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Università di Siena
Dipartimento di Ingegneria dell’Informazione

{surname}@dii.unisi.it

E. Magli

Politecnico di Torino (Italy)
Dipartimento di Elettronica

enrico.magli@polito.it

ABSTRACT

Compressed Sensing (CS) allows to represent sparse signals
through a small number of linear projections. Hence, CS can
be thought of as a natural candidate for acquisition of hyper-
spectral images, as the amount of data acquired by conven-
tional sensors creates significant handling problems on satel-
lites or aircrafts. In this paper we develop an algorithm for
CS reconstruction of hyperspectral images. The proposed al-
gorithm employs iterative local image reconstruction based
on a hybrid transform/prediction correlation model, coupled
with a proper initialization strategy. Experimental results on
raw AVIRIS and AIRS images show that the proposed tech-
nique yields a very large reduction of mean-squared error with
respect to conventional reconstruction methods.

1. INTRODUCTION

Compressed sensing (CS) is a relatively new research area
that has attracted a lot of interest. CS is concerned with the
reconstruction of “compressible” signals from a limited num-
ber of linear measurements. That is, if the signal is sparse in
some domain, then a limited number of measurements are suf-
ficient to reconstruct the signal exactly with very high proba-
bility. Plenty of applications are possible, ranging from image
and video to biomedical and spectral imaging, just to mention
a few. A single-pixel camera has been demonstrated in [5],
which uses a single detector to sequentially acquire random
linear measurements of a scene. This kind of design is very
interesting for imaging at wavelength outside the visible light,
where manufacturing detectors is very expensive. CS could
be used to design cheaper sensors, or sensors providing better
resolution for an equal number of detectors. E.g., in [8] an ar-
chitecture is proposed based on Hadamard imaging, coupled
with reconstruction techniques borrowed from CS.

How to best reconstruct a spectral image is an open and
somewhat elusive problem. The simpler way to proceed is
to take separate sets of measurements, e.g. in the spatial or
spectral dimensions, and to perform separate reconstructions.
However, this “separate” approach does not yield satisfactory
performance in terms of mean-squared error (MSE), as the

spatial CS approach completely neglects the spectral corre-
lation, and the spectral approach neglects the spatial one. A
more sophisticated approach would entail the use of 3D trans-
forms, so that the whole set of images should be measured and
reconstructed at once.

In this paper we take a new look at the reconstruction
problem. In [4] it has been shown that 2D spatial CS (i.e.,
every spectral channel is measured independently) has better
performance than spectral CS (in which every spectral vec-
tor is measured independently), just because the former ap-
proach models correlation in two dimensions, and the latter
in only one. However, it should be noted that even spatial CS
achieves an MSE that is not small enough for many hyper-
spectral applications, as the relative error is around ±5% for
sensible values of the number of acquired samples. The key
idea is that, in order to improve reconstruction quality, corre-
lation must be exploited in all three dimensions of the spectral
cube. To achieve this goal, we propose a new approach, which
combines an accurate modeling of the spatial-spectral corre-
lations, with the low complexity of sequential, as opposed to
fully joint, band reconstruction. In particular, instead of mod-
eling the correlation by means of a three-dimensional trans-
form, and hence attempting to reconstruct the hyperspectral
cube as a whole, we employ a linear correlation model of the
hyperspectral image, and iteratively apply this model band by
band, improving the quality of the reconstructed image. Since
quality of the reconstructed image depends on the initializa-
tion of the iterative procedure, we consider different initial-
ization strategies based either on a 2D CS approach or on a
simplified 3D strategy [7]. The proposed iterative approach
leads to noticeably improve MSE with respect to conventional
reconstruction methods.

1.1. Compressed Sensing overview

The theory of CS is based on two main principles (see [2]):
sparsity, and incoherence. Sparsity can be defined as the
number of non-zero samples (or close to zero samples) and
is a property of the signal of interest. A crucial fact is that the
best sparsity value for a signal could be in a domain other than
the original signal domain. Incoherence pertains to the sens-
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ing modality: if the signal is sparse in a certain basis, it has
to be spread in the acquisition domain. Random matrices are
largely incoherent with any fixed basis, and hence can be used
as sensing matrices in virtually any practical applications.

To elaborate, we want to recover an unknown vector f ∈
RN×1 from a smaller vector y ∈ RM×1, M < N , of linear
measurements: y = Φf , where Φ ∈ RM×N is the sensing
matrix. We assume that f is a compressible signal that can be
represented as a quasi–sparse vector (i.e. a vector with many
null or very small coefficients) x ∈ RN×1 in a convenient
orthonormal basis Ψ ∈ RN×N , such that x = ΨTf . We as-
sume that the representation x of f in the orthonormal basis Ψ
is very concise, i.e. it has few K � N significant elements
capturing almost all the energy of f . Typical sparsity bases
include the discrete cosine transform (DCT) and the wavelet
transform. A popular recovery approach estimates x by solv-
ing the following linear program:

xCS = arg min
x
‖x‖`1 s.t. ΦΨx = y . (1)

This leads to an approximation of f as f̂ = ΨxCS. For brevity,
we introduce the operator LP : (y,Φ,Ψ) → f̂ , which runs
the linear program on a given set of measurements to calcu-
late f̂ . Linear programming is not the only possible recovery
strategy, but it does tend to make xCS sparse. If x is exactly
sparse, Φ satisfies the so-called Restricted Isometry Property
of suitable order, and Φ and Ψ are incoherent matrices, then
an appropriately chosen number M < N of measurements
will yield exact recovery of x with very high probability. As
stated above, it is common to take Φ as a random i.i.d. ma-
trix, e.g. a Gaussian matrix, which is incoherent with most Ψ
matrices. If x is only approximately sparse, the recovery is
as good as if one knew ahead of time the locations of the K
largest coefficients of x .

2. PROPOSED RECONSTRUCTION ALGORITHM

2.1. Random projections of a hyperspectral image

In the following, we assume that a hyperspectral image
is represented as a collection of B spectral channels, i.e.
f = [f0, f1, . . . , fB−1], where each one-dimensional vec-
tor fi is the raster-scan ordering of the corresponding two-
dimensional spectral channel and has length N . Correspond-
ing sets of random projections are taken as yi = Φifi, where
yi ∈ RM×1, and M < N . For simplicity, M is taken as
the same value for all spectral channels. The sensing matri-
ces Φi ∈ RM×N are taken as Gaussian i.i.d. This setting
is amenable to separate spatial reconstruction of each spec-
tral channel using a two-dimensional transform as sparsity
domain. However, we expect that separate spatial recon-
struction does not yield a sufficiently accurate estimate of the
original image, since it lacks modeling of spectral correlation,
which is very strong for hyperspectral images.

The proposed algorithm performs iterative sequential
band reconstruction, employing linear prediction, as opposed
to transform band approaches, to model spectral correlation.

2.2. Prediction

In the following we describe the linear prediction stage em-
ployed during reconstruction. The predictor operates in a
blockwise fashion. Prediction of spectral channel i is per-
formed dividing the channel into non-overlapping spatial
blocks of size 16x16 pixels. Each block is predicted from
the spatially co-located block in a reference spectral channel
l (typically the previous or next band). Focusing on a single
16x16 block, we denote by fm,n,i the pixel of an hyper-
spectral image in m-th line, n-th pixel, and i-th band, with
m,n = 0, . . . , 15, and i = 0, . . . , B − 1.

Samples fm,n,i belonging to the block are predicted
from the samples f̂m,n,l of the reconstructed reference
band. In particular, a least-squares estimator [6] is com-
puted over the block. First, a gain factor is calculated as
α = αN

αD
, with αN =

∑
m,n

[(f̂m,n,l − µl)(f̂m,n,i − µi)] and

αD =
∑
m,n

[(f̂m,n,l−µl)2]. µi and µl are the average values of

the co-located reconstructed blocks in bands fi and fl. Then
the predicted values within the block are computed for all
m,n = 0, . . . , 15 as f̃ (l)m,n,i = µi + α(f̂m,n,l − µl).

This one-step predictor is employed in such a way as to
take full advantage of the correlation between bands. In par-
ticular, the current band is very correlated with its two ad-
jacent bands, while the correlation tends to decrease moving
further away. Eventually, we define a predictor for a block in
the current band fi as the average of two predictors obtained
from the previous and the next band [1]. f̃m,n,i = (f̃

(i−1)
m,n,i +

f̃
(i+1)
m,n,i)/2. For brevity, we define an operator Π(̂fi−1, f̂i+1) =

pi that applies this predictor to the two adjacent reconstructed
spectral channels fi−1 and fi+1 in a blockwise manner as de-
scribed above, yielding a predicted spectral channel pi. Ex-
ceptions are made for the first and last band, where only the
available previous/next band is used for the prediction.

2.3. Iterative CS reconstruction

The idea behind the iterative reconstruction is that, if we can
obtain a prediction of a spectral channel fi, e.g. applying the
operator Π to channels fi−1 and fi+1 of some initial recon-
struction, then we can cancel out the contribution of this pre-
dictor from the measurements of fi, and reconstruct only the
prediction error instead of the full spectral channel. If the
predictor is accurate, the prediction error is expected to be
more sparse than the full signal, and the reconstruction will
yield better results. In particular, the iterative procedure starts
from the initial reconstruction f̂ of all spectral channels. At
this stage, we do not specify how we generate such initial re-
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Algorithm 1 Iterative reconstruction algorithm
INPUT: measurements yi and matrices Φi, with i =
0, . . . , B − 1; 2D DCT matrix Ψ; number of iterations W .
OUTPUT: reconstructed channels f̂i, with i = 0, . . . , B−1

f̂ = z(y,Φ)

Iterative reconstruction
j = 0
while j < W do
j ← j + 1
for i = 0 to B − 1 do

pi ← Π(̂fi−1, f̂i+1)
εi ← yi − Φipi
f̂i ← pi + LP(εi,Φi,Ψ)

end for
end while

construction, which is generically denoted by f̂ = z(y,Φ) to
indicate that it is computed from random projections y and
measurement matrixes Φ. Then, for every channel fi, we first
obtain pi = Π(̂fi−1, f̂i+1). After that, we compute predic-
tion error measurements as εi = yi − Φipi, and we use εi
to reconstruct f̃i = pi + LP(εi,Φi,Ψ). This process is per-
formed on all bands, and is iterated until convergence. Note
that, since the operator LP is convex, and the predictor is lin-
ear, this algorithm can be cast in terms of projections onto
convex sets [3], guaranteeing convergence to the intersection
of the constraint sets (if not empty). The proposed iterative
reconstruction scheme is shown in Algorithm 1.

2.4. Preliminary experimental analysis with initial sepa-
rate 2D reconstruction

We have carried out some experiments to preliminarily as-
sess the validity of the proposed algorithm when the initial
reconstruction images f̂i are computed with the operator LP
using separate 2D DCT transforms band by band, i.e., f̂i ←
LP(yi,Φi,Ψ). In particular, Figure 1 shows the MSE be-
havior experienced on AVIRIS images1 as a function of the
number of iterations W for different values of the number of
projections M . A similar behavior is observed for AIRS im-
ages. Note that for medium to highM , iterations are effective
in reducing MSE, e.g., for M > 400 the proposed algorithm
improves the MSE up to a factor of 35 with respect to the ini-
tial reconstruction. Moreover, convergence to the minimum
attainable MSE is obtained in a relatively small number of
iterations. For lower M , convergence is slower and MSE re-
duction is less effective. In particular, for very low M , e.g.
for M = 100 convergence is very slow and MSE reduction is
negligible. In essence, the algorithm shows a threshold behav-
ior with respect to the initial reconstructed images f̂i: a poor

1A detailed description of AVIRIS test images is given in Section 3.

Fig. 1. MSE behavior on AVIRIS images of Algorithm 1 as
a function of the number of iterations W with initial separate
2D reconstruction.

initial reconstruction prevents the iterative algorithm to im-
prove the MSE while if the initial reconstruction’s MSE falls
below a minimum threshold, the improvement is remarkable
and convergence very fast.

2.5. Improving initial reconstruction by means of Kro-
necker CS

Given the above, we have investigated the possibility of im-
plementing a more sophisticated reconstruction algorithm
which allows the proposed scheme to achieve good perfor-
mance even for low M , i.e., for high compression ratios.
To this aim, we considered the simplified 3D reconstruction
scheme proposed in [7], where it is shown that Kronecker
product matrices are a natural way to generate sparsifying
and measurement matrices for the application of CS to multi-
dimensional signals, resulting in a formulation that is denoted
by Kronecker Compressive Sensing (KCS). In KCS, start-
ing from the assumption that the signal structure along each
dimension can be expressed via sparsity, Kronecker product
sparsity bases combine the structures for each signal dimen-
sion into a single matrix and representation. This allows to
obtain separable transforms matrices, thus maintaining the
computational complexity to an acceptable level. Similarly,
Kronecker random product measurement matrices for mul-
tidimensional signals can be implemented by performing a
sequence of separate random measurements obtained along
each dimension. Given the above, the application of KCS to
the problem at hand is straightforward: the separate (band
by band) random projections yi = Φifi can be used to get a
reconstruction scheme which profitably exploits correlation
in all dimensions by using a separable 3D Kronecker product
sparsity domain. More specifically, we consider DCT trans-
forms for both spatial and spectral domains since DCT trans-
form is better than other typical transforms used in CS (e.g.
Wavelet transform) on small spatial crops, while a wavelet
transform would arguably provide better performance over
a larger image. Accordingly, denoting by Ψ2 and Ψ1 the
DCT sparsifying operator for the spatial and spectral domain,
respectively, reconstruction may be obtained by means of

1122



Fig. 2. MSE behavior on AVIRIS images of Algorithm 1 with
3D Kronecker starting point, as a function of the number of
iterations W.

linear program reconstruction LP3D : (y,Φ,Ψ2 ⊗Ψ1)→ f̂ ,
where y = [y0, y1, . . . , yB−1], Φ = [Φ0,Φ1, . . . ,ΦB−1] and
Ψ2⊗Ψ1 is the Kronecker product between Ψ2 and Ψ1. The
reconstructed set of images f̂ can then be used as starting
point for the iterative algorithm proposed in Algorithm 1. To
assess the effectiveness of such an approach, in Figure 2 we
show the MSE behavior experienced on AVIRIS images as a
function of W , for different M , when the starting point of the
iterative scheme proposed in Algorithm 1 is obtained through
Kronecker 3D reconstruction. Comparing with Figure 1 it can
be observed that, as expected, the MSE starting point is much
lower and convergence is achieved in few iterations. More-
over, despite 3D Kronecker reconstruction already exploits
correlation in the spectral domain, the proposed iterative al-
gorithm still allows to improve the MSE up to a factor of 3
with respect to the initial reconstruction. In the next section,
we describe in more details the experiments we conducted to
evaluate the performance of the two proposed reconstruction
schemes, namely iterative compressed sampling (ICS) and
Kronecker-iterative compressed sampling (KICS), which are
both based on the iterative procedure described in Algorithm
1, with the initial point computed by means of LP and LP3D,
respectively.

3. RESULTS

We report reconstruction results on a few scenes that are
used as reference for onboard lossy compression in the
“multispectral and hyperspectral data compression” working
group of the Consultative Committee for Space Data Systems
(CCSDS), namely scene sc0 of AVIRIS (Yellowstone) and
granule 9 (gran9) of AIRS. AVIRIS is a spectrometer with
224 bands, and the size of this image is 512 lines and 680
pixels. AIRS is an ultraspectral sounder with 2378 spectral
channels, used to create 3D maps of air and surface tempera-
ture. In the CCSDS dataset, only 1501 bands are considered;
the unstable channels have been removed as they have little

Fig. 3. Reconstruction of AVIRIS scene: MSE versus M for
different reconstruction schemes.

Fig. 4. Reconstruction of AIRS scene: MSE versus M for
different reconstruction schemes.

or no scientific interest. The spatial size is 90 pixels and
135 lines. Because of the complexity of the reconstruction
process and the large amount of data, we do not use the com-
plete images, but rather a 32x32 spatial crop with all spectral
channels. Both are raw images, i.e. they are the output of the
detector, with no processing, calibration or denoising applied.
These images are noisier than the corresponding processed
images, but more realistic for application to onboard sensors.

We compare results of the proposed ICS and KICS with
those obtained through separate spatial reconstruction (S2D)
of each spectral channel and through 3D KCS. The recon-
struction algorithm for the iterative schemes is run for 40 it-
erations, with several values of M . Results in terms of MSE
versus M are shown in Figures 3 and 4 for the AVIRIS and
AIRS scenes, respectively. As can be seen, S2D spatial recon-
struction yields very large mean-squared error (MSE), typ-
ically in excess of 5 · 104 for AVIRIS and of 7 · 103 for
AIRS. Considering that the average signal energy for this crop
is equal to 2.76 · 107 for AVIRIS and 4.85 · 106 for AIRS,
spatial reconstruction yields an average percentage error of
nearly ±4% both test images, which is inadequate for most
applications. As anticipated in Figure 1, the proposed ICS
reconstruction algorithm allows to improves the MSE up to
a factor of 35 for high M , but it is not effective for low M .
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Fig. 5. Reconstruction of AVIRIS scene: MSE for each band,
with M = 450.

Fig. 6. Reconstruction of AIRS scene: MSE for each band,
with M = 450.

On the other hand, the 3D KCS reconstruction without iter-
ative predictions performs quite well for low M but its per-
formance are not so good for high M , e.g., it is even worse
than ICS for M > 200 − 250. Eventually, KICS gives the
best performance over the whole range of considered M . In
other words, combining 3D KCS with predictive CS allows
to accurately reconstruct original images requiring a number
of linear measurements much smaller than the original sam-
ples. On the other hand, average results provide a somewhat
biased picture though. In Fig. 5 and 6, the individual MSE
per band and for M = 450 obtained through KICS algorithm
on AVIRIS and AIRS scene is shown, respectively. As can be
seen, in most bands the MSE is very small, between 100 and
400. The average MSE is biased by a relatively small number
of bands which are reconstructed with large error. Visual in-
spection shows that e.g. band 104 is extremely noisy (hence
not at all sparse) and contains almost no information, while
band 32 is misregistered with respect to band 31, yielding
poor prediction. This shows that, on average, a much lower
relative error can be achieved in most bands, except for noisy
bands, which are not very important altogether, or misregis-
tered bands, where improved prediction models can be em-
ployed to improve the reconstruction.

4. CONCLUSION AND FUTURE WORK

We have proposed an iterative reconstruction algorithm that
improves over both spatially separate and 3D Kronecker
reconstructions of hyperspectral images from their random
projections, able to noticeably decrease the MSE for both
AVIRIS and AIRS images. These are raw images, and since
the relative errors achieved by the proposed algorithm are
typically below 1% for M = 350 or larger, we conclude that
CS can accurately reconstruct these images requiring a num-
ber of linear measurements not larger than one third of the
original samples, and usually less in most bands. We believe
that this figure can be reduced even more, and this will be
subject of future research. The algorithm can be improved
in several ways, potentially reducing the number of required
measurements. E.g., taking larger spatial crops will allow to
employ a wavelet transform, which provides a better sparsity
model. The prediction can be made adaptive, avoiding to use
very noisy or misregistered images as predictors.
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