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Abstract—Image forensics research has mainly focused on the
detection of artifacts introduced by a single processing tool, thus
resulting in the development of a large number of specialized
detection algorithms. In tamper detection applications, however,
the kind of artifacts the forensic analyst should look for is
not known beforehand, hence making it necessary that several
tools developed for different scenarios are applied. The problem,
then, is to devise a sound strategy to fuse the information
provided by the different tools. In this paper we introduce two
theoretical frameworks, based on Dempster-Shafer’s Theory of
Evidence and on Fuzzy Theory respectively, to perform the
fusion of heterogeneous, incomplete or conflicting outputs of
forensic algorithms. Both models are easily expandable to an
arbitrary number of tools, do not require tools output to be
probabilistic and take into account available information about
tools reliability. To validate the proposed approaches, we carried
out some experiments addressing a simple yet realistic scenario
in which three forensic tools exploit different artifacts introduced
by double JPEG compression to detect cut&paste tampering
within a specified region of an image. The results we obtained are
encouraging, especially when compared with the performance of
a simple decision method based on the binary OR operator.

SESSION: SIGNAL PROCESSING

I. INTRODUCTION

Nowadays the majority of images are created, stored and
distributed in a digital format that is fairly easy to edit and
tamper with. As a result, digital image forensics has become
an important field of research to prove the authenticity and
integrity of digital images. In the last years many techniques
for detecting photographic tampering have been proposed [1],
[2], [3], [4]. Each tool implementing a detection technique
usually searches for a trace left by a specific processing, thus
dealing with a single type of manipulation. However when
an analyst is asked to judge the integrity of a given image,
the kind of manipulation the image has undergone is not
known beforehand. Therefore, if we are interested in finding
whether an image has been tampered with, the application of a
single detection method may not be enough and it is necessary
to use more than one method. However, when using more
than one tool, we are usually interested in obtaining a single
global answer that allows us to decide whether the image is
authentic or not. In other words, we need to fuse different
outputs. Several critical problems may arise in this scenario:
for example outputs can be heterogeneous, discording or
unreliable. This problem can be addressed in different ways

[5], the most important of them being fusion at “feature level”
(that is, fusion of data provided by tools is performed before
taking a final classification) and fusion at “measurement level”
(each tool provides a score of detection, and these scores are
fused). Most of the existing works are based on the former
method; hybrid approaches have been developed in [6] and
in [7]. In this work we propose two different frameworks
to tackle the fusion problem at measurement level, based on
Dempster-Shafer’s Theory of Evidence and on Fuzzy Theory
respectively. Both theories have been conceived to overcome
some limitations of classic theory of probability when dealing
with incomplete or unreliable information. For this reason we
believe that decision fusion methods based on such theories
may help to deal with the heterogeneous or conflicting outputs
usually provided by different forensic algorithms.

Dempster-Shafer’s (DS) theory of evidence [8] is a frame-
work for reasoning under uncertainty that allows the repre-
sentation of ignorance and of available information in a more
flexible way with respect to Bayesian theory. Reasoning in the
Bayesian framework often urges to apply insufficient reasoning
to assign a-priori probabilities, thus introducing extraneous
assumptions. Dempster-Shafer’s theory [8], instead, abandons
the classical probability frame and allows to reason without
a-priori probabilities through a new formalism.

Fuzzy sets theory was conceived in 1965 by L. Zadeh as
an extension of the classic set theory [9], [10]. From this
initial concept a multi-value fuzzy logic has been derived as
an extension of Boolean logic. Fuzzy logic aims to imitate the
highly adaptive behavior of human reasoning to incomplete,
unreliable or partially true information. Fuzzy logic has been
used in many control applications in which robustness to noise
and imprecise inputs is a critical requirement [11], [12].

The rest of this paper is organized as follows: in section
II we provide a formalization of the decision fusion problem
from an image forensics perspective; in sections III and IV we
introduce two different frameworks to address the problem;
in section V we test the two proposed models by fusing
outputs coming from three tools based on the analysis of JPEG
compression artifacts and we compare their performances with
those of a decision method based on binary OR; finally, in
section VI we outline some directions for future research.



II. PROBLEM FORMALIZATION

Let T be a set of K image forensic tools for detecting
whether a certain region within an image I has been tampered
with or not. Each tool Ti ∈ T analyzes a feature set in the
specified region looking for tampering traces and generates an
output that tells us whether the trace is present or not. At the
end of this process we have K outputs. If we want to answer
to the question “has the selected region been tampered with?”
we need a method to merge these K outputs into a single
value. Based on this value we can take a final decision on the
authenticity of the region.

There are several approaches to perform this task. Amongst
the simplest we can include majority decision and logical
disjunction. In the first case a region is considered to be
tampered with if more than half of the tools tells that a
tampering has occurred; in the second case, a region is
considered to be tampered with if at least one tool says that
a tampering has occurred. As the number of adopted tools
increases several problems may arise, thus making classic
decision methods ineffective. Let us consider some examples.
Two or more tools could be mutually exclusive: if one finds
traces of tampering then the other(s) will not find anything.
In this case a decision method based on majority may not
work as intended. Moreover, tools are usually not perfect.
Practical implementation of a forensic algorithm can be a
delicate process: from tuning of parameters to choice of
training dataset, many factors can affect the final performance.
This may result in a tool that is prone to errors. Let us imagine
a case where we have K − 1 tools that work perfectly and
one that is really bad. It may happen that most of times this
tool will claim that the image region has been tampered with,
thus inducing a simple logic disjunction operator to error. For
these reasons we need to devise an alternative reliable fusion
method. In the sequel we propose two different decision fusion
approaches based on Dempster-Shafer’s Theory of Evidence
and fuzzy logic respectively.

A. Tool outputs.
In order to proceed with our decision fusion approaches, we

need to assume that all the tools share the same output format,
consisting of a pair of values (D,R), where:
• D ∈ [0, 1] is the degree of detection, that is a measure of

the presence of the tampering trace within the analyzed
image region. Values near 1 indicate a high presence of
the tampering trace.

• R ∈ [0, 1] is the reliability of D, that is a measure of the
confidence of tool on the detection value. Values near 1
indicate a high confidence.

D does not necessarily need to be a probability and generally
changes from region to region. R can either be a constant
value depending only on the overall performance of the tool
or change depending on the characteristics of the analyzed
region (i.e. size, color, visual content). Therefore, in order to
define the reliability of each tool, we need some informations
about its performance, drawn either from theory or from
experimental analysis.

B. Definition of tampering tables.

Now that each tool provides a standard output, we need to
describe the behavior we expect from them. Let us suppose
that a region of image I has undergone a tampering. We ask
ourselves: “If everything goes smoothly, what kind of output
are we expecting from the tools at our disposal?”. Depending
on the nature of manipulation, a tool may or may not be able
to detect a region as tampered. We indicate the capability of
detecting the tampering with Y and the incapability with N.
Therefore, if we have K tools, each manipulation (or absence
of manipulation) is identified by one or more K-dimensional
sequences of Y and N, each specifying the expected behavior
of the tools in ideal conditions. Note that there may be some
sequences that are not specified a priori: some sequences may
be not ideally acceptable or correspond to an unknown type
of tampering.

We refer with Ttrue and Tfalse to the tables whose columns
correspond to the expected (standard) cases of detection and
non-detection of tampering respectively; we refer with Tdoubt
to the table of unexpected (non-standard) cases belonging
neither to Ttrue nor to Tfalse. Since the definition of these
tables depends on tools and is based on knowledge of their
performances, in the following we assume that they are always
available.

III. DEMPSTER-SHAFER (DS) DECISION FUSION
FRAMEWORK

Dempster-Shafer’s (DS) theory of evidence [8] is often cited
in the field of decision fusion because it allows to combine
evidences coming from different sources, interpreting them as
“belief” on propositions, and provides a formalism for turning
logical operations on propositions into operations among sets.
Another key feature of DS Theory is its soundness in dealing
with uncertainty.

When using classical probability theory for finding the
probability of a certain event A, the additivity rule must be
satisfied; so by saying that Pr(A) = pA one implicitly says
that Pr(Ā) = 1− pA, thus committing information about the
probability of event A to its complementary Ā. Another con-
sequence of the rule of additivity involves the representation
of ignorance: complete ignorance about a dichotomic event
A is usually represented by setting Pr(A) = Pr(Ā) = 0.5
(according to Laplace’s principle of insufficient reasoning),
but this probability distribution would also be used to model
perfect knowledge about probability of each event being 0.5
(as for a fair coin tossing). These facts have an impact in
reasoning: Bayesian inference framework typically requires
to specify a-priori probabilities and, in scenarios where un-
certainty is high, this results in an extensive use of the
principle of insufficient reasoning, thus introducing extraneous
assumptions. Dempster-Shafer’s theory [8], instead, abandons
the classical probability frame and allows to reason without
a-priori probabilities through a new formalism.



A. Dempster-Shafer’s formalism

Let the frame Θx = {x1, x2, . . . , xn} define a finite set of
possible mutually exclusive and exhaustive values of a variable
x. We are interested in quantifying the belief for propositions
of the form “the true value of x is in H”, where H ⊆ Θx

(so the set of all possible propositions is the power set of Θx,
2Θx ). Contrary to the Bayesian case, in this framework belief
for one proposition is only committed to any other logically
implied proposition, i.e. belief for a given subset H of Θ is
only committed to any subset B ⊂ Θ containing H. Each
proposition is mapped on a single subset and is assigned a
basic belief mass through a Basic Belief Assignment (BBA).

Definition Let Θ be a frame. A function m : 2Θ → [0, 1] is
called a Basic Belief Assignment if the followings hold:

m(∅) = 0
∑
A⊆Θ

m(A) = 1 (1)

where the summation is taken over every possible subset A of
Θ. Each set S such that m(S) > 0 is called a focal element
for m.

Intuitively, m(A) is the atomic information for this framework:
it is the part of belief that supports exactly A but, due to the
lack of further information, does not support any strict subset
of A. Thus if we want to obtain the total belief that a given
BBA commits to A, we must add the mass of all proper subsets
of A plus the mass of A itself, thus obtaining the Belief for
A.

Definition A function Bel : 2Θ → [0, 1] is a belief function
over Θ if the following is satisfied:

Bel(A) =
∑
B⊆A

m(B)

Bel(A) summarizes all our reasons to believe in A. Re-
lationships and interpretations of m(A), Bel(A) and other
function that derives from these are well explored in [13].
Here we just notice that Bel(A) + Bel(Ā) ≤ 1 ∀A ⊆ Θ and
1− (Bel(A)+Bel(Ā)) is the lack of information, that is “the
doubt”, about the proposition A.

B. Combination Rule

We are interested in using DS framework to perform data
fusion. Dempster defined a combination rule that allows to
combine several belief functions defined over the same frame.

Definition Let Bel1 and Bel2 be belief functions over the
same frame Θ with BBAs m1 and m2. Let us also assume
that K, defined below, is positive. Then for all non-empty
A ⊆ Θ the function m12 defined as:

m12(A) ,
1

1−K
·

∑
i,j:

Ai∩Bj=A

m1(Ai)m2(Bj) (2)

where K =
∑

i,j:Ai∩Bj=∅m1(Ai)m2(Bj), is a BBA function
and is called the orthogonal sum of Bel1 and Bel2, denoted
by Bel1 ⊕Bel2.

This rule has many properties [13], in this work we are mainly
interested in its associativity and commutativity. Notice that K
is a measure of the conflict between m1 and m2: the higher it
is, the higher the conflict. Dempster’s rule can give unintuitive
results when the conflict is near to 1: Zadeh showed this
drawback in its famous paradox [14]. However, Haenni proved
that Dempster rule works well in combining “realistic” BBAs
in which, for example, no oracles exist [15].

In the previous definition (2) it is assumed that the two
BBAs, m1 and m2, are defined over the same frame. Whenever
we need to combine BBAs that are defined on different
domains, we have to redefine them on the same target frame:
this can be done using marginalization and vacuous extension.
Let us call domain D the set of variables on which evidence
is defined, and let denote a BBA on domain D with mD.

Definition Let mD1 be a BBA function defined on a domain
D1, then its vacuous extension to D1 ∪ D2, denoted with
mD1↑(D1∪D2), is defined as:

mD1↑(D1∪D2)(C) =

{
mD1(A) if C = A×ΘD2

, A ⊆ ΘD1

0 otherwise

This allow to extend the frame of a BBA function without
introducing extraneous assumptions (no new information is
provided about variables that are not in D1). The inverse
operation of vacuous extension is marginalization.

Definition Let mD be a BBA function defined on a domain
D, its marginalization to the domain D0 ⊆ D, denoted with
mD↓D0 , is defined as

mD↓D0(A) =
∑
B↓A

mD(B)

where the index of the summation denotes all sets B ⊆ ΘD

such that the configurations in B reduce to those in A ⊆ ΘD0

by the elimination of variables in D that are not also in D0.

C. Model for the Multimedia Forensics scenario

In this section we define a model in the Dempster-Shafer
framework that fits the problem formalized in sec. II. Firstly
we just need to map tool outputs (that are easily thinkable
as propositions, as we shall see) in a set of Basic Belief
Assignments on some sets; then, we will deal with the fusion
problem. The model is built in such a way that the introduction
of new evidence, coming from new tools, is straightforward.

1) Formalization for one tool: For clarity of explanation,
we start by formalizing the proposed model for just one tool,
let us call it ToolA, which returns a value of detection A ∈
[0, 1] and has a reliability R ∈ [0, 1]. Intuitively, this tool will
provide evidence for the propositions: “image has undergone a
tampering detectable using ToolA” and for the opposite “image
has not undergone a tampering detectable using ToolA”. We
model this information introducing a variable Ta, with frame:
ΘTa

= {ta, na}, where ta stands for the first proposition and
na stands for the second. The power set of ΘTa

will contain
also (ta ∪ na): it is the doubt that ToolA has about the presence
of the trace, so it refers to the proposition “image has or has



not undergone a tampering detectable using ToolA”.
From the detection value A provided by ToolA we specify the
following BBA over the frame ΘTa :

mTa

A (X) =

 AT for X = {(ta)}
AN for X = {(na)}
ATN for X = {(ta) ∪ (na)}

(3)

The way A is mapped into AT , AN and ATN is an interpre-
tation of ToolA response: one possible, general, interpretation
is to consider the response doubtful when detection value
A is near 0.5, and increasingly sure when it approaches to
the interval extremes. If more information is available about
how the tool detection value should be interpreted, it can be
implemented by choosing an appropriate mapping from A to
AT , AN and ATN (see fig. 1 for an example of three different
mappings).

We have assumed ToolA coming with a value of reliability
R, which can optionally depend on the specific image it is
working on. This information can be formalized introducing
a new variable Ra, with frame: ΘRa = {ra, ua} where ra is
the event “ToolA is reliable” and ua is the event “ToolA in
not reliable”. We choose to summarize reliability information
using a BBA that has only two focal elements:

mRa

A (X) =

{
AR for X = {(ra)}

1−AR for X = {(ua)}

This BBA does not assign a mass to the doubt: we are saying
that knowing that a tool is not trustable and not knowing
whether it is trustable turns out to be the same. Consequently,
the most intuitive mapping from R to this BBA assignment is
to choose AR = R.

Being defined on different frames, mTa

A and mRa

A cannot
be combined as they are. We need to extend them to a
common domain: the simplest one is Ta×Ra. We use vacuous
extension to find m

Ra↑(Ta×Ra)
A while, for extending mTa

A ,
we use a different approach, to give a specific interpretation
of what tool reliability should mean: we assume that if the
tool is unreliable, its detection should not be considered. This
can be easily expressed by putting all elements representing
propositions in which the tool is not reliable (i.e. all (·, ua)
elements) in every focal element of the combined BBA:

mTa×Ra

A (X) =


AT for X= {(ta, ra) ∪ (ta, ua) ∪ (na, ua)}
AN for X= {(na, ra) ∪ (ta, ua) ∪ (na, ua)}
ATN for X= {(ta, ra) ∪ (na, ra) ∪ (ta, ua) ∪

∪ (na, ua)}

Now, using (2) we can combine reliability and detection
BBAs to yield mA, which summarizes all our knowledge about
ToolA by now:

mA(X) =


AR ·AT for X = {(ta, ra)}
AR ·AN for X = {(na, ra)}
AR ·ATN for X = {(ta, ra) ∪ (na, ra)}
1−AR for X = {(ta, ua) ∪ (na, ua)}

2) Introducing new tools: If another tool, say ToolB, re-
specting the assumptions in sec. II becomes available, we can
use the same formalism defined in the previous section to
introduce it into the model. We will get to mB , a BBA that
summarizes the knowledge for this new tool, defined over the
frame ΘTb

×ΘRb
.

Because we cannot combine mA and mB unless they
are defined over the same frame, we choose the following
strategy: first marginalize both the BBAs eliminating reliability
variables (we are eventually interested only in the detection
value); then redefine mTa

A and mTb

B on the new domain Ta×Tb
using vacuous extension; finally use Dempster rule to combine
these two BBAs, yielding mAB :

mAB(X) =



AR·AT ·BR·BT for X= { (ta, tb)}
AR·AT ·BR·BN for X= {(ta, nb) }

AR·AT ·CB for X= {(ta, tb) ∪ (ta, nb) }
AR·AN ·BR·BT for X= {(na, tb) }
AR·AN ·BR·BN for X= {(na, nb) }
AR·AN ·CB for X= {(na, tb) ∪ (na, nb) }
CA·BR·BT for X= {(ta, tb) ∪ (na, tb) }
CA·BR·BN for X= { (ta, nb) ∪ (na, nb)}
CA·CB for X= {(ta, tb) ∪ (na, tb) ∪

∪ (ta, nb) ∪ (na, nb) }

where CA = (1−AR(AT +AN )) and CB = (1−BR(BT +
BN )), tb is the proposition “image has undergone a tampering
detectable using ToolB” and nb is the proposition “image has
not undergone a tampering detectable using ToolB”.

This process can be iterated: if another new tool ToolX
become available, the associativity of Dempster’s rule allows
to combine directly its BBA mX with mAB , so we will always
need to extend the domain of only two BBAs: the one coming
from the new tool and the last one we had for previous tools.
This strategy makes this model easily expandable up to a
arbitrary high number of tools.

3) Tool compatibility: By now we have considered tool re-
sponses independent from each other. This allowed us to avoid
conflict between tools, keeping the model easily expandable.
However, in sec. II-B we introduced tables Ttrue, Tfalse and
Tdoubt, with the last one ruling out some of the combination of
tool responses. If we have three tools (ToolA, ToolB, ToolC),
information coming from these tables can be easily written
using a BBA, defined on domain Ta × Tb × Tc, that has only
one focal set, which contains the union of all events that are
considered possible (that is, events described in one between
Ttrue and Tfalse) while all other events are assigned a null
mass.

This BBA should be combined, as a last step, with mABC

and, having some events being declared as impossible, some
conflict will arise (represented by K in eq. 2), making the
data fusion non trivial. Notice that, thanks to the commutative
property of Dempster’s rule of combination, we could intro-
duce informations about tool relationships only in the last step,
keeping the model easily expandable.

4) Model output: At the end of the decision fusion task we
want to know whether a given region of an image has been
tampered with or not. We can therefore define the final output
of the proposed model just looking at the belief for two sets:



the first one, T , is the union of all events in which at least
one algorithm revealed a tampering; the second one, N , is the
event in which none of the tools detected a tampering (in the
previous example we would have N = (na, nb, nc)). It can be
useful to keep trace of the conflict between tools that raised
during the fusion process, which is given by K in eq. 2. This
conflict depends only on the compatibility tables defined in
sec. II-B.

Finally, the output of the proposed model is made up of
two belief values and a measure of the conflict detected during
decision fusion; formally, the output is given by:

Bel(T ); Bel(N); K

where K is defined in sec. III-B.
These outputs summarize the information provided by the

available tools, without forcing a final decision: if a binary
decision about image authenticity is required, an interpretation
of these outputs has to be made, for example a comparison
between Bel(T ) and Bel(N) as will be shown later.

IV. FUZZY DECISION FUSION FRAMEWORK

In this section we first provide a brief overview of fuzzy
logic principles and then describe a practical system imple-
menting them in an image forensics scenario.

A. Fuzzy logic principles

Fuzzy logic relies on three simple concepts: fuzzy sets,
fuzzy operators and if-then rules. In the following we briefly
introduce each of these concepts.

Let X = {x} be a space of objects. A fuzzy set A in X is a
class of objects of X characterized by a membership function
µA(x), that is a curve defining how each point x ∈ X is
mapped to a membership value (or grade of membership) in
the interval [0, 1]. The value µA(x) represents the grade of
membership of x in A1 [9].

Let us now apply this concept to logic. Classic Boolean
logic requires that a proposition is either true (1) or false (0).
There are no other possible values to assign. Based on real
world experience, Fuzzy logic affirms that a proposition is not
always totally false or totally true but true or false to some
grade in the interval [0, 1]. Doing so, it is possible to claim
that a proposition is true, more or less true, somewhat true
and so on. Since Boolean logic can be seen as a particular
case of fuzzy logic where one can only assign values 0 and 1
to membership functions, the extension of logical operators is
not too complicate. Given two fuzzy sets A and B, standard
fuzzy logical operators can be redefined as follows:

AND(A,B) = min(A,B)
OR(A,B) = max(A,B)
NOT(A) = 1 – A

(4)

1For example, if X is the space of temperatures, a temperature value x
participates to the fuzzy set A = hot with grade µA(x), to the fuzzy set
B = cold with grade µB(x) and so on. Each of these sets is characterized
by a specific membership function. A value of µA(x) near 1 indicates a high
grade of membership of temperature x in hot.

Let x and y be two fuzzy variables. Let A and B be fuzzy
sets. A fuzzy if-then rule is commonly represented as follows:

IF x is A THEN y is B (5)

The first part of the rule (x is A) is called antecedent,
the second part (y is B) consequent. An antecedent can also
consists of an arbitrary number of expressions. The behavior
of a system is usually described by means of a set of if-then
rules because most of times one rule alone is not effective.
In a nutshell, a fuzzy system receives input variables that are
crisp numbers (e.g. a measure of temperature) and need to be
turned into something fuzzy. This task is performed by means
of fuzzy sets. Once input values are transformed into fuzzy
entities, they are combined accordingly to if-then rules. Result
is something fuzzy and usually needs to be turned again into
something crisp.

B. Fuzzy decision fusion framework

The proposed framework is constructed as follows: a set of
if-then rules is derived from tables Ttrue and Tfalse; sequences
in Tdoubt are mapped into standard cases resulting in another
set of if-then rules; all rules are applied to pairs (D,R) provided
by the forensic tools producing a number that needs to be
compared with a threshold to obtain a final binary answer on
image region authenticity.

1) Fuzzy sets: Intuitively, detection and reliability values
can either be considered low or high, where with low and high
we mean fuzzy sets characterized by a membership function.
Similarly, the presence of tampering derived from fusion of
(D,R) of all tools can have different degrees of intensity. In
our implementation we have chosen five fuzzy sets for the
presence of tampering: very weak, weak, neither weak nor
strong, strong and very strong.

2) Standard if-then rules: By looking at columns of Ttrue
and Tfalse we create the so called standard if-then rules.
These tables describe the behavior we expect from the tools in
presence of a certain tampering. Intuitively, we try to assign
them a linguistic meaning. Generally there is not a tool that
is either wholly capable or incapable of detecting a certain
tampering, but rather a tool that is more or less capable or
incapable. Let us focus on the capability of detection (Y): if a
tool provides a high value of detection with a high reliability
we consider it more capable of detecting. We consider the
same tool less capable (but still able of correct discrimination)
if it provides a high value of detection with a low reliability.
Similarly for the incapability of detection (N). These concepts
can be formalized as follows to produce the fuzzy output of
a single forensic tool:

Y = (detection is high AND reliability is high) OR
(detection is high AND reliability is low)

N = (detection is low AND reliability is high) OR
(detection is low AND reliability is low)

(6)
In section II-B we saw that columns of Ttrue and Tfalse

are K-dimensional arrays whose elements are either Y or



N. Let s be one of these arrays. The antecedent of an if-
then rule is built by substituting to each element of s the
corresponding expression as shown in equation 6. The choice
of the consequent of rule depends on whether s belongs to
Tfalse or Ttrue:

IF

{
s ∈ Ttrue THEN tampering is very strong
s ∈ Tfalse THEN tampering is very weak

(7)

Depending on the crisp input values (D,R), the processes
of fuzzification and logical combination assign to each rule a
certain degree of support. Each degree is used to truncate the
corresponding output fuzzy set.

3) Non-standard if-then rules: If-then rules for non-
standard cases of Tdoubt are built similarly to those for
standard cases. Antecedents are generated again as described
in equation 6. However, some further reasoning is required to
define consequents. When a non-standard case occurs we do
not have a support from theory or experiments. Therefore we
need to map this case into something that we know, according
to the reliability of the various tools. The more a tool is
reliable, the more we are willing to trust it. Let ns be a
non-standard sequence belonging to Tdoubt and s a standard
sequence belonging either to Ttrue or Tfalse. Let us create
a binary sequence by assigning values 0 and 1 to N and Y
respectively. We propose to evaluate the distance between ns
and s by means of the following weighted Hamming distance:

d(ns, s) =

K∑
i=1

(1−Ri)XOR
[
ns(i), s(i)

]
(8)

where: K is the number of tools; wi = (1 − Ri) is a weight
that depends on tool reliability; XOR is the bitwise exclusive-
OR operator; ns(i) and s(i) are the i-th bits of ns and s
respectively. With equation 8 we compute the distance of ns
from all the M standard sequences and select the closest one
as follows:

smin = arg min
n

[
d(ns, sn)

]
, n = 1, 2, ..,M (9)

Since this process is an approximation based on experimen-
tal parameters, it is not wise to lean too much towards presence
or absence of tampering. Therefore we choose to mitigate the
intensity of the consequent as follows:

IF

{
smin ∈ Ttrue THEN tampering is strong
smin ∈ Tfalse THEN tampering is weak

(10)

With this approach a problem may arise: if two or more
tools are equally reliable, we may have more than just one s
at distance dmin. Although this does not happen frequently in
the experiments we conducted, we have chosen to proceed as
follows:

• if all the sequences s at distance dmin belong to Ttrue
or Tfalse we choose the first s of the set and we define
consequent as described in equation 10.

• if ns is equally close to at least one s belonging to Ttrue
and one to Tfalse we change the consequent as follows:

THEN tampering is neither weak nor strong (11)

Note that this is not a fuzzy task: mapping of non standard
cases is performed before building the fuzzy inference system.

V. EXPERIMENTAL ANALYSIS

In this section we describe a practical implementation of
the two proposed approaches. Our goal is to validate the ideas
we formalized above on a realistic image forensic scenario.
We first briefly describe the tools that we employed and the
dataset of images used to evaluate fusion accuracy. We choose
to compare experimental results of both approaches with two
other techniques: the first one is the binary OR (maximum
criterion) operator, applied to tool thresholded outputs; the
second is the more complex classification obtained using a
two-class Support Vector Machine, using the detection values
obtained from algorithms as features (we use a RBF kernel
with parameters C = 0.1 σ = 2.48).

A. Implemented forensic tools
The two proposed decision fusion models are evaluated by

fusing outputs obtained from K = 3 algorithms for tampering
detection. More specifically, we implemented the one from
Luo et al. [1], the one from Lin et al. [2] and the one from
Farid [3]. In the following we will refer to them as TA, TB
and TC . All of these tools can be used to check whether a
certain region of the image has been substituted with one
cropped from another image, before performing a last JPEG
re-compression of the resulting image.

We conducted our experiments on a dataset of 1600 JPEG
compressed images by checking integrity of a 256 × 256
region located in the center of each image. Among these
1600 images, 800 are kept unmodified and 800 are used to
simulate 4 different classes of cut & paste tampering. Each
class has been designed so that only a single tool (or a pair
of tools) is able to detect the presence of the manipulation2.
Depending on alignment or misalignment of 8×8 grids of first
and latter JPEG compression and on their respective quality
factors, a specific tool may or may not be able to detect
a manipulation (see table I for a brief description of each
tampering procedure). According to the principles underlying
each tool and to a preliminary experimental analysis we carried
out on them, compatibilities turn out to be as in table II.

According to the assumptions made in section II, each tool
has to output a value of detection in [0,1], where values near
1 indicate a high confidence about the analyzed region being
tampered. For TA, this value is obtained using the approach in
[16] to get a probabilistic output from the SVM (training has
been performed on a separated dataset); for TB , the detection
is taken as the median (over the suspected region) of the
probability map [2]; for TC , the value of the KS statistics
is directly used [3].

2Notice that these tampering are tailored to tools requirements, thus making
unpredictable phenomena in image features very unlikely, while tampering
conducted on real world may actually expose them.



TABLE I
CONSTRUCTION OF IMAGE DATASET. STARTING FROM UNCOMPRESSED

IMAGES 4 TAMPERING CLASSES HAVE BEEN CREATED BY MEANS OF
VARIATION OF NUMBER OF COMPRESSIONS AND GRID ALIGNMENT. A

FIFTH CLASS OF NON TAMPERED IMAGES HAS BEEN ADDED.

Class Tampering procedure
Class 1 Outer region is compressed once. Inner region is com-

pressed twice with misaligned grids
Class 2 Outer region is compressed twice with aligned grids.

Inner region is compressed twice with misaligned grids
Class 3 Outer region is compressed once. Inner region is com-

pressed twice with aligned grids
Class 4 Outer region is compressed twice with aligned grids.

Inner region is compressed once
Class 5 Image is compressed once with a random but fairly high

QF ∈ {70, 75, 80, 90}

TABLE II
EXPECTED INTERACTIONS BETWEEN THE 3 TOOLS. FIRST 4 COLUMNS

CORRESPOND TO Ttrue , FIFTH COLUMN TO Tfalse . CASES THAT ARE NOT
PRESENT IN THE TABLE BELONG TO Tdoubt .

Tool Class 1 Class 2 Class 3 Class 4 Class 5
TA Y Y N N N
TB N Y N Y N
TC N Y Y Y N

B. Dempster-Shafer system settings

Based on knowledge about tools performance and on pre-
vious experiments, we noticed that TA is more reliable when
the second JPEG quality factor QF2 is high. Reliability of
TB and TC does not seem to be affected by QF2. Therefore
we have decided to use the following values for reliability:
RA = 0.4·QF2 (where QF2 is normalized in [0,1]), RB = 0.4
and RC = 0.85. The mapping of detection values into BBAs
(eq. 3) are reported in figure 1: curves are chosen in order to
have a low false alarm rate (PF ) for each algorithm considered
separately, so the doubt is maximum in correspondence of the
threshold that give a PF of 3% on the dataset, estimated using
the single tool ROC computed before. These curves are kept
constant during the fusion process.
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Fig. 1. Mapping from detection value to BBA for TA (left), TB (center)
and TC (right).

C. Fuzzy inference system settings

The fuzzy system features 6 inputs (DA,B,C , RA,B,C) and
one output (tampering), that needs to be defuzzified to obtain
the final decision. Similarly to the DS framework we have used
RA = 0.4 · QF2, RB = 0.4 and RC = 0.85. We used trape-
zoidal membership functions for all variables because they
are simpler to implement and build automatically; however

experiments have shown that use of smoother functions does
not provide appreciable benefits. Figure 2 shows that each
input can belong to two fuzzy sets: low and high. The point
where the functions cross is where the maximum fuzziness is
measured, since an input value is characterized by the same
grade of membership for both classes. Values to the left of
this point have a higher grade of membership in the fuzzy
set low; values to the right of this point have a higher grade
of membership in the fuzzy set high. Again, similarly to the
configuration of DS framework, good values for such points
are 0.79 for TA, 0.45 for TB , 0.41 for TC and 0.5 for RA,
RB and RC .

DA  ,  DB  ,  DC RA  ,  RB  ,  RC

Fig. 2. Membership functions for input variables: detection (left) and
reliability (right). Note that only DA is shown here. DB and DC have the
same shape but different points of maximum fuzziness.

Figure 3 shows membership functions for the output vari-
able representing intensity of tampering. We have defined five
possible fuzzy sets: from left to right very weak, weak, neither
weak nor strong, strong, very strong.

Fig. 3. Membership functions for output variable (tampering). From left to
right: very weak, weak, neither weak nor strong, strong, very strong.

D. Results and discussion

The proposed methods have been tested on the dataset
described in section V-A; the two-class (tampered vs. non-
tampered) SVM has been trained using 800 out of the 1600
images. We decided to evaluate performance of all systems at
low values of false alarm PF since this is the most common
operational condition used in practical applications. Table III
reports the accuracy of detection (PD) for low values of
probability of false alarm (PF ) 3.

3According to [16], posterior probabilities obtained for the SVM are well
fitted by a sigmoid, whose parameters are learned using training examples.
When a new example must be classified, first its posterior is calculated, then
the optimum threshold (which is proved to be 0.5) is applied; however, by
sampling different thresholds, we can build a receiver operating curve. Values
for PF and PD for the SVM are obtained in this way.



TABLE III
DETECTION ACCURACY OF THE TWO PROPOSED METHODS COMPARED TO

LOGIC OR. WE CONSIDERED ONLY THOSE CASES WHERE PF IS LOW.

PF =0% PF =5% PF =10% PF =15% PF =20%
DS 53.8% 76.5% 84.3% 87.6% 91.3%
Fuzzy 59.7% 80.4% 84.1% 85.4% 88.3%
SVM 50.5% 77.0% 84.0% 87.6% 90.7%
OR 55.5% 76.0% 81.2% 84.1% 86.2%

Results are promising, although not dramatically better than
those obtained with a decision method based on logic OR and
on SVMs. This can be explained by noting that the classes
of tampering used in the experiments have been designed so
that at least one tool is able to correctly detect the tampering
(at least in principle). We did not introduce any unknown
tampering that could alter the analyzed features. In addition,
the number of tools we considered is quite limited. This is a
case that is likely to be managed quite satisfactorily even by a
simple OR operator, nevertheless, the proposed methods still
perform better. In real world scenarios conflict is more likely to
arise, thus making logical disjunction an hazardous approach.
In this case we expect that benefits brought by our systems
will be more significant. On the SVM side, it should be noted
that when more tools become available the training of such a
classifier gets increasingly complex, because it is difficult to
create a suitable training set. On the contrary, parameterization
of both DS and Fuzzy models can be performed by analyzing
each tool separately, thus simplifying the setup.

The optimized versions of our systems perform very well
also from a computational point of view. In particular, on
our whole dataset of 1600 pairs (D,R), the DS framework
completes the fusion in less than 0.1 seconds and the fuzzy
framework in less than 2 seconds (about 1 second to build
Ttrue, Tfalse and Tdoubt, 0.2 seconds to build the inference
system and 0.5 seconds to resolve if-then rules).

VI. CONCLUSIONS

In this work we focused on the problem of decision
fusion from an image forensic point of view. When more
than one forensic tool is employed, several problems may
arise if we need to make a single decision from outputs
that are heterogenous, discording or incomplete. To address
the decision fusion problem we proposed two frameworks
based on Dempster-Shafer’s Theory of Evidence and on Fuzzy
Theory respectively. Results are promising, however several
aspects are not yet fully explored, including: implementation
of a larger set of forensic tools; test of accuracy on a real-
world dataset of tampered images; extension of frameworks
to the most complex case where the suspicious tampered
region is not known a priori. Our experiments show that both
frameworks provide comparable results. Therefore, in this case
of study, there are no reasons to prefer one rather than the
other. However, experiments conducted on a wider set of tools
and image processing techniques may highlight strengths and
weaknesses of one approach with respect to the other
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