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Abstract In this paper we address a privacy preserving version of the well known
Gram – Schmidt Orthogonalization procedure. Specifically, we propose a build-
ing block for secure multiparty computation, that is able to orthogonalize a set of
componentwise encrypted vectors. Our setting is the following: Bob needs to com-
pute this orthogonalization on some vectors encrypted with the public key of Alice.
Hence our intent is not to propose a stand-alone protocol to solve a specific scenario
or a specific application, but rather to develop a sub-protocol to be embedded in
more complex algorithms or protocols where the vectors to be orthogonalized can
be the result of previous computations. We show that our protocol is secure in the
honest but curious model and evaluate its computation complexity.

1 Introduction

The classical way to protect sensitive information from misuse is to encrypt it as
soon as the information is generated and to store it in an encrypted form. However,
when the information needs to be processed, it is necessary to decrypt it, hence
creating a weakness in the security of the whole process. The problem with the clas-
sical approach is the assumption that the owner of the data and the party in charge
of processing it trust each other: the encryption layer is used only to protect the data
against third parties. In many cases, however, the owner of the information may not
trust the third-parties that are asked to manipulate the sensitive informations. In this
scenario the possibility of applying particular cryptographic techniques to process
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encrypted data has received a considerable attention in the last years. The prob-
lem of computing with encrypted data has been intensively studied in the past 30
years [21]. Following that direction, researchers developed many protocols to be ap-
plied in applications where the privacy and the security of the inputs are crucial. The
proposed applications range from heuristic search in encrypted graphs [12]; Electro-
CardioGram (ECG) classification [4]; data mining [1]; face recognition [11]; remote
diagnosis [7].

In this paper, we consider a scenario in which two parties are interested in com-
puting a given functionality in a privacy preserving way, but this functionality needs
a sub-protocol that computes the Gram – Schmidt Orthogonalization on encrypted
vectors. Our intent is to study this particular sub-protocol, giving a detailed descrip-
tion comprehensive of security proof and complexity evaluation.

To the best of our knowledge, this problem has never been addressed so far.
Therefore this work focuses on the problem of developing a protocol that realizes
the Gram – Schmidt procedure in a privacy preserving fashion. There are a lot of ap-
plications in which this kind of sub-protocol could be embedded as a basic privacy
preserving primitive, including: QR decomposition [13]; linear least squares prob-
lems [6]; face recognition [24]; improving performances of neural networks [19];
wavelets computation [9]; principal component analysis [22] and image compres-
sion [18].

2 Signal Processing in the Encrypted Domain

The classical security model is targeted towards protecting the communication be-
tween two trusted parties against a third malicious party. In such cases it is sufficient
to secure the transmission layer that stays on top of the processing blocks. Most of
the applications today, work in this way, for instance when you log in a website,
only the transmission is protected and on the other side the website is able to inter-
pret your data in plain form while eventual thirds parties can see only an encrypted
communication.

In the last years, the number of applications in which the classical model in not
longer adequate has considerably increased since there are several non–trusted par-
ties involved in the process of communication, distribution and processing data.
Consider for example a remote diagnosis service (say Bob) where a non–trusted
party is asked to process some medical data (owned by Alice) to provide a prelimi-
nary diagnosis. It is evident that the security of the users of such a system would be
more easily granted if the server was able to carry out the task without getting any
knowledge about the data provided by the users (not even the final result). Similarly
the service provider may desire to keep the algorithms he is using to process the
data secret, since they represent the basis for the service he is providing. Clearly the
possibility of such kind of computation would be of invaluable help in situations
like those described above.
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Without being too specific and avoiding to discuss the details required by a pre-
cise definition, we may define secure signal processing or signal processing in the
encrypted domain a collection of techniques that permit to solve the following prob-
lem: given the signals x1 and x2 signals (or data) belonging to Alice and Bob, com-
pute the output of known function f (x1,x2) without that Alice (Bob) gets any infor-
mation about x2 (x1) in addition to that inferable from the output of the computation
itself. As generalization it is possible to consider the case in which f (.) is known
only to a party and it has to be kept secret as well.

The number of possible applications of these techniques is virtually endless.
Among the most interesting scenarios investigated so far we mention: private
database access [1], in which the Alice accesses a server owned by Bob by means
of an encrypted query; private data mining [17], in which two or more parties wish
to extract aggregate information from a dataset formed by the union of their private
data; secure processing of biometric data [8], in which biometric signals are pro-
cessed in the encrypted domain to protect the privacy of the owners; watermarking
of encrypted signals [16], for digital rights management within buyer-seller proto-
cols; recommender systems [3], in which user’s data is analyzed without disclosing
it; privacy-preserving processing of medical data [4], in which sensitive medical
data is processed by a non-trusted party, for remote medical diagnosis or any other
form of home-care system whereby health conditions are monitored remotely.

3 Notation and Preliminaries

In the last few years, new techniques related to homomorphic encryption and mul-
tiparty computation showed that it is possible to perform several kinds of computa-
tions directly in the encrypted domain in an efficient way and without revealing the
information hidden inside the cryptogram [2]. Following this direction, researchers
developed many protocols where the protection of the inputs provided by the vari-
ous parties involved in the computation is a crucial goal. The present work is part of
this research streamline.

In the rest of the paper we will use the following notation:

• V = {v1,v2, ...,vm} is a set of m vectors ∈ Rn;
• with < ·, ·> we indicate the inner product: < a,b >= ∑

n
i=1 aibi;

• with JaK we indicate the Paillier [20] encryption of a; if a is a vector we always
indicate with JaK the componentwise encryption of a;

• s is the cryptosystem security parameter (i.e. for short term security 1024 bit)
and ` is the bit size of a cryptogram1, moreover ZN is the ring in which the
cryptosystem is defined (s = dlog2 Ne).

1 Using the Paillier cryptosystem we have the following equality: ` = 2s.
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We recall that the following basic mapping2 holds for Paillier’s cryptosystem:
JxKJyK = Jx+ yK and JxKy = JxyK.

Moreover we recall the Big-O notation [15] that measures the computational
complexity in bit operations. Assuming that the biggest number involved in the com-
putation has ` bits we have add = O(`) to compute addition or mult = O(`2) to com-
pute multiplication and finally exp = O(`3) to compute exponentiation. In the rest
of this paper we often need to compute exponentiation by−1 (or negative numbers),
this operation is equivalent to compute the multiplicative inverse in the space of the
ciphertexts (namely Z∗N2 ), this operation can be computed by using the extended
GCD and its computational complexity is equal to compute an exponentiation, so
O(`3). Furthermore we remind that for Paillier cryptosystem enc≈ dec = O(`3).

4 Basic Building Blocks

In this section we introduce some basic building boxes that we will use to construct
our protocol.

4.1 eMul

The first sub-protocol, eMul, allows to compute the product of two Paillier cipher-
texts obtaining JxyK = eMul(JxK,JyK) and is a well-known technique. Let us recall
it. Suppose that Bob owns JxK and JyK encrypted with the public key of Alice, he can
obfuscate both cryptograms adding two random numbers due to homomorphic ad-
ditive properties and obtain Jx + rxK and Jy + ryK. Now he sends these cryptograms
to Alice, she decrypts and multiplies them finding: w = xy + xry + yrx + rxry, she
encrypts it and sends back to Bob that computes:

2 To be more precise, we have that given an instance of a Paillier cryptosystem and defined as E
and D the functionalities of encryption and decryption respectively, the following properties hold:

D(E (x)E (y)) = D(E (x+ y))

and
D(E (x)k) = D(E (kx)).
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JwKJxK−ryJyK−rxJrxryK−1 =
= JwKJ−xryKJ−yrxKJ−rxryK =
= Jw− xry− yrx− rxryK =
= Jxy+ xry + yrx + rxry︸ ︷︷ ︸

w

−xry− yrx− rxryK =

= JxyK (1)

obtaining exactly the product of the two encryptions.
Computing eMul requires 2 rounds (one from Bob to send the obfuscated cipher-

texts and one from Alice to send back the result) and a bandwidth of 3` (3 ciphertexts
are sent) with a computational complexity equal to: 3 exp needed to compute JxK−ry ,
JyK−rx and JrxryK−1; 5 mult needed to obfuscate JxK, JyK and to compute the addi-
tions to JwK; 2 dec to obtain in plain x + rx and y + ry and finally 1 enc to encrypt
the result, for a total asymptotic number of 6 exp operations. Later in this paper we
refer to eMul using the following notation: eMul(JxK,JyK) = JxK• JyK.

4.2 eInv

To realize our construction we will use another building block: eInv. This sub-
protocol works as follow: given an encrypted value JxK we have:

eInv(JxK) =
s

1
x

{
. (2)

To reach this goal we use a multiplicative blinding approach [14], in fact assum-
ing T sufficiently bigger than x the multiplicative blinding T x ca be assumed to be
secure3. By this, Bob can compute JT xK = JxKT by homomorphic properties and
send the result to Alice that is able to decrypt obtaining T x. Now, she computes 1

T x
encrypts it and sends back to Bob

q 1
T x

y
. Bob removes the multiplicative blinding

due to homomorphic properties:
q 1

x

y
=

q 1
T x

yT
and obtain the desired result.

Computing eInv requires 2 rounds and a bandwidth of 2` because only two cryp-
tograms are sent: 1 from Bob and 1 from Alice. The computational complexity can
be measured as: 1 exp for the multiplicative blinding, 1 dec for decryption, 1 enc
for encryption and 1 exp to remove the blinding; for a total of 4 exp bit operations.

3 Respect to the additive blinding, the multiplicative one requires a larger number of bits to achieve
the same security level.



6 P. Failla, M. Barni

4.3 eDot

Another basic building block our protocol relies on is the the inner product between
two encrytped vectors. More formally: given JxK and JyK encrypted with Alice’s
public key, the protocol eDot(JxK,JyK) computes J< x,y >K. To realize this sub-
protocol it is possible to use data obfuscation. Given two vectors of random values
rx and ry, generated by Bob, he is able to evaluate the obfuscation of JxK and JyK
as the componentwise product: JxKJrxK = Jx + rxK and JyKJryK = Jy + ryK. At this
point Bob can send to Alice these two vectors of obfuscated values. Alice decrypts
them and computes:

< x+ rx,y+ ry > =
n

∑
i=1

(xi + rxi)(yi + ryi) =

=
n

∑
i=1

xiyi + xiryi + yirxi + rxiryi =

=
n

∑
i=1

xiyi +
n

∑
i=1

xiryi +
n

∑
i=1

yirxi +
n

∑
i=1

rxiryi (3)

encrypts the scalar product obtaining: J< x+rx,y+ry >K = J∑
n
i=1 xiyi +∑

n
i=1 xiryi +

∑
n
i=1 yirxi + ∑

n
i=1 rxiryiK. Then she sends it back to Bob. Bob has to remove the ob-

fuscation, to do this consider that:
t

n

∑
i=1

xiyi +
n

∑
i=1

xiryi +
n

∑
i=1

yirxi +
n

∑
i=1

rxiryi

|

=

t
n

∑
i=1

xiyi

|t
n

∑
i=1

xiryi

|t
n

∑
i=1

yirxi

|t
n

∑
i=1

rxiryi

|

(4)
moreover Bob can compute:

t
n

∑
i=1

xiryi

|

=
n

∏
i=1

JxiKryi (5)

t
n

∑
i=1

yirxi

|

=
n

∏
i=1

JyiKrxi (6)

t
n

∑
i=1

rxiryi

|

(7)

by using the additive property of the cryptosystem and the fact that he knows rx and
ry in plain. Hence Bob can compute:

J< x,y >K = J< x+ rx,y+ ry >K

t
n

∑
i=1

xiryi

|−1 t
n

∑
i=1

yirxi

|−1 t
n

∑
i=1

rxiryi

|−1

. (8)
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Computing eDot requires 2 rounds: one to send the obfuscated vectors to Alice
and one to send back the result; with a bandwidth of (2n + 1)`, because Bob sends
2 vectors of length n and Alice returns only 1 ciphertext. About the computational
complexity we have:

( 2n︸︷︷︸
compute dot product

+ 3︸︷︷︸
remove obfuscation

) mult +2n dec+1 enc+ 2n exp︸ ︷︷ ︸
obfuscate vectors

'

' (4n+2) exp. (9)

Table 1 shows the three complexities of the sub-protocols described so far.

Table 1 Sub-Protocols Complexities.

Sub-Protocol Rounds Bandwidth # of Exponentiations
eMul 2 3` 6 exp
eInv 2 2` 4 exp
eDot 2 (2n+1)` (4n+2) exp

5 Gram – Schmidt Orthogonalization on Encrypted Vectors

In the following section we introduce our construction to compute Gram – Schmidt
orthogonalization on encrypted vectors. First of all we give a brief description of
Gram – Schmidt process in its plain version, than we examine our privacy preserving
protocol paying attention to security requirements and complexities.

5.1 Gram – Schmidt Orthogonalization in the Plain Domain

Gram – Schmidt Orthogonalization is a procedure for the orthogonalization of a set
of vectors in a Euclidean space [23]. Given a set V of m vectors, it is possible to
show that Algorithm 1 replaces V with a set of orthogonal vectors.

Algorithm 1 Gram – Schmidt Orthogonalization
1: s1 = 1

<v1,v1>

2: for all i = 2 to m do
3: for all j = 1 to i−1 do
4: vi = vi−< vi,v j > s jv j
5: end for
6: si = 1

<vi,vi>

7: end for
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Note that the computational complexity is asymptotically equal to O(nm2) mul-
tiplications [13]. Adding a normalization step at the end of Algorithm 1 it is possible
to obtain an orthonormalized set. However techniques for the normalization of en-
crypted vectors are out the scope of this paper.

5.2 Privacy Preserving Gram – Schmidt Protocol

We consider the case in which Bob owns a set of componentwise encrypted vec-
tors with the public key of Alice and he needs to extract an orthogonalized version
of them. For sake of simplicity we assume that V is a set of linearly independent
vectors; this choice avoids the necessity of catching a division by zero. Otherwise
it is possible considering a variant where Bob asks to Alice to check if < vi,vi >
is equal to zero, if is this the case Alice just sends back the encryption of zero4.
We already introduced all the basic blocks we will use (See Section 4), so we can
translate Algorithm 1 in the following Protocol 2.

Protocol 2 Privacy Preserving Gram – Schmidt Orthogonalization
1: Js1K = eInv(eDot(Jv1K,Jv1K))
2: for all i = 2 to m do
3: for all j = 1 to i−1 do
4: JviK = JviKeDot(JviK,Jv jK)• Js jK−1 • Jv jK
5: end for
6: JsiK = eInv(eDot(JviK,JviK))
7: end for

During Step 1 we use sub-protocols eInv and eDot to compute s1 = 1
<v1,v1>

used later in Step 4 to scale the projection. The main part is Step 4 where using
sub-protocols eDot and eMul it is possible calculate vi = vi−< vi,v j > s jv j.

5.2.1 Security Discussion

To discuss the security of our construction we simply recall that in each step the
data are encrypted when used by Bob or obfuscated, when used by Alice. Thus the
privacy is achieved in the honest but curious model [10] due to IND-CPA property
of Paillier cryptosystem and the security of obfuscation.

4 It is simple to note that this reveals to Alice the rank of the set V.
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5.2.2 Complexities

We now briefly discuss the complexity of the proposed protocol. We assume that
Bob already owns the vectors so in our complexity evaluation we do not consider:
the bandwidth, the rounds and the operations needed to manipulate the vectors until
the beginning of this protocol. We will examine the two principal steps in the proto-
col: Step 4 and Step 6 (this is equal to Step 1). During Step 4 there are 2n+1 calls
to eMul and 1 to eDot, so 4n+3 rounds are needed with a bandwidth of (2n+7)`.
Finally resulting in a computational complexity of (16n+8) exp. Now, consider
that it is necessary to execute Step 4 m(m+1)

2 times. Summarizing Step 4 requires:
m(m+1)(4n+3)

2 rounds; a bandwidth of m(m+1)(2n+7)
2 ` and a computational complexity

of: m(m+1)(16n+8)
2 exp. Finally Step 6 requires m executions and for each of them is

just 1 call to eInv and 1 to eDot, so we can affirm that: 2m + 2m = 4m rounds are
needed with a bandwidth5 (2+n+1)m` = (3+n)m` and a computational complex-
ity (4+4n+2) exp = (6+4n)m exp. Summarizing we have:

m(m+1)(4n+3)
2︸ ︷︷ ︸

Step 4

+ 4m︸︷︷︸
Step 6

'O(nm2) (10)

rounds, for a bandwidth of:m(m+1)(2n+7)
2︸ ︷︷ ︸

Step 4

+(3+n)m︸ ︷︷ ︸
Step 6

`' O(nm2`) (11)

bits, and eventually:m(m+1)(16n+8)
2︸ ︷︷ ︸

Step 4

+(6+4n)m︸ ︷︷ ︸
Step 6

 exp = O(nm2`3) (12)

bit operations.

6 Conclusion

In this paper, we have proposed a secure protocol to compute the Gram – Schmidt
Orthogonalization on vectors encrypted with an additive homomorphic cryptosys-
tem like Paillier’s. We proved that our construction is secure because nothing is

5 Consider that eDot is computed on the same vector vi, so just n encryptions are sent by Bob
instead than 2n.
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revealed to the parties. The idea was to propose a building block that could be used
off the shelf in more complex privacy-preserving systems. To achieve our goal, we
proved the protocol to be secure in the honest but curious model. Moreover we show
all the complexities involved: bandwidth, rounds and bit operations.

In the future, various improvements can be investigated, for instance, it is clear
that for a real use of this protocol it is necessary to quantize the vectors because
cryptosystems work on integer number representation, so a study of the error intro-
duced by quantization will be really needed for practical implementations. Further-
more, techniques to normalize the encrypted vectors will be useful to generate an
orthonormal version of the basis. Finally, it is possible to use techniques like those
proposed in [5] to study a packetized version of our construction that could be much
more efficient.
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