
Broken
Authentication

How to lose your
password in 10
seconds

Andrea Costanzo

This course is designed solely for educational purposes to teach students
about the principles, techniques, and tools of ethical hacking. The knowledge
and skills acquired during this course are intended to be used responsibly,
legally, and ethically, in compliance with applicable laws and regulations.

Authorized Use Only: Students must only use the methods, techniques, and tools taught in this course on systems and networks for which they have explicit
authorization to test and analyze.

Personal Responsibility. Students are personally responsible for ensuring that their actions comply with all relevant laws and ethical guidelines. Neither the
instructor nor the institution will be held liable for any misuse of the information or tools taught during this course.

Professional Integrity: Students are expected to uphold the highest standards of integrity and professionalism, refraining from any activity that could harm
individuals, organizations, or systems

The plan

• First lesson: Cryptographic Failures
§ We know everything about it by now!

• This & next lessons: Broken Authentication
§ Offline (hashed password cracking)
§ Online (login forms cracking)

• Next & last lessons: Malware Analysis

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 3

Summary

• Password training
§ Are you (re)using terrible passwords?

• Cracking with automated tools (John, Hashcat)
§ Hashed passwords
§ Unix and Windows passwords
§ Password-protected Excel and ZIP files

• Guessing passwords with automated tools (Hydra)
§ Services (ssh, ftp, etc.)
§ Login pages

• Bypassing login using SQL injection (SQLi)

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 5

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Broken authentication

• Using default or weak credentials
§ Admin:admin, root:toor, common passwords (123456)

• Credential stuffing / password spraying
§ Reused passwords from breaches
§ No rate-limiting or account lockout

• Session hijacking
§ Tokens over HTTP or XSS stealing session cookies

• Brute force vulnerabilities
§ No CAPTCHA, lockout, or throttling
§ Unlimited login attempts

• Token leakage
§ JWT/API tokens in localStorage or URLs
§ Hardcoded secrets in frontend code

Broken Authentication refers to a class of security vulnerabilities arising from improper implementation or
configuration of authentication mechanisms, allowing attackers to compromise user credentials, assume
identities, or gain unauthorized access to systems.

6

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Broken authentication

• Missing or weak MFA
§ No MFA on privileged accounts
§ Insecure 2FA methods (e.g., SMS)

• Insecure password reset
§ Guessable or expired tokens

• Improper session management
§ Long-lived sessions or logout doesn’t invalidate session

• Auth logic bypass
§ Poor backend checks (e.g., role from client-side)

• Client-side Auth enforcement
§ Hidden admin UI elements without backend restrictions

• Hardcoded credentials
§ Secrets exposed in code or app binaries

• Insecure “Remember Me”
§ Plaintext passwords in cookies or no expiration

Broken Authentication refers to a class of security vulnerabilities arising from improper implementation or
configuration of authentication mechanisms, allowing attackers to compromise user credentials, assume
identities, or gain unauthorized access to systems.

7

Password
attacks

The tough life
of a password

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Password attacks

A password guessing attack is
one where the attacker uses
some tool to guess the
password. Dictionary attacks,
credential stuffing, brute-force
attacks and password spraying
are all forms of guessing attacks.

Password cracking refers to
offline attempts to break hashed
or encrypted passwords,
typically from stolen databases.
These attempts can include
brute-force, rainbow tables or
dictionaries.

Credential phishing is an online
scam where a cybercriminal
devises tricks to steal the
credentials of the target to gain
access to company network,
email, bank accounts, shopping
sites, tax forms, and more.

24

Password
cracking

Breaking stolen
hashes offline

• Suppose you have obtained a list of passwords and you want to crack them

• Obtained, how?
§ You exploited a SQLi vulnerability to gain access to the Users table on a web database
§ You uploaded a webshell that allowed you to launch remote commands on the server
§ You did some shopping on the Dark Web boutiques
♛ You found an open port on a server, checked the protocol version, found a weakness for that

version, uploaded a reverse shell, elevated your privileges and downloaded user password
hashes

• Systems and apps do not store passwords in clear (well, sometimes they do, right Filezilla?)
o They store more or less secure hash digests of passwords. Something like:

• To recover the password in clear you need some specific tools and techniques
§ Dictionary: try all the words from a HUGE list of password candidates
§ Brute force: try all possible combinations of uppercase, lowercase, digits and special characters
§ Rainbow tables: precomputed tables of hash candidates

4a057a33f1d8158556eade51342786c6
ea8dbc7900082678e2e4f7275c945902
48916b7e1e5cbf180db22dfc9e784dcd

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Cracking passwords

26

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

https://hashcat.net/hashcat https://www.openwall.com/john

Offline password cracking tools

27

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

• SecLists is a collection of multiple types of lists used during security assessments, collected in one place.
§ List types include usernames, passwords, URLs, sensitive patterns, fuzzing payloads, web shells etc.
§ https://github.com/danielmiessler/SecLists

The dictionaries: look no further

28

https://github.com/danielmiessler/SecLists

Practice time

Using John

John has no GUI: a lot of command
line text is coming your way!

30

Bring your best reading glasses.

John the Ripper: help and supported formats

john –h

descrypt, bsdicrypt, md5crypt, md5crypt-long, bcrypt, scrypt, LM, AFS, tripcode, AndroidBackup, adxcrypt, agilekeychain, aix-ssha1, aix-ssha256, aix-ssha512, andOTP, ansible, argon2,
as400-des, as400-ssha1, asa-md5, AxCrypt, AzureAD, BestCrypt, bfegg, Bitcoin, BitLocker, bitshares, Bitwarden, BKS, Blackberry-ES10, WoWSRP, Blockchain, chap, Clipperz, cloudkeychain,
dynamic_n, cq, CRC32, sha1crypt, sha256crypt, sha512crypt, Citrix_NS10, dahua, dashlane, diskcryptor, Django, django-scrypt, dmd5, dmg, dominosec, dominosec8, DPAPImk, dragonfly3-32,
dragonfly3-64, dragonfly4-32, dragonfly4-64, Drupal7, eCryptfs, eigrp, electrum, EncFS, enpass, EPI, EPiServer, ethereum, fde, Fortigate256, Fortigate, FormSpring, FVDE, geli, gost,
gpg, HAVAL-128-4, HAVAL-256-3, hdaa, hMailServer, hsrp, IKE, ipb2, itunes-backup, iwork, KeePass, keychain, keyring, keystore, known_hosts, krb4, krb5, krb5asrep, krb5pa-sha1, krb5tgs,
krb5-17, krb5-18, krb5-3, kwallet, lp, lpcli, leet, lotus5, lotus85, LUKS, MD2, mdc2, MediaWiki, monero, money, MongoDB, scram, Mozilla, mscash, mscash2, MSCHAPv2, mschapv2-naive,
krb5pa-md5, mssql, mssql05, mssql12, multibit, mysqlna, mysql-sha1, mysql, net-ah, nethalflm, netlm, netlmv2, net-md5, netntlmv2, netntlm, netntlm-naive, net-sha1, nk, notes, md5ns,
nsec3, NT, o10glogon, o3logon, o5logon, ODF, Office, oldoffice, OpenBSD-SoftRAID, openssl-enc, oracle, oracle11, Oracle12C, osc, ospf, Padlock, Palshop, Panama, PBKDF2-HMAC-MD4, PBKDF2-
HMAC-MD5, PBKDF2-HMAC-SHA1, PBKDF2-HMAC-SHA256, PBKDF2-HMAC-SHA512, PDF, PEM, pfx, pgpdisk, pgpsda, pgpwde, phpass, PHPS, PHPS2, pix-md5, PKZIP, po, postgres, PST, PuTTY, pwsafe, qnx,
RACF, RACF-KDFAES, radius, RAdmin, RAKP, rar, RAR5, Raw-SHA512, Raw-Blake2, Raw-Keccak, Raw-Keccak-256, Raw-MD4, Raw-MD5, Raw-MD5u, Raw-SHA1, Raw-SHA1-AxCrypt, Raw-SHA1-Linkedin, Raw-
SHA224, Raw-SHA256, Raw-SHA3, Raw-SHA384, ripemd-128, ripemd-160, rsvp, Siemens-S7, Salted-SHA1, SSHA512, sapb, sapg, saph, sappse, securezip, 7z, Signal, SIP, skein-256, skein-512,
skey, SL3, Snefru-128, Snefru-256, LastPass, SNMP, solarwinds, SSH, sspr, STRIP, SunMD5, SybaseASE, Sybase-PROP, tacacs-plus, tcp-md5, telegram, tezos, Tiger, tc_aes_xts, tc_ripemd160,
tc_ripemd160boot, tc_sha512, tc_whirlpool, vdi, OpenVMS, vmx, VNC, vtp, wbb3, whirlpool, whirlpool0, whirlpool1, wpapsk, wpapsk-pmk, xmpp-scram, xsha, xsha512, ZIP, ZipMonster,
plaintext, has-160, HMAC-MD5, HMAC-SHA1, HMAC-SHA224, HMAC-SHA256, HMAC-SHA384, HMAC-SHA512, sha1crypt-opencl, KeePass-opencl, oldoffice-opencl, PBKDF2-HMAC-MD4-opencl, PBKDF2-HMAC-MD5-
opencl, PBKDF2-HMAC-SHA1-opencl, rar-opencl, RAR5-opencl, TrueCrypt-opencl, lotus5-opencl, AndroidBackup-opencl, agilekeychain-opencl, ansible-opencl, axcrypt-opencl, axcrypt2-opencl,
bcrypt-opencl, BitLocker-opencl, bitwarden-opencl, blockchain-opencl, cloudkeychain-opencl, md5crypt-opencl, sha256crypt-opencl, sha512crypt-opencl, dashlane-opencl, descrypt-opencl,
diskcryptor-opencl, diskcryptor-aes-opencl, dmg-opencl, electrum-modern-opencl, EncFS-opencl, enpass-opencl, ethereum-opencl, ethereum-presale-opencl, FVDE-opencl, geli-opencl, gpg-
opencl, iwork-opencl, keychain-opencl, keyring-opencl, keystore-opencl, krb5pa-md5-opencl, krb5pa-sha1-opencl, krb5asrep-aes-opencl, lp-opencl, lpcli-opencl, LM-opencl, mscash-opencl,
mscash2-opencl, mysql-sha1-opencl, notes-opencl, NT-opencl, ntlmv2-opencl, o5logon-opencl, ODF-opencl, office-opencl, OpenBSD-SoftRAID-opencl, PBKDF2-HMAC-SHA256-opencl, PBKDF2-HMAC-
SHA512-opencl, pem-opencl, pfx-opencl, pgpdisk-opencl, pgpsda-opencl, pgpwde-opencl, PHPass-opencl, pwsafe-opencl, RAKP-opencl, raw-MD4-opencl, raw-MD5-opencl, raw-SHA1-opencl, raw-
SHA256-opencl, raw-SHA512-free-opencl, raw-SHA512-opencl, salted-SHA1-opencl, sappse-opencl, 7z-opencl, SL3-opencl, solarwinds-opencl, ssh-opencl, sspr-opencl, strip-opencl, telegram-
opencl, tezos-opencl, vmx-opencl, wpapsk-opencl, wpapsk-pmk-opencl, XSHA512-free-opencl, XSHA512-opencl, ZIP-opencl, dummy, crypt

john --list=formats

Usage: john [OPTIONS] [PASSWORD-FILES]
--single[=SECTION[,..]] "single crack" mode, using default or named
rules
--wordlist[=FILE] --stdin wordlist mode, read words from FILE or stdin

--pipe like --stdin, but bulk reads, and allows rules
--prince[=FILE] PRINCE mode, read words from FILE
--encoding=NAME input encoding (eg. UTF-8, ISO-8859-1)
--mask[=MASK] mask mode using MASK (or default from
john.conf)
--users=[-]LOGIN|UID[,..] [do not] load this (these) user(s) only
--salts=[-]COUNT[:MAX] load salts with[out] COUNT [to MAX] hashes

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 32

Using John for a dictionary attacks (wordlists)

john --format=<HASH_FORMAT> --wordlist=<WORDLIST_FILE> <HASHES_FILE>

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

For example: john --format=raw-sha1 --wordlist=leaked_passwords.txt to_be_cracked.txt

1. Suppose we want to crack the following hash: 078bbb4bf0f7117fb131ec45f15b5b87

2. First, we need to identify the type of hash we are trying to crack
§ Offline tools such as hash-identifier or hash-id (Unix)
§ CyberChef: https://cyberchef.io/#recipe=Analyse_hash()
§ Online services, e.g.: https://hashes.com/en/tools/hash_identifier

3. Then, we make sure that John supports format
§ Unix, MacOS: john --show-formats | grep –i <HASH_TYPE>
§ Windows: john --show-formats | findstr /I <HASH_TYPE>

4. Then, we save the hash to a text file
§ With any notepad
§ Or from terminal: echo 078bbb4bf0f7117fb131ec45f15b5b87 > hashes.txt

33

https://cyberchef.io/
https://hashes.com/en/tools/hash_identifier

Using John for a dictionary attacks (wordlists)

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

5. We choose a dictionary
§ We use the xato-net-10-million-passwords-100000.txt wordlist, that you can find in the

John directory of the lab material

6. Now, we can start cracking

7. When John ended cracking

john --format=Raw-MD5 –-fork=4 --wordlist=xato-net-10-million-passwords-
100000.txt hashes.txt

• John saves cracked passwords in a database, so that you don’t have to crack them twice
§ Linux: /etc/john/john.pot or ~/.john/john.pot
§ Windows: C:\ProgramData\JohnTheRipper\john.pot

john -–show –format=Raw-MD5 hashes.txt

34

Using Python to crack hashes with dictionary (from previous lesson)

35Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

• We have seen this in the previous lesson: simply read the wordlist into an array and then loop all the words
by computing their hash and comparing it with the to-be-cracked hash. End when the hashes are the same
§ This approach clearly misses all the optimizations of tools like John and it is extremely slower

(re)Check exercise in CryptographicFailures/CryptFail_dictionary_md5.py

def crack_hash(hash_to_crack, hash_function, hash_name):

password_list = [line.rstrip() for line in open('Resources/xato-net-10-million-passwords-10000.txt')]

start = time()
print(f"Cracking {hash_name} hash: {hash_to_crack}")
for password in password_list:

Generate the hash of the password using the specified hash function
hashed_password = hash_function(password)
print(f"Trying password: {password} -> {hashed_password}")
if hashed_password == hash_to_crack:

print(f"Success! The password is: {password}. Cracked in {time() - start} seconds")
return password

print("Failed to crack the hash.\n")
return None

Advanced dictionary attacks (hybrid wordlists)

• Obviously, not all passwords are contained in word lists: chances are that, after trying several dictionaries,
your target password remains uncracked

• However, passwords are often recycled with an incremental number, a different special character, etc.
§ iloveyou, iloveyou2, iloveyou!, iloveyou?

• Word lists can be used as a starting point and extended with templates

§ Every dictionary includes iloveyou

§ You can extend it with John’s --mask option

• --mask='?w?d' to append a digit in[0,9]to each word of the list

• --mask='?w?s' to append a special character in !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

• --mask='?w?l' to append lowercase characters in [a, z]

• --mask='?w?u' to append uppercase characters in [A, Z]

john --format=Raw-MD5 --wordlist=my_wlist.txt --mask='?w?s' my_hash.txt

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 36

Advanced dictionary attacks: rules

• JtR allows to create custom rules for teaching the tool how to dynamically generate potential passwords

• It takes passwords from the supplied wordlist and modifies or mangles them in interesting ways. To show the
available rules use the command:

• To apply a rule use the command:

• If you are not satisfied with the built-in rules, you can also define your own custom rules by manually editing
John configuration file john.conf
§ For example:

john –-list=rules

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 37

john --format=<HASH_FORMAT> --rule=<RULE_NAME> --wordlist=<FILE> <HASHES_FILE>

[List.Rules:Reverse]
:
r

[List.Rules:CapFirstAddNum]
cAz"[0-9]"

r Reverse
c Capitalize
A Append
z"[0-9]" A digithttps://akimbocore.com/article/custom-rules-for-john-the-ripper/

https://akimbocore.com/article/custom-rules-for-john-the-ripper/

Advanced dictionary attacks (build your own list)

• Sometimes, existing dictionaries won’t make it, not even with all the possible masks
• What if your password contains elements of your life? What about UnicornJune2002?
• This is where social engineering can do wonders

• Probably you are posting too much personal details (technically called oversharing): your cat,
dog, birthday, partner, job, favorite color, nicknames, hobbies

• All this data can be gathered and used to build a custom list of potential passwords

• Meet CUPP - Common User Passwords Profiler (https://github.com/Mebus/cupp)
• You can find this Python tool in the BrokenAuthentication\Online\cupp directory of lab materials

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 38

https://github.com/Mebus/cupp

CUPP - Common User Passwords Profiler

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 39

CUPP - Common User Passwords Profiler

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 40

Using John for bruteforce attacks (aka --incremental)

john --incremental:<MODE> --format=<FORMAT> <TO_BE_CRACKED_FILE>

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 41

• John obviously allows to carry out a bruteforce attack, which is called incremental mode
§ It tries every possible combination of characters, but intelligently prioritized based on frequency

models and length, increasing in complexity incrementally
• Start with short passwords (e.g., 1-3 characters)
• Try longer ones
• Build each next candidate incrementally, character by character

• Even if highly optimized, bruteforce requires time

• To launch the attack, use this command:

john --incremental:Alnum --format=Raw-MD5 hashes.txt

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 42

• Available modes:

john --list=inc-modes

Using John for bruteforce attacks (aka --incremental)

John the Ripper includes an
incremental mode called LanMan,
optimized for cracking LanMan
hashes by:
• Restricting to uppercase letters

and basic symbols
• Enforcing max 14-char length
• Exploiting the split-hash

vulnerability
• LanMan is obsolete and

insecure, but some older
systems or legacy databases
still use it.

Accelerating bruteforce with GPU

• Bruteforce can be accelerated with GPU

§ GPU is ~10× to 500× faster than CPU, depending on the type of hash

• To list available devices use the command:

• The output will look like this if there is a GPU on the machine:

• Bruteforcing command will then become:

john --list=opencl-devices

Platform #0 name: NVIDIA CUDA, version: OpenCL 3.0 CUDA 11.4.557
Device #0 (1) name: NVIDIA RTX A5000
Device vendor: NVIDIA Corporation
Device type: GPU (LE)
Device version: OpenCL 3.0 CUDA
OpenCL version support: OpenCL C 1.2
Driver version: 470.256.02 [recommended]

john --incremental --format=raw-md5-opencl –-device=1 hashes.txt

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 43

Device 1: NVIDIA RTX A5000
Using default input encoding: UTF-8
Loaded 1 password hash (raw-MD5-opencl [MD5 OpenCL])
Note: This format may be a lot faster with --mask acceleration (see doc/MASK).
LWS=256 GWS=4194304

Press 'q' or Ctrl-C to abort, 'h' for help, almost any other key for status
0g 0:00:00:06 0.00% (ETA: 2025-03-10 17:59) 0g/s 46832Kp/s 46832Kc/s 46832KC/s Dev#1:35°C 1712580j..aivvan9c
0g 0:00:00:14 0.00% (ETA: 2025-03-09 23:29) 0g/s 48028Kp/s 48028Kc/s 48028KC/s Dev#1:35°C tr0gusa1..24djdn07
0g 0:00:00:16 0.00% (ETA: 2025-03-09 16:41) 0g/s 48436Kp/s 48436Kc/s 48436KC/s Dev#1:36°C atears74..ljanud17
0g 0:00:00:18 0.00% (ETA: 2025-03-09 11:27) 0g/s 48646Kp/s 48646Kc/s 48646KC/s Dev#1:36°C rodr114m..ramorto3
0g 0:00:00:20 0.00% (ETA: 2025-03-09 01:59) 0g/s 48902Kp/s 48902Kc/s 48902KC/s Dev#1:36°C lj100amp..jcimigml
0g 0:00:00:22 0.00% (ETA: 2025-03-08 23:07) 0g/s 49120Kp/s 49120Kc/s 49120KC/s Dev#1:36°C kublyal7..revstgoy
0g 0:00:01:40 0.00% (ETA: 2025-03-08 15:31) 0g/s 49468Kp/s 49468Kc/s 49468KC/s Dev#1:39°C delup2a1..dryecd93
0g 0:00:44:45 0.06% (ETA: 2025-03-07 19:59) 0g/s 50293Kp/s 50293Kc/s 50293KC/s Dev#1:41°C g0b45ta9..gcauni8K
0g 0:00:44:47 0.06% (ETA: 2025-03-07 20:11) 0g/s 50284Kp/s 50284Kc/s 50284KC/s Dev#1:41°C frcgkq0d..fan4arr8
s3cret7b (?)
1g 0:06:51:33 DONE (2025-01-16 20:57) 0.000040g/s 49713Kp/s 49713Kc/s 49713KC/s Dev#1:40°C s3cret7b..s3clkm8y

Use the "--show --format=raw-MD5-opencl" options to display all of the cracked passwords reliably
Session completed.

john --pot=clear --incremental:Alnum --format=raw-md5-opencl --device=1 --
min-length=8 --max-length=8 hashes.txt

• Using an Nvidia RTX A5000, assuming an alphanumeric password of known length = 8

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Accelerating bruteforce with GPU

44

hashcat (v6.2.5) starting

CUDA API (CUDA 11.4)
====================
* Device #1: NVIDIA RTX A5000, 24048/24256 MB, 64MCU
* Device #2: NVIDIA RTX A5000, 24048/24256 MB, 64MCU
* Device #3: NVIDIA RTX A5000, 24048/24256 MB, 64MCU
* Device #4: NVIDIA RTX A5000, 24048/24256 MB, 64MCU
* Device #5: NVIDIA RTX A5000, 24048/24256 MB, 64MCU
* Device #6: NVIDIA RTX A5000, 24048/24256 MB, 64MCU
* Device #7: NVIDIA RTX A5000, 24048/24256 MB, 64MCU
• Device #8: NVIDIA RTX A5000, 24048/24256 MB, 64MCU

Hashes: 1 digests; 1 unique digests, 1 unique salts
Bitmaps: 16 bits, 65536 entries, 0x0000ffff mask, 262144
bytes, 5/13 rotates

Optimizers applied:
* Optimized-Kernel
* Zero-Byte
* Precompute-Init
* Meet-In-The-Middle
* Early-Skip
* Not-Salted
* Not-Iterated
* Single-Hash
* Single-Salt
* Brute-Force
• Raw-Hash

Session..........: bruteforce
Hash.Mode........: 0 (MD5)
Hash.Target......: 5a17d62fff439a83ce3ee1c11538285a
Time.Started.....: Mon Jan 20 09:27:13 2025, (3 secs)
Time.Estimated...: Mon Jan 20 09:27:16 2025, (0 secs)
Kernel.Feature...: Optimized Kernel
Guess.Mask.......: ?d?d?d?d?d?d?d?d?d?d?d?d?d [13]
Guess.Queue......: 1/1 (100.00%)
Speed.#1.........: 41902.4 MH/s (10.60ms) @ Accel:64 Loops:250 Thr:512 Vec:1
Speed.#2.........: 41564.3 MH/s (10.68ms) @ Accel:64 Loops:250 Thr:512 Vec:1
Speed.#3.........: 41816.2 MH/s (10.66ms) @ Accel:64 Loops:250 Thr:512 Vec:1
Speed.#4.........: 41710.4 MH/s (10.64ms) @ Accel:64 Loops:250 Thr:512 Vec:1
Speed.#5.........: 42281.5 MH/s (10.51ms) @ Accel:64 Loops:250 Thr:512 Vec:1
Speed.#6.........: 42206.8 MH/s (10.51ms) @ Accel:64 Loops:250 Thr:512 Vec:1
Speed.#7.........: 42651.0 MH/s (10.40ms) @ Accel:64 Loops:250 Thr:512 Vec:1
Speed.#8.........: 42017.2 MH/s (10.59ms) @ Accel:64 Loops:250 Thr:512 Vec:1
Speed.#*.........: 336.1 GH/s
Recovered........: 1/1 (100.00%) Digests
Candidate.Engine.: Device Generator
Candidates.#1....: 1384806934845 -> 6881643491634
Candidates.#2....: 1328221773845 -> 6857439555745
Candidates.#3....: 1383893944845 -> 6889414996378
Candidates.#4....: 1245414996378 -> 6296221773845
Candidates.#5....: 1232954808378 -> 6210091635745
Candidates.#6....: 1234539555745 -> 6211386311745
Candidates.#7....: 1382643491634 -> 6880993944845
Candidates.#8....: 1233291635745 -> 6219771626466

Started: Mon Jan 20 09:27:00 2025
Stopped: Mon Jan 20 09:27:18 2025

• Hashcat is an alternative to John. It does not have as many features but it is better optimized over GPUs
and thus faster at bruteforcing
• Numeric password 0819338301745 (MD5: 5a17d62fff439a83ce3ee1c11538285a)

hashcat -a 3 -m 0 hash.txt ?d?d?d?d?d?d?d?d?d?d?d?d?d --session=bruteforce --hwmon-disable -O --force

Accelerating bruteforce with GPU using Hashcat

45

Using Python to bruteforce MD5 hashes (from previous lesson)

def bruteforce(target_hash, pwd_length):

seed = "aeosrnidlctumpbgqvyhfzjxwk" # lowercase
seed = "aeosrnidlctumpbgqvyhfzjxwk" + "1234567890" # uppercase + numbers
seed_bytes = list(map(ord, seed))

Possible are: permutations, combinations or product
attempts = 0
start = time()
for word_bytes in itertools.product(seed_bytes, repeat=pwd_length):

word_string = reduce(lambda x, y: x+y, map(chr, word_bytes)) # word_bytes to string
hash_ = hashlib.md5(word_string.encode('utf-8')).hexdigest() # MD5 of word_bytes

if hash_ == target_hash:
print("\n==> PASSWORD CRACKED: word = %s | hash = %s" % (word_string, hash_))
break

attempts += 1

46Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

• We have seen this in the previous lesson: given a password length, simply try all possible combinations
of an alphabet of symbols: compute the hash of each combination and compare to the to-be-cracked
§ This approach clearly misses all the optimizations of tools like John and it is extremely slower

• Time to crack via brute-forcing given hashes with
modern hardware with 4x Nvidia RTX 4090s

• Generally, a stock RTX 4090 will achieve
approximately 164 GH/s in Hashcat
§ 164.000.000.000 guesses/second

• With Prof. Barni’s main research server powered
up by 8x RTX A5000
§ We reached a peak of 330GH/s

ht
tp
s:/

/s
pe

co
ps
so
ft.
co
m
/b
lo
g/
be

st
-p
as
sw

or
d-
pr
ac
tic
es
-to

-d
ef
en

d-
ag
ai
ns
t-m

od
er
n-
cr
ac
ki
ng
-a
tta

ck
s/

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Hashcat has a better implementation over GPU

47

• Time to crack via brute-forcing given hashes with
modern hardware with 4x Nvidia RTX 4090s

• Generally, a stock RTX 4090 will achieve
approximately 164 GH/s in Hashcat
§ 164.000.000.000 guesses/second

• With Prof. Barni’s main research server powered
up by 8x RTX A5000
§ We reached a peak of 330GH/s

ht
tp
s:/

/s
pe

co
ps
so
ft.
co
m
/b
lo
g/
be

st
-p
as
sw

or
d-
pr
ac
tic
es
-to

-d
ef
en

d-
ag
ai
ns
t-m

od
er
n-
cr
ac
ki
ng
-a
tta

ck
s/

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Hashcat has a better implementation over GPU

47

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Benchmarking John

48

• The --test option runs a benchmark of John’s cracking engine for each supported hash format

§ Measures cracking speed (in crypts per second — c/s) for each format
§ Tests how efficiently John uses your CPU and SIMD instructions (e.g., AVX, NEON)
§ Benchmarks only the cracking engine, not wordlists or rules
§ Typically runs each test for about 5 seconds by default

• Why it’s useful?
§ You can see how fast your system cracks different hash types. This helps you compare systems (e.g.,

laptop vs server) or spot misconfigurations (e.g., SIMD not enabled)
§ Hardware verification
§ It’s also a practical demonstration of hashing algorithm complexity and their brute-force resistance:

john --test --format=Raw-MD5

Benchmarking: Raw-MD5 [MD5 128/128 ASIMD
4x2]... DONE
Raw: 18401K c/s real, 18401K c/s virtual

john --test --format=bcrypt

Benchmarking: bcrypt ("$2a$05", 32 iterations)
[Blowfish 32/64 X2]... DONE
Raw: 998 c/s real, 998 c/s virtual

The lazy way. Using hash cracking tools online: https://crackstation.net

• This website sometimes is useful to crack weak password hashes
§ Try here before running more sophisticated tools
§ It uses a massive wordlist: 1.5 billions hashes, 15GB (link)
§ If the password is not in there, then it will not be able to break the hash

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 49

https://crackstation.net/
https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm

Cracking
UNIX
password
hashes

Cracking UNIX passwords: /etc/passwd

The /etc/passwd file is a plain-text database housing fundamental user information. Each line in the file
represents a user account and is divided into fields separated by colons (:)

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 51

Cracking UNIX passwords: /etc/passwd

The /etc/passwd file is a plain-text database housing fundamental user information. Each line in the file
represents a user account and is divided into fields separated by colons (:)

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 51

Cracking UNIX passwords: /etc/shadow

For heightened security, critical user authentication information, particularly hashed passwords, resides in the
/etc/shadow file, accessible exclusively to privileged users.

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 52

Cracking UNIX passwords: /etc/shadow

For heightened security, critical user authentication information, particularly hashed passwords, resides in the
/etc/shadow file, accessible exclusively to privileged users.

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 52

Cracking UNIX passwords

• The unshadow tool from John the Ripper is used to combine the information from the /etc/passwd and
/etc/shadow files into a single file that contains both user account details and password hashes

• Try using the dummy /etc/passwd and /etc/shadow files included in John’s directory of lab materials

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

unshadow passwd shadow > unshadowed.txt

john –-format=md5crypt –-wordlist=rockyou.txt unshadowed.txt

john –-show --format=crypt unshadowed.txt

53

Cracking
MS Windows
NTLM hashes

Cracking Microsoft Windows passwords
• Windows uses a secure hashing algorithm to hash passwords

§ Starting from Windows Vista: NTLM (NT LAN Manager)

• NTLM hashes are unsalted by default
§ The same password will always produce the same hash
§ Vulnerable to precomputed attacks (like rainbow tables)
§ Windows mitigates with additional security measures

• Account lockout policies and password complexity requirements

• Password hashes for local accounts are stored in the Security Account Manager (SAM) database
§ The SAM database is in C:\Windows\System32\config\SAM
§ The SAM file is protected by the OS
§ It is encrypted to prevent unauthorized access

• There are several tools to dump the hashed passwords from the SAM
§ Mimikatz (https://github.com/ParrotSec/mimikatz, https://github.com/skelsec/pypykatz)
§ Pwdump (https://www.openwall.com/passwords/windows-pwdump)
§ Meterpreter (https://www.metasploit.com)

See also: https://www.microsoft.com/en-us/wdsi/threats/threat-search?query=HackTool:Win32/Dump
https://www.microsoft.com/en-us/wdsi/threats/threat-search?query=Hacktool:Win32/Mimikatz

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 55

https://github.com/ParrotSec/mimikatz
https://github.com/skelsec/pypykatz
https://www.openwall.com/passwords/windows-pwdump
https://www.metasploit.com/
https://www.microsoft.com/en-us/wdsi/threats/threat-search?query=HackTool:Win32/Dump
https://www.microsoft.com/en-us/wdsi/threats/threat-search?query=Hacktool:Win32/Mimikatz

Cracking Microsoft Windows passwords

You need to have elevated privileges to run hash dumping tools, but it’s not unusual for a hacker to get lucky
with a power user who falls for a well-crafted phish.

Fields:
1. Username: the account name (e.g., Administrator, john.doe).
2. RID: relative Identifier for the account, unique within the system (e.g., 500 for Administrator).
3. LM Hash: the legacy LAN Manager hash of the password. In modern systems, this is often disabled and

represented as a placeholder (aad3b435b51404eeaad3b435b51404ee).
4. NTLM Hash: the NT hash of the password, used for authentication

(e.g.,31d6cfe0d16ae931b73c59d7e0c089c0).
5. Blank Fields (:::): reserved for additional data like domain information or history (empty in the example)

john --format=NT ntlm_hashes.txt --wordlist=rockyou.txt
john --show --format=NT ntlm_hashes.txt

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 56

Cracking
password
protected files

• Did you forget the password of your precious megazip music folder? Then you are in luck, because

• John works with password protected ZIP files or Excel spreadsheets
§ First, extract the hashed password and encryption metadata from the target file using the bundled

commands zip2john, office2john, pdf2john etc.
• This step simply prepares the data in a format that John can handle

§ Then, crack it as usual

Create a file and zip it
echo "supersecret data" > secret.txt
zip --password <password> file.zip secret.txt

Try to unzip it, and it will ask for a password
unzip file.zip

Extract the hash
./zip2john file.zip > zip_hash.txt

Crack
john --wordlist rockyou.txt --format=pkzip zip_hash.txt

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Cracking password-protected files

58

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Most used *2john utilities

59

• Here’s a list of common *2john utilities included with John the Ripper Jumbo. These are used to extract hash-like
representations from various file types so they can be cracked by john.

60

61

Thank you!

Next lab:
Broken
Authentication
online (plug
your cable)

