in open('Resources/xato-net-10-million-passwords-10000.txt')]

start = time()
print(f"Cracking {hash_name} hash: {hash_to_crack}")
for password in password_list:
Generate the hash of the password using the specified hash function
hashed password = hash_function(password)
print(f"Trying password: {password} -> {hashed_password}")
if hashed_password == hash_to_crack:
print(f"Success! The password is: {password}. Cracked in {time() - start} seconds")
return password
print("Failed to crack the hash.\n")
return None

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 35

Advanced dictionary attacks (hybrid wordlists)

» Obviously, not all passwords are contained in word lists: chances are that, after trying several dictionaries,
your target password remains uncracked

« However, passwords are often recycled with an incremental number, a different special character, etc.
= iloveyou, 1iloveyouZ2, iloveyou!, i1loveyou?

» Word lists can be used as a starting point and extended with templates

= Every dictionary includes iloveyou

= You can extend it with John's -—-mask option
- --mask='?w?d' to append adigitin[0, 9]to each word of the list
- --mask='?w2s' 10 append a special characterin !"#s3s"' () *+,-./:;<=>2@[\1" " {[|}~
« --mask='?w?1' to append lowercase charactersin [a, z]

- --mask='?w?u' to append uppercase charactersin [a, Z]

john --format=Raw-MD5 --wordlist=my wlist.txt --mask='?w?s' my hash.txt

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 36

Advanced dictionary attacks: rules

JiR allows to create custom rules for teaching the tool how to dynamically generate potential passwords

It takes passwords from the supplied wordlist and modifies or mangles them in interesting ways. To show the

available rules use the command:

john —-list=rules

To apply a rule use the command:

john --format=<HASH FORMAT> --rule=<RULE NAME> --wordlist=<FILE> <HASHES FILE>

John configuration file john.conf

= For example:

[List.Rules:Reverse]

r

[List.Rules:CapFirstAddNum]
cAz"[0-9]1"

https://akimbocore.com/article/custom-rules-for-john-the-ripper/

If you are not satisfied with the built-in rules, you can also define your own custom rules by manually editing

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

r Reverse
C Capitalize
A Append
z"[0-9]" | A digit

37

https://akimbocore.com/article/custom-rules-for-john-the-ripper/

Advanced dictionary attacks (build your own list)

« What if your password contains elements of your life? What about unicornjune2002?
» This is where social engineering can do wonders
« Probably you are posting too much personal details (technically called oversharing): your cat,
dog, birthday, partner, job, favorite color, nicknames, hobbies
» All this data can be gathered and used to build a custom list of potential passwords

Sometimes, existing dictionaries won't make it, not even with all the possible masks g

Meet CUPP - Common User Passwords Profiler (https://github.com/Mebus/cupp)
* You can find this Python tool in the BrokenAuthentication\Online\cupp directory of lab materials

(.venv) ~/PycharmProjects/CryptographicFailures/BrokenAuthentication/cupp
python cupp.py -1i

Bommon
\ # lser
N i # [vasswords
\ (oo)____ # [rofiler
) AN
[1--11 * [Muris Kurgas | jOrgan@remote-exploit.org]

[Mebus | https://github.com/Mebus/]

[+] Insert the information about the victim to make a dictionary
[+] If you don't know all the info, just hit enter when asked! ;)

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 38

https://github.com/Mebus/cupp

CUPP - Common User Passwords Profiler

> First Name: Peter [+] Now making a dictionary...
> Surname: Parker [+] Sorting 1list and removing duplicates...
> Nickname: Spiderman [+] Saving dictionary to peter.txt, counting 18908 words.
> Birthdate (DDMMYYYY): 10082001 > Hyperspeed Print? (Y/n) : n
[+] Now load your pistolero with peter.txt and shoot! Good luck!
> Partners) name: Mary eoce Pete B.' o peter.txt
. i n enjamin
> Partners) nickname: Jane %Zgﬁgﬁgggsf ggg;ﬁ:mi;il
> Partners) birthdate (DDMMYYYY): 12112003 AL Benjamin! ! !
janeMary!$% Benjamin!!$
janeMary!$& Benjamin! !%
janeMary ! $x Benjamin!!&
janeMary!se Benjamin! !x
ild' C iami janeMary!s Benjamin!!@
> Child's name: Benjamin e Benjamin!
i L i . janeMary !%$ Benjamin!$!
> Child's nickname: Parker j.aneﬁ@rxig Benjamin!$$
i ' i . JaneMary! Benjamin!$%
> Child's birthdate (DDMMYYYY): 03052024 ARSHATS et BT aminiee
janeMary '@ Benjamin!$x
!gﬁgﬁg?YEgl Benjamin!$@
ji y1&! Benjamin!%
) janeMary!&s$ siﬁﬁmm
> Pet's name: Sandwich ;-gﬁgﬁggig Benjamin !%$
o . : Benjamin!%%
> Company name: DailyBugle ;-gﬁggggfgg Benjamin!%&
. : Benjamin!%x
jansMary:* Benjamin!%@
e
g . Benjamin!&!
n e janeMary !#% jam?
> Do you want to add some key words about the victim? Y/[N]: y L g:ﬂﬁmiﬂ:ﬁ
> Please enter the words, separated by comma. [i.e. hacker,juice,black] ;ﬂgﬁgﬁgg;;@ By amin it
> Do you want to add special chars at the end of words? Y/[N]: y j:aneﬁﬁrxigé gg:;ﬁgmigii@
Janellary: D
> Do you want to add some random numbers at the end of words? Y/[N]:n j.aneﬁgrygg g::;:mf:;
. Janellary: DN
> Leet mode? (i.e. leet = 1337) Y/[N]: n janeMary!@ex Benjamin!+%
ianeMary!@@ Benjamin!*&

Benjamin !*x

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 39

CUPP - Common User Passwords Profiler

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

40

Using John for bruteforce attacks (aka —-incremental)

« John obviously allows to carry out a bruteforce attack, which is called incremental mode
= |t tries every possible combination of characters, but intelligently prioritized based on frequency
models and length, increasing in complexity incrementally
« Start with short passwords (e.g., 1-3 characters)
« Trylonger ones
» Build each next candidate incrementally, character by character

« Even if highly optimized, bruteforce requires time

* To launch the attack, use this command:

john --incremental:<MODE> --format=<FORMAT> <TO BE CRACKED FILE>

john --incremental:Alnum --format=Raw-MD5 hashes. txt

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

41

Using John for bruteforce attacks (aka —-incremental)

« Available modes:

john --list=inc-modes

g [N

Mode Name @ Description

John the Ripper includes an

ASCII All printable ASCIl characters incremental mode called LanMan,
. ' , | optimized for cracking LanMan
| Digits | Numeric-only passwords (0—-9) haches t.)y:.
Alnum Letters and numbers (a—zA-Z0-9) iR L Ol BECESE S S
| . | and basic symbols
Alpha Letters only (a—zA-2) Enforq.ng max 14—char length
| - | Exploiting the split-hash
LanMan Legacy LANMAN charset (Windows NT) vulnerability
| i | LanMan is obsolete and
LowerNum Lowercase + digits (a—z0-9) insecure, but some older
' | systems or legacy databases
UpperNum Uppercase + digits (A-Z0-9) still use it.

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 42

Accelerating bruteforce with GPU

« Bruteforce can be accelerated with GPU
= GPUis ~10x to 500x faster than CPU, depending on the type of hash

 To list available devices use the command:

john --list=opencl-devices

» The output will look like this if there is a GPU on the machine:

Platform #0 name: NVIDIA CUDA, version: OpenCL 3.0 CUDA 11.4.557

Device #0 (1) name: NVIDIA RTX A5000

Device vendor: NVIDIA Corporation
Device type: GPU (LE)

Device version: OpenCL 3.0 CUDA

OpenCL version support: OpenCL C 1.2

Driver version: 470.256.02 [recommended]

« Bruteforcing command will then become:

john --incremental --format=raw-md5-opencl --device=1 hashes. txt

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 43

Accelerating bruteforce with GPU

Using an Nvidia RTX A5000, assuming an alphanumeric password of known length = 8

john --pot=clear --incremental:Alnum --format=raw-md5-opencl --device=1 --
min-length=8 --max-length=8 hashes. txt

Device 1: NVIDIA RTX A5000

Using default input encoding: UTF-8
Loaded 1 password hash (raw-MD5-opencl [MD5 OpenCL])
Note: This format may be a lot faster with --mask acceleration (see doc/MASK) .
LWS=256 GWS=4194304

Press 'q' or Ctrl-C to abort, 'h' for help, almost any other key for status

Og 0:00:00:06 0.00% (ETA: 2025-03-10 17:59) 0g/s 46832Kp/s 46832Kc/s 46832KC/s Dev#1:35°C 17125807j.
Og 0:00:00:14 0.00% (ETA: 2025-03-09 23:29) 0g/s 48028Kp/s 48028Kc/s 48028KC/s Dev#1l:35°C trOgusal.
Og 0:00:00:16 0.00% (ETA: 2025-03-09 16:41) O0g/s 48436Kp/s 48436Kc/s 48436KC/s Dev#l:36°C atears74.
Og 0:00:00:18 0.00% (ETA: 2025-03-09 11:27) 0g/s 48646Kp/s 48646Kc/s 48646KC/s Dev#l:36°C rodrlldm.
Og 0:00:00:20 0.00% (ETA: 2025-03-09 01:59) 0g/s 48902Kp/s 48902Kc/s 48902KC/s Dev#1:36°C 1j100amp.
Og 0:00:00:22 0.00% (ETA: 2025-03-08 23:07) 0g/s 49120Kp/s 49120Kc/s 49120KC/s Dev#1l:36°C kublyal7.
Og 0:00:01:40 0.00% (ETA: 2025-03-08 15:31) 0g/s 49468Kp/s 49468Kc/s 49468KC/s Dev#1l:39°C delup2al.
Og 0:00:44:45 0.06% (ETA: 2025-03-07 19:59) 0g/s 50293Kp/s 50293Kc/s 50293KC/s Dev#1:41°C g0b45ta9.
Og 0:00:44:47 0.06% (ETA: 2025-03-07 20:11) 0g/s 50284Kp/s 50284Kc/s 50284KC/s Dev#1:41°C frcgkgOd.
s3cret7b (?)

1g 0:06:51:33 DONE (2025-01-16 20:57) 0.000040g/s 49713Kp/s 49713Kc/s 49713KC/s Dev#1:40°C s3cret7b..s3clkm8y
Use the "--show --format=raw-MD5-opencl" options to display all of the cracked passwords reliably

Session completed.

.aivvan9c
.24d3jdn07
.l1janudl?
.ramorto3
.jcimigml
.revstgoy
.dryecd93
.gcauni8K
.fand4arr8

Accelerating bruteforce with GPU using Hashcat

Hashcat is an alternative to John. It does not have as many features but it is better optimized over GPUs

and thus faster at bruteforcing

« Numeric password 0819338301745 (MD5: 5a17d62fff439a83ce3eelcl11538285a)

hashcat -a 3

-m 0 hash.txt ?2d?d?d?d?d?d?d?d?d?d?d?d?d --session=bruteforce

--hwmon-disable

-0

--force

hashcat (v6.2.5) starting

CUDA API (CUDA 11.4)

24048/24256
24048/24256
24048/24256
24048/24256
24048/24256
24048/24256 ;
24048/24256 MB,

Device #1:
Device #2:
Device #3:
Device #4:
Device #5:
Device #6:
Device #7:

NVIDIA RTX A5000,
NVIDIA RTX A5000,
NVIDIA RTX A5000,
NVIDIA RTX A5000,
NVIDIA RTX A5000,
NVIDIA RTX A5000,
NVIDIA RTX A5000,

14
14

14

14
14

CEEEER:

Optimizers applied:
Optimized-Kernel
Zero-Byte
Precompute-Init
Meet-In-The-Middle
Early-Skip
Not-Salted
Not-Iterated
Single-Hash
Single-Salt
Brute-Force
Raw-Hash

C ok ok ok ok Ok F H X * *

64MCU
64MCU
64MCU
64MCU
64MCU
64MCU
64MCU

Device #8: NVIDIA RTX A5000, 24048/24256 MB, 64MCU

Hashes: 1 digests; 1 unique digests, 1 unique salts
Bitmaps: 16 bits, 65536 entries, 0x0000ffff mask, 262144
bytes, 5/13 rotates

bruteforce

0 (MD5)
5a17d62£fff439a83ce3eelcl1538285a
Time.Started.....: Mon Jan 20 09:27:13 2025,
Time.Estimated...: Mon Jan 20 09:27:16 2025,
Kernel.Feature...: Optimized Kernel
Guess.Mask.......: ?2d?d?d?d?d?d?d?d?d?d?d?d?d [13]
Guess.Queue......: 1/1 (100.00%)

Session..........:
Hash.Mode........:
Hash.Target......:

Speed.#1.........: 41902.4 MH/s (10.60ms) @ Accel:64
Speed.#2.........: 41564.3 MH/s (10.68ms) @ Accel:64
Speed.#3.........: 41816.2 MH/s (10.66ms) @ Accel:64
Speed.#4.........: 41710.4 MH/s (10.64ms) @ Accel:64
Speed.#5.........: 42281.5 MH/s (10.51ms) @ Accel:64
Speed.#6.........: 42206.8 MH/s (10.51ms) @ Accel:64
Speed.#7.........: 42651.0 MH/s (10.40ms) @ Accel:64
Speed.#8.........: 42017.2 MH/s (10.59ms) @ Accel:64
Speed.#*.........: 336.1 GH/s

Recovered........: 1/1 (100.00%) Digests

Candidate.Engine.: Device Generator

Candidates.#1....: 1384806934845 -> 6881643491634
Candidates.#2....: 1328221773845 -> 6857439555745
Candidates.#3....: 1383893944845 -> 6889414996378
Candidates.#4....: 1245414996378 -> 6296221773845
Candidates.#5....: 1232954808378 -> 6210091635745
Candidates.#6....: 1234539555745 -> 6211386311745
Candidates.#7....: 1382643491634 -> 6880993944845
Candidates.#8....: 1233291635745 -> 6219771626466

Started: Mon Jan 20 09:27:00 2025
Stopped: Mon Jan 20 09:27:18 2025

(3 secs)
(0 secs)

Loops:
:250

Loops

Loops:
Loops:
Loops:
Loops:
Loops:
Loops:

250

250
250
250
250
250
250

Thr:
Thr:
Thr:
Thr:
:512
Thr:
Thr:
Thr:

Thr

512
512
512
512

512
512
512

Vec:
Vec:
Vec:
Vec:
Vec:
Vec:
Vec:
Vec:

R R RRRRRR

Using Python to bruteforce MD5 hashes (from previous lesson)

We have seen this in the previous lesson: given a password length, simply try all possible combinations

of an alphabet of symbols: compute the hash of each combination and compare to the to-be-cracked
= This approach clearly misses all the optimizations of tools like John and it is extremely slower

def bruteforce(target_hash, pwd_length):

seed = "aeosrnidlctumpbgqgvyhfzjxwk" # lowercase
seed = "aeosrnidlctumpbgqvyhfzjixwk" + "1234567890" # uppercase + numbers
seed_bytes = list(map(ord, seed))

Possible are: permutations, combinations or product

attempts =0

start = time()

for word_bytes in itertools.product(seed_bytes, repeat=pwd_length):

word_string = reduce(lambda x, y: x+y, map(chr, word_bytes)) # word_bytes to string
hash_ = hashlib.md5(word_string.encode('utf-8')).hexdigest() # MD5 of word_bytes

if hash_ == target_hash:
print("\n==> PASSWORD CRACKED: word = %s | hash = %s" % (word_string, hash_))
break

attempts +=1

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

46

https://specopssoft.com/blog/best-password-practices-to-defend-against-modern-cracking-attacks/

Hashcat has a better implementation over GPU

Number of
characters

Numbers Only

Lowercase Only

Case

Upper and Lower

Number, Upper,
Lower

Number, Upper,
Lower, Symbols

e
?
10
1"

Instantly
Instantly
Instantly

Instantly

Instantly

Instantly

20

5 years

21

49 years

22

490 years

Instantly

3years

82 years

3 years

3years

279 years

19 years

159 years

995 years

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Time to crack via brute-forcing given hashes with
modern hardware with 4x Nvidia RTX 4090s

Generally, a stock RTX 4090 will achieve
approximately 164 GH/s in Hashcat
= 164.000.000.000 guesses/second

With Prof. Barni's main research server powered
up by 8x RTX A5000
= We reached a peak of 330GH/s

47

https://specopssoft.com/blog/best-password-practices-to-defend-against-modern-cracking-attacks/

Hashcat has a better implementation over GPU

Number of
characters

Upper and Lower Number, Upper, Number, Upper,
Case Lower Lower, Symbols

N o | e [
e I e
12

13 Instantly 995 years

" ’ = - -

16

Numbers Only Lowercase Only

« Time to crack via brute-forcing given hashes with
modern hardware with 4x Nvidia RTX 4090s

17

18

19

20 5 years

21 49 years

22 490 years

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 47

Benchmarking John

 The --test option runs a benchmark of John's cracking engine for each supported hash format

= Measures cracking speed (in crypts per second — c¢/s) for each format

= Tests how efficiently John uses your CPU and SIMD instructions (e.g., AVX, NEON)
= Benchmarks only the cracking engine, not wordlists or rules

= Typically runs each test for about 5 seconds by default

« Why it's useful?

= You can see how fast your system cracks different hash types. This helps you compare systems (e.g.,
laptop vs server) or spot misconfigurations (e.g., SIMD not enabled)

= Hardware verification

= |t's also a practical demonstration of hashing algorithm complexity and their brute-force resistance:

john --test --format=Raw-MD5

john --test --format=bcrypt

Benchmarking: Raw-MD5 [MD5 128/128 ASIMD Benchmarking: bcrypt ("$2a$05", 32 iterations)
4x2] ... DONE [Blowfish 32/64 X2]... DONE
Raw: 18401K c/s real, 18401K c/s virtual Raw: 998 c/s real, 998 c/s virtual
g e j28°
}’ Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) _ U 48

The lazy way. Using hash cracking tools online: https://crackstation.net

« This website sometimes is useful to crack weak password hashes
= Try here before running more sophisticated tools
= |t uses a massive wordlist: 1.5 billions hashes, 15GB (link)
= |f the password is not in there, then it will not be able to break the hash

Free Password Hash Cracker

Enter up to 20 non-salted hashes, one per line:

5f4dcc3b5aa765d61d8327deb882cf99

. Non sono un robot ==

reCAPTCHA

Privacy - Termini

Supports: LM, NTLM, md2, md4, md5, md5(md5_hex), md5-half, shal, sha224, sha256, sha384, sha512, ripeMD160, whirlpool, MySQL 4.1+ (shal(shal_bin)),
QubesV3.1BackupDefaults

Hash Type Result

5f4dcc3b5aa765d61d8327deb882cf99 md5 password

Color Codes: Green: Exact match, Yellow: Partial match, [l Not found.

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

https://crackstation.net/
https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm

Cracking
UNIX
password
hashes

Cracking UNIX passwords: /etc/passwd

The /etc/passwd file is a plain-text database housing fundamental user information. Each line in the file

represents a user account and is divided into fields separated by colons ()

root:x:0:0:x00t:/xro00t:

|—> Home directory

—» User information (GECOS)

— Default group ID

—» Usexr ID

— Encrypted passwoxd

(An x character indicates that encrypted passwoxd
is stored in /etc/shadow file)

— Usexr or Login name

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

51

Cracking UNIX passwords: /etc/passwd

The /etc/passwd file is a plain-text database housing fundamental user information. Each line in the file

represents a user account and is divided into fields separated by colons ()

root:x:0:0:x00t:/xo0t:
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
lp:x:7:7:1p:/var/spool/lpd:/usr/sbin/nologin
mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news:/var/spool/news:/usr/sbin/nologin
ul234:x:1001:1001:John Doe:/home/ul234:/bin/bash
ub678:x:1002:1002:Jane Smith:/home/u5678:/bin/zsh
nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin

Andrea Costanzo - VIPPGroup (https://clem.dii.unist.it/~vipp/’)

51

Cracking UNIX passwords: /etc/shadow

For heightened security, critical user authentication information, particularly hashed passwords, resides in the
/etc/shadow file, accessible exclusively to privileged users.

PRIVILEGE
ESCALATION

user:%$1%$.pj1GQNUS$ZWEL3P2/CpbgeiliGa/Ymd1:18556:0:99999:7: : : e sUPER
1 I___-_-.. x ADMIN
l ‘ Numbexr of days
id $salt$ $hash$.
ID of the Random data Hash of since account
algorithm that makes the user v was locked
used passwozrd passwozrd
L Days since Number of days
| epoch of last . .y
* d <h without login
passWord chnahge \4 after expiration
Encrypted before account
passwoxd is locked
\
Maximum days the
y passwoxrd is valid

User login name
Number of days before

warning for expiration

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 52

Cracking UNIX passwords: /etc/shadow

For heightened security, critical user authentication information, particularly hashed passwords, resides in the

/etc/shadow file, accessible exclusively to privileged users.

PRIVILEGE
ESCALATION

user:%$1%$.pj1GQNUS$ZWEL3P2/CpbgeiliGa/Ymd1:18556:0:99999:7: : : ’ e SUPER
— jI:llllllll | IITII T IITIIIIII :]n{ Illlllliii

$ids $salts shashs TOOt : $6%abcdefg$abecdefghijl234567890abecdefghi/:19000:0:99999:7:::
it e 2 daemon:x:19000:0:99999:7:
Heed Prosword P hpini%:19000:0:99999:7: ::
| | SYys:%:19000:0:99999:7:::
v SyNnc:%:19000:0:99999:7: : :
games:%:19000:0:99999:7:::

Encrypted
password ‘man:*:19000:0:99999:7:::
1p:%:19000:0:99999:7:::
mail:*:19000:0:99999:7:::
' news :%:19000:0:99999:7:::
Usee 1agin i ul234:$69xyz12345%abcdefghijl234567890abcdefghi/:19000:0:99999:7:::

ub678:%6%8pqr67890Smnopgrstuvwx1234567890yzabcd/:19000:0:99999:7:::
nobody:%:19000:0:99999:7:::

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 52

Cracking UNIX passwords

« The unshadow tool from John the Ripper is used to combine the information from the /etc/passwd and
/etc/shadow files into a single file that contains both user account details and password hashes

unshadow passwd shadow > unshadowed. txt

john —-format=mdS5crypt —--wordlist=rockyou.txt unshadowed. txt

john —--show --format=crypt unshadowed. txt

« Tryusing the dummy /etc/passwd and /etc/shadow files included in John’s directory of lab materials

Cracking
MS Windows
NTLM hashes

Cracking Microsoft Windows passwords

- Windows uses a secure hashing algorithm to hash passwords
= Starting from Windows Vista: NTLM (NT LAN Manager)

« NTLM hashes are unsalted by default
= The same password will always produce the same hash
= Vulnerable to precomputed attacks (like rainbow tables)
= Windows mitigates with additional security measures
« Account lockout policies and password complexity requirements

« Password hashes for local accounts are stored in the Security Account Manager (SAM) database
= The SAM database isin c:\Windows\System32\config\SAM
= The SAM file is protected by the OS

= |tis encrypted to prevent unauthorized access

* There are several tools to dump the hashed passwords from the SAM
= Mimikatz (https://github.com/ParrotSec/mimikatz, https://github.com/skelsec/pypykatz)
= Pwdump (https://www.openwall.com/passwords/windows-pwdump)
= Meterpreter (https://www.metasploit.com)

See also: https://www.microsoft.com/en-us/wdsi/threats/threat-search?query=HackTool:Win32/Dump
https://www.microsoft.com/en-us/wdsi/threats/threat-search?query=Hacktool:Win32/Mimikatz

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 55

https://github.com/ParrotSec/mimikatz
https://github.com/skelsec/pypykatz
https://www.openwall.com/passwords/windows-pwdump
https://www.metasploit.com/
https://www.microsoft.com/en-us/wdsi/threats/threat-search?query=HackTool:Win32/Dump
https://www.microsoft.com/en-us/wdsi/threats/threat-search?query=Hacktool:Win32/Mimikatz

Cracking Microsoft Windows passwords

You need to have elevated privileges to run hash dumping tools, but it's not unusual for a hacker to get lucky
with a power user who falls for a well-crafted phish.

Administrator:500:aad3b435b51404eeaad3b435b51404ee:31d6cfe@dl6ae931b73c59d7e0c089cO: : :
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cTfe@d16ae931b73¢c59d7e0c089cO: ::
john.doe:1001:aad3b435b51404eeaad3b435b51404ee:b45cffe084dd3d20d928bee85e7b0f21: ::
jane.smith:1002:aad3b435b51404eeaad3b435b51404ee:5Ff4dcc3b5aa765d61d8327deb882¢cf99:::
service.account:1003:aad3b435b51404eeaad3b435b51404ee:098F6bcd4621d373cadese832627b4T6:

Fields:

1. Username: the account name (e.g., Administrator, john.doe).

2. RID: relative Identifier for the account, unique within the system (e.g., 500 for Administrator).

3. LM Hash: the legacy LAN Manager hash of the password. In modern systems, this is often disabled and
represented as a placeholder (aad3b435b51404ccaad3b435b51404ee).

4. NTLM Hash: the NT hash of the password, used for authentication
(e.9.,31d6cfe0d16ae931b73c59d7e0c089c0).

5. Blank Fields (:::): reserved for additional data like domain information or history (empty in the example)

john --format=NT ntlm hashes.txt --wordlist=rockyou.txt

john --show --format=NT ntlm hashes. txt

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 56

O=-2SVNP>T

Cracking
password
protected files

Cracking password-protected files

« Did you forget the password of your precious megazip music folder? Then you are in luck, because

« John works with password protected ZIP files or Excel spreadsheets
= First, extract the hashed password and encryption metadata from the target file using the bundled
commands zip2john, office2john, pdf2john etc.
« This step simply prepares the data in a format that John can handle
= Then, crack it as usual

Create a file and zip it
echo "supersecret data" > secret.txt
zip --password <password> file.zip secret.txt

Try to unzip it, and it will ask for a password
unzip file.zip

Extract the hash
./zip2john file.zip > zip hash. txt

Crack
john --wordlist rockyou.txt --format=pkzip zip hash.txt

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Most used *2john utilities

* Here’s a list of common *2john utilities included with John the Ripper Jumbo. These are used to extract hash-like
representations from various file types so they can be cracked by john.

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

| Tool Purpose
. |) gpg2john Extracts protected data from GnuPG/PGP
zip2john Extracts password hash from ZIP files .
.] keyrings
rar2john Extracts hash from RAR (v3 and v5) archives | lastpass2john.py Extracts data from LastPass exported vaults
' 7z2john Extracts hash from 7-Zip archives krb5tgs2john.py Cracks Kerberos TGS-REP hashes
pdf2j°hn . pl Extracts hash from PDF files (Perl Script) openslejohn Extracts from OpenSSL_encrypted private
office2john.py Extracts hashes from MS Office 97-2013+ keys/certs
docs truecrypt2john Extracts from TrueCrypt and VeraCrypt
. volumes
keepass2john Extracts hashes from KeePass 1.x/2.x !
databases wpapcap2john WPA/WPA2 handshake from .pcap files
hccap2john Converts .hccap (WPA/WPA2 handshake) to vncpcap2john.py Extracts VNC authentication info from .pcap
crackable form files
bitlocker2john Extracts info from BitLocker-encrypted pfx2john Extracts from PFX/PKCS12 files (used in
volumes certificates)
.) androidbackup2john Extracts from Android backup files (.ab
dmg2john Apple DMG file hash extractor — L P (-ab)

59

JTR CHEAT SHEET

This cheat sheet presents tips and tricks for using JtR

JtR Community Edition - Linux

Download the JtR Bleeding Jumbo edition with

improved capabilities and other goodies.

ﬁit clone
ttps://github.com/magnumripper/JohnTherR
ipper -b bleeding-jumbo

Compile JtR and enable/disable required features
cd JohnTheRipper/

cd src/

./configure

make clean && make -s

Enable bash completion. add the
following line to your ~/.bashrc
. <JtR path>/run/john.bash_completion

Cracking Modes

Multiple CPU or GPU

List OpenCL devices and get the device id
./john --Tist=opencl-devices

List formats supported by OpenCL
./john --Tist=formats --
format=openc]

Multiple GPU's
./john hashes --
format:<openclformat> --wordlist:<>
--rules:<> --dev=0,1 --fork=2

Multiple CPU's (e.g., 4 cores)
./john hashes --wordlist:<> --
rules:<> --dev=2 --fork=4

--rules:Single
--rules:Wordlist
--rules:Extra

Wordlist Mode (dictionary attack)
./john --wordlist=password.Tst hashfile

Mangling Rules Mode (hybrid)
./qohn --wordlist=password.lst -
rules:<rulename> hashfile

Incremental mode (Brute Force)
./john --incremental hashfile

External mode (use a program to generate guesses)
./john --external: <rulename> hashfile

Loopback mode (use POT as wordlist)
./john --Toopback hashfile

Mask mode (read MASK under /doc)
./john --mask=71717171?71?171?1 -1=[A-Z]
hashfile -min-l1en=8

Hybrid Mask mode
./john -w=password.lst -
mask="?1?1?w?1?1"' hashfile

Markov mode (Read MARKOV under /doc).
First generate Markov stats:
./calc_stat wordlist markovstats

Then run:

./john -markov:200 -max-len:12 hashfile
--mkv-stats=markovstats

Prince mode (Read PRINCE under /doc)
./john --prince=wordlist hashfile

Most modes have Maxlen=13 in John.conf but it can
be overwritten with -max-Ten=N up to 24

--rules:Jumbo (all the above)
--rules:KoreLogic

--rules:Al1 (all the above)

Incremental Modes (Brute Force)

--incremental:Lower (26 char)
--incremental:Alpha (52 char)
--incremental:Digits (10 char)
--incremental:Alnum (62 char)

Incremental mode with new charsets

Create a new charset based on john.pot
./john --make-charset=charset.chr

Create a new entry in John.conf to accommodate the
new charset

Incremental modes
[Incremental:charset]
File = $JOHN/charset.chr
MinLen = 0

MaxLen = 31

CharCount = 95

Run JtR with the new charset
./john --incremental=charset hashfile

Sort a wordlist to use with wordlist rule mode
$tr A-Z a-z < SOURCE | sort -u > TARGET

Use a POT file to generate a new wordlist
cut -d: -f2 john.pot | sort -u > pot.dic

Generate candidate passwords for slow hashes.
./john --wordlist= password.l1st --stdout
--rules:Jumbo | ./unique -mem=25
wordTlist.uniq

Use external mode for complex rules

http://www.lanmaster53.com/2011/02/creating-
complex-password-lists-with-john-the-ripper/

Generate a wordlist that meets the complexity
specified in the complex filter

.Jiohn --wordlist=[path to word list] --stdout --
external:[filter name] > [path to output list]

Try sequences of adjacent keys on a keyboard as
candidate passwords
john --external:Keyboard hashfile

Configuration Items on John.conf

When using both CPU and GPU set this flag
Idle=N

Hidden Options

./john --l1st= den-options

Display guesses
./john --incremental:Alpha -stdout -
session=sl

Generate guesses with external program

crunch 1 6 abcdefg | ./john hashes -
stdin -session=sl

Session and Restore

./john hashes -session=name

.Jiohn --restore:name

Show cracked passwords

./john hashes --pot=<> --show

Resources

John-Users Mailing List
http://www.openwall.com/lists/john-users/

Authored by Luis Rocha. This cheat sheet was reviewed by John-Users. It’s distributed according to the Creative Commons v3 “Attribution” License. You’re looking at version 1.0 of this document.

JtR Community Wiki
http://openwall.info/wiki/john
Documentation under doc folder
Matt Weir Blog
http://reusablesec.blogspot.ch/

Simple Rule in John.conf

[List.Rules:Tryout]

0"2015"

u
C

1r

1 AZz"2015"
d

1A
AOII#IIAZII#II

convert to lowercase

convert to uppercase
u

#capitalize
c

#lowercase the word and reverse it (palindrome)
r

#lowercase the word and append at end of the word
(Az) the number 2015
1 Az"2015"

duplicate

d

lowercase the word and prepend at beggining of
the word (A0) the number 2015

1 A0"2015"

Add # to the beginning and end of the word
AO"#"AZ"#"
Use the Wordlist Rule

Display the password candidates generated with the

mangling rule
./john --wordlist=password.lst --stdout
--rules:Tryout

Generate password candidates max length of 8
./john --wordlist=password.lst --
stdout=8 --rules:Tryout

./john hashes --wordlist=password.lst --
rules:Tryout

Simple Wordlist Rules

#lowercase the first character, and uppercase the

rest
C

tttoggle case of all characters in the word
t

#toggle case of the character in position N
TN

ttreverse: "Fred" -> "derF"
r

#duplicate: "Fred" -> "FredFred"
d

ttreflect: "Fred" -> "FredderF"
.f:

#trotate the word left: "jsmith" -> "smithj"

#rotate the word right: "smithj" -> "jsmith"
}

#tappend character X to the word
$x

#prefix the word with character X
AX

Insert and Delete Wordlist Rules

#Remove the first char from the word

#Remove the last char from the word

#delete the character in position N
DN

#extract substring from position N for up to M
characters
xNM

#insert character X in position N and shift the rest
right
iNX

#overstrike character in position N with character X
oNX

Charset and Conversion Wordlist Rules

#shift case: "Crack96" -> "cRACK(?"
S

ttlowercase vowels, uppercase consonants: "Crack96"
->"CRaCK96"

\%

#shift each character right, by keyboard: "Crack96" ->
"VtsvlO7"

R

#shift each character left, by keyboard: "Crack96" ->
"Xeaxj85"

L

Length control

ttreject the word unless it is less than N characters

long
<N

#ireject the word unless it is greater than N characters
long
>N

#truncate the word at length N

Dictionaries

Generate wordlists from Wikipedia pages: wget
https://raw.githubusercontent.com/zombie
sam/wikigen/master/wwg.py

python wwg.py

-u
http //pt.wikipedia.org/wiki/Fernando_pPe
ssoa -t 5 -o fernandopessoa -m3

Generate wordlists from Aspell Dict’s

aspell dump dicts
sudo apt-get install aspell-es

aspell -d es dump master | aspell -1 es
expand | awk 1 RS=" |\n" > Spanish.dic

Resources

Full Rules Documentation
httﬁ) ://www.openwall.com/john/doc/RULES.s

Password Analysis and Cracking Kit
https://thesprawl.org/projects/pack/

Mangling Rules Generation by Simon Marechal
http://www.openwall.com/presentations/pPa
sswords12-Mangling- Rules-Generati on/

Authored by Luis Rocha. This cheat sheet was reviewed by John-Users. It’s distributed according to the Creative Commons v3 “Attribution” License. You’re looking at version 1.1 of this document.

Thank you! I SEE YOU WHEN YOU'RE SLEEPING

I KNOW WHEN YOU'RE AWAKE .
Next lab: I KNOW IF YOU'VE BEEN BAD OR GOOD.
Broken
Authentication ARE YOU A

online (plug HACKER?

your cable)

