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Abstract-In this work a decision fusion strategy for image 
forensics is presented, based on Dempster-Shafer's Theory of 
Evidence. The goal is to automatically summarize the information 
provided by several image forensics tools, allowing both a binary 
and a soft interpretation of the global output produced. The 
proposed strategy is easily extendable to an arbitrary number of 
tools, it does not require that the output of the various tools be 
probabilistic and it takes into account available information about 
tools reliability. Comparison with logical disjunction- and SVM­
based fusion shows an improvement in classification accuracy. 

I. INTRODUCTION 

In the last years many algorithms for detecting photographic 
tampering have been proposed. In particular, several schemes 
have been proposed to detect traces left by different kinds of 
tampering (see, for instance, [1], [2] and [3]). However, in 
most cases, tampering is obtained by applying a small set of 
processing tools, hence only a part of the available trace detec­
tors will reveal the presence of tampering. Furthermore, it may 
happen that the positive answer of one algorithm inherently 
implies the negative answer of another because they search 
for mutually excluding traces. Finally, trace detectors often 
give uncertain if not wrong answers since their performance 
are far from ideal. For these reasons, taking a final decision 
about the authenticity of an image relying on the output of a 
set of forensic tools, is not a trivial task. This problem can be 
addressed in different ways as illustrated, for the steganalysis 
problem, in [4]. According to [4], there are basically three 
kinds of approaches to fusion. The first is to perform fusion 
at the feature level: each tool extracts some features from the 
data, then a subset of these feature is selected and used to train 
a global classifier. The second is to consider the output of the 
tools (usually a scalar) as they are and fuse them (measurement 
level). The last approach consists in fusing the output of the 
tools after they have been thresholded (abstract level). 

Most of the existing works are based on the first approach 
[5] [6] [7]; an hybrid approach has been investigated in [8], 
but still focusing on feature fusion. A problem with fusion at 
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the feature level is the difficulty of handling cases involving 
a large number of features (curse of dimensionality) and the 
difficulty to define a general framework, since ad-hoc solutions 
are needed for different cases. 

In order to get around the above problems, we chose to 
perform fusion at the measurement level. In fact, this choice 
delegates the responsibility of selecting features and training 
classifiers (or other decision methods) to each single tool, 
thus keeping the fusion framework more general and easy to 
extend while avoiding to lose important information about tool 
response confidences, as would happen when fusing at the ab­
stract level. Specifically, we present a fusion framework based 
on the Dempster-Shafer's "Theory of evidence" (DS Theory) 
[9] that focuses exclusively on fusion at the measurement 
level. The proposed framework exploits knowledge about tool 
performances and about compatibility between various tool 
responses, and can be easily extended when new tools become 
available. It allows both a "soft" and a binary (tampered/non­
tampered) interpretation of the fusion result, and can help in 
analyzing images for which taking a decision is critical due 
to conflicting data. Note that a fusion approach involving DS 
Theory has already been proposed in [10], however such a 
scheme applies fusion at the feature level hence inheriting the 
general drawbacks of feature-level fusion, noticeably the lack 
of scalability and the need to retrain the whole system each 
time a new tool is added. 

This paper is organized as follows: the Dempster-Shafer's 
framework is briefly introduced in sec. II; the proposed model 
is presented in sec. III, and its application to three well known 
tools ([1], [2] and [3]) along with experimental results are 
presented in sec. IV. 

II. DEMPSTER-SHAFER FR AMEWORK 

Dempster-Shafer's theory of evidence [9] is a framework 
for reasoning under uncertainty that allows the representation 
of ignorance and of available information in a more flexible 
way with respect to Bayes theory. When using classical 
probability theory for finding the probability of a certain event 
A, the additivity rule must be satisfied; so by saying that 
Pr(A) = PA one implicitly says that Pr(A) = 1 - PA, 
thus committing information about the probability of event 



A to its complementary A. Another consequence of the rule 
of additivity regards the representation of ignorance: complete 
ignorance about a dichotomic event A can be represented only 
by setting Pr(A) = Pr(A) = 0.5 (according to Laplace's 
principle of insufficient reasoning), but this probability distri­
bution would also be used to model perfect knowledge about 
probability of each event being 0.5 (as for a fair coin tossing). 
Furthermore, reasoning in the Bayesian framework often urges 
to apply insufficient reasoning to assign a-priori probabilities, 
thus introducing extraneous assumptions. DS theory, instead, 
abandons the classical probability frame and allows to reason 
without a-priori probabilities through a new formalism. 

A. Shafer's formalism 

Let the frame ex = {Xl, X2, ... , xn } define a finite set of 
mutually exclusive and exhaustive possible values of a variable 
x. We are interested in quantifying the belief for propositions 
of the form "the true value of X is in H", where H <;;; ex 
(so the set of all possible propositions is the power set of 
ex, 28x). Each proposition is mapped onto a single subset 
and is assigned a basic belief mass through a Basic Belief 
Assignment. 

Definition Let e be a frame. A function m : 28 --+ [0,1] is 
called a Basic Belief Assignment (BBA) if: 

m(0) = 0; L m(A) = 1 (1) 
A�8 

where the summation is taken over every possible subset A of 
e. Each set S such that m(S) > a is called a focal element 
for m. Thus m(A) is the part of belief that supports exactly 
A but, due to the lack of further information, does not support 
any strict subset of A. Intuitively, if we want to obtain the 
total belief that a given BBA commits to A, we must add the 
mass of all proper subsets of A plus the mass of A itself, thus 
obtaining the Belief for the proposition A. 

Definition A function Bel : 28 --+ [0, 1] is a belief function 
over e if: 

Bel(A) = L m(B) 
B�A 

Bel(A) summarizes all our reasons to believe in A. Re­
lationships and interpretations of m(A), Bel(A) and other 
functions derived from these are well explored in [11]. Here 
we just notice that Bel(A) + Bel(A) ::; 1 \;fA <;;; e and 
1 -(Bel(A) + Bel(A)) is the lack of information about A. 

B. Combination Rule 

We are interested in using the DS framework to perform data 
fusion. Dempster defined a combination rule that allows to 
combine several belief functions defined over the same frame. 

Definition Let Beh and Bel2 be belief functions over the 
same frame e with BBAs ml and m2. Let us also assume 
that K, defined below, is positive. Then for all non-empty 

A <;;; e the function m12 defined as: 

1 
m12(A) = 

-_. 1-K 
L ml(Ai)m2(Bj) 
i,j: 

AinBj=A 

(2) 

where K = Li,j:AinBj=0 ml(Ai)m2(Bj), is a BBA function 
and is called the orthogonal sum of Beh and Bel2, denoted 
by Beh EB Bel2. 

This rule has many properties [11], in this work we are mainly 
interested in its associativity and commutativity. Note that K 
is a measure of the conflict between ml and m2: the higher 
the K, the higher the conflict. 

In definition (2) it is assumed that the two BBAs, ml and 
m2, are defined over the same frame. Whenever we need 
to combine BBAs that are defined on different domains, we 
have to redefine them on the same target frame: this can be 
done using marginalization and vacuous extension. Let us call 
domain D the set of variables on which evidence is defined, 
and let denote a BBA on domain D with mD. 

Definition Let mD1 be a BBA function defined on a domain 
Dl, then its vacuous extension to Dl U D2, denoted with 
mD1t(DIUD2), is defined as: 

if C = A x e D2 , A <;;; e Dl 
otherwise 

This allows to extend the frame of a BBA function without 
introducing extraneous assumptions (no new information is 
provided about variables that are not in Dl). The inverse 
operation of vacuous extension is marginalization. 

Definition Let mD be a BBA function defined on a domain 
D, its marginalization to the domain Do <;;; D, denoted with 
mD.J-Do, is defined as 

mD.J-Do(A) = L mD(B) 
B.J-A 

where the index of the summation denotes all sets B <;;; e D 
such that the configurations in B reduce to those in A <;;; e Do 
by the elimination of variables in D that are not also in Do. 

III. DST- B ASED DATA FUSION IN IMAGE FORENSICS 

In this section we present our framework for combining ev­
idence coming from two or more tamper detection algorithms. 

A. Assumptions 

We consider a case in which we want to investigate the 
integrity of a known suspect region of an image. We assume 
that two or more tools are available that, given the suspect 
region, look for specific tampering traces whose presence 
reveals tampering. In some cases, we may know that two tools 
search for mutually-exclusive traces (so that if the first tool 
reveals a trace, the second one should not find its own); in 
some other cases, tools search for compatible traces. A single 
tool can never tell if the image is definitely unmodified: it 
can only indicate whether the image contains the trace it has 
looked for or not. We assume that each tool outputs a number 



in [0,1], where values near 1 indicate a high confidence 
about the analyzed region being tampered; we also assume 
to have some information (possibly image dependent) about 
tools reliability (for instance such an information could derive 
from experimental evidence). 

B. Formalization for one tool 

For sake of clarity, we start by formalizing the proposed 
framework for one tool only, let us call it TooIA, which returns 
a value A E [0,1] and has a reliability R E [0,1]. We first 
consider the information coming from the detection value by 
introducing a variable Ta, with frame: eTa = {ta, na},  where 
ta is the event "image has undergone a tampering detectable 
using TooIA" and na is the event "image has not undergone 
a tampering detectable using ToolA". Information provided by 
ToolA can then be summarized with the following BBA over 
the frame eTa: { AT for X = 

m�a(x) = AN for X = 
ATN forX= 

({ta)} 
{(na)} 

({ta) U (na)) 
(3) 

We see that this BBA assigns a mass to every element of the 
power set of eTa; ({ta) U (na)} is the doubt that ToolA has 
about the presence of the trace, so it refers to the proposition 
"image has or has not undergone a tampering detectable using 
ToolA". The way A is mapped into AT, AN and ATN is 
an interpretation of ToolA response and is used to model 
knowledge about tool behavior (see fig. 1 for an example). 

We have assumed that the reliability of ToolA is R (R can 
optionally depend on the specific image the tool is working 
on). This information can be formalized introducing a new 
variable Ra, with frame: eRa = {ra, ua} where ra is the 
event "ToolA is reliable" and ua is the event "TooiA in 
not reliable". In our framework we summarize the reliability 
information by using a BBA that has only two focal elements: 

R (X) { AR for X = {(ra)} mAa = 
1 -AR for X = {(ua)} 

This BBA does not assign a mass to doubt: this means that in 
our framework knowing that a tool is not reliable and ignoring 
whether it is reliable or not are considered in the same way. 
Consequently, the most intuitive mapping from R to this BBA 
assignment is to choose AR = R. 

Being defined on different frames, m�a and m�a cannot 
be combined directly. We need to extend them to a common 
domain: the simplest one is Ta x Ra. We use vacuous extension 
to find m �a t(Ta x Ra) while, for extending m �a to m �a X Ra , 
we use a different approach, to give a specific interpretation 
of what tool reliability should mean: we assume that if the 
tool is unreliable, its detection should not be considered. This 
can be easily expressed by putting all elements representing 
propositions in which the tool is not reliable (i.e. all ( ', ua) 
elements) in every focal element of the combined BBA: { AT for x= {eta, ra) U (ta, UfJ) U (na, UfJ)} 
mTa xRa (X) = AN for X= {(na, ra) U (ta, ua) U (na, ua)} 

A ATN for X= {eta, ra) U (na, ra) U (ta, ua) U 
U (na, ua)} 

Now, using (2) we can combine reliability and detection 
BBAs to yield mA, which summarizes all the knowledge we 
have about ToolA: 

({ta, ra)} 
{(na, ra)} 

for X = 
for X = 
for X = 
for X = 

{(ta, ra) U (na, ra)} 
{(ta, ua) U (na, ua)} 

C. Introducing new tools 

Suppose we want to introduce in our framework a new 
tool ToolB, that satisfies the assumptions in III-A. The same 
formalism used in II1-B will lead us to write mB, a BBA 
that summarizes the knowledge for this new tool, defined 
over the frame en x e Rb• Because we cannot combine 
m A and m B unless they are defined on the same frame, we 
choose the following strategy: first marginalize both the BBAs 
eliminating reliability variables; then redefine m�a and m�b on 
the new domain Ta x Tb using vacuous extension; finally use 
Dempster's rule to combine these two BBAs, yielding mAB : 

AR"AT,BR,BT for X= { (ta, tb)} 
AR,AT,BR,BN for X= {eta, nb) } 

AR"AT,CB for x= {(ta, tb) U (ta, nb) } 
AR"AN'BR"BT for x= {(na, tb) } 

mAB
(X) = AR"AN'BR"BN for x= {(na, nb) } 

AR,AN'CB for x= {(na, tb) U (na, nb) } 
CA,BR"BT for X= {(ta, tb) U (na, tb) } 
CA,BR"BN for x= { (ta, nb) U (00, nb)} 
CA,CB for x= {(ta, tb) U (na, tb) U 

U (ta, nb) U (na, nb) } 

where CA = (1-AR(AT + AN)) and CB = (1-BR(BT + 
BN)), tb is the proposition "image has undergone a tampering 
detectable using ToolB" and nb is the proposition "image has 
not undergone a tampering detectable using TooIB". If another 
tool ToolX becomes available, the associativity of Dempster's 
rule allows to combine directly its BBA mx with mAB, so we 
will always need to extend the domain of only two BBAs: the 
one coming from the new tool and the one we had for previous 
tools. This strategy makes this model easily extendable up to 
an arbitrarily high number of tools. 

D. Tool compatibility 

By now we have considered tool responses as if they 
were independent from each other. This allowed us to avoid 
conflicts between tools, obtaining an easily expandable fusion 
framework, however, as we noted in III-A, this is not always 
the case in real applications. Suppose we have three tools 
(TooIA, TooIB, TooIC) and suppose that ideally only some 
combinations of their outputs can be expected; for example, it 
may be that the presence of the trace detectable by ToolA 
implies the absence of the trace detectable by ToolB and 
TooIC, so, at least ideally, the three tools should never detect 
tampering simultaneously. This information can be easily 
incorporated within the DST model by using a BBA defined 
on the domain Ta x n x Te, that has only one focal set, which 
contains the union of all events that are considered possible, 



while all other events have a null mass. For example, if we 
have 3 tools with compatibilities as in table I, BBA would be: 

m (X) 
= 

{ 1 for X= {(ta, nb, ne) U (na, tb, te) U (na, nb, te) U (ta, tb, tel} 
, 0 for X= {(na, tb, ne) U (ta, tb, ne) U (ta, nb, tel} 

This BBA should be combined, as a last step, with mABC and, 
since some events are considered impossible, the presence of 
conflict should be revealed (represented by K in eq. 2). 

E. Final decision 

We can now define the final output of the fusion procedure, 
i.e. we want to know whether a given region of an image 
has been tampered with or not. To do so we consider the 
belief of two sets: the first one, T, is the union of all events 
in which at least one algorithm revealed a tampering, the 
second one, N, is the single event in which none of the tools 
detected a tampering (in the previous example it would be 
N = (na,nb,nc). The output of the fusion process therefore 
consists of two belief values and a measure of the conflict 
detected during decision fusion; formally, the output is given 
by the triplet {Bel(T); Bel(N); K} where K is defined in 
sec. II-B. These outputs summarize the information provided 
by the available tools, without forcing a final decision. If 
a binary decision about image authenticity is required, an 
interpretation of these outputs has to be made; the most 
intuitive binarization rule is to classify an image as tampered 
when Bel(T) > Bel(N), but we can also make a simple 
implementation of the "presumption of innocence" principle 
by requesting Bel(T) > Bel(N) +K. The Receiver Operating 
Curve can thus be obtained by classifying images according to 
Bel(T) > Bel(N) + K + 8 and sampling 8 in [-1,1]. Notice 
that we did not need to introduce a-priori probabilities about 
an image being original or forged: in a Bayesian framework, 
this would have been harder to obtain. 

IV. EXPERIMENTAL RESULTS 

In order to validate the effectiveness of the proposed ap­
proach, we compared it with one of the approach proposed 
in [8], where image manipulations are detected by taking the 
logical disjunction (OR) of the outputs of single tools. Logical 
disjunction is indeed one of the simplest and most widely 
used methods for decision fusion, and is quite well-suited to 
the proposed case study!. On the other side, several methods 
have been proposed for decision fusion at feature level in 
image forensics [5] [6] [7] [10], but they are typically based 
on feature selection and are therefore not directly comparable 
to the method proposed in this work. In particular, in [10] 
DS Theory is employed in a decision fusion framework, but 
it is used to fuse features instead of tool responses: the actual 
decision is taken using a SVM, thus requiring an additional 
training step which hinders one of the main advantages of the 
proposed method (namely, that each tool can be added without 
retraining the whole system). Nevertheless, because all cited 

1 Actually, taking the OR of binarized outputs is an "abstract level" 
approach. However, logical disjunction is one of the most used approaches 
among the post-classification ones [4), so we compare directly to it. 

methods end up using a classifier (usually a SVM) the best we 
can do for comparing our framework to them without exiting 
the measurement level is to train a SVM using the output of the 
single tools as input features, and see how the SVM performs 
in discriminating between tampered and original images. 

A. Experiment setup 

We choose to perform experiments by fusing outputs ob­
tained from three algorithms for tampering detection, namely: 
the one from Luo et al.[ I] (which we will call ToolA), the 
one from Lin et al.[2] (TooIB) and the one from Farid [3] 
(Toole). All of these tools aim to check if a certain region of 
the image has been substituted with one cropped from another 
image, before performing a last JPEG re-compression of the 
resulting image with quality factor QF2• In particular, ToolA 
checks if the region has been cropped, without preserving 
JPEG grid alignment, from another JPEG image, that was 
compressed with quality QF 1; ToolB reveals both if the region 
has been cropped from an uncompressed image or from a 
JPEG compressed image (quality QF1) but without preserving 
grid alignment; Toole checks if the region has been cropped 
from a JPEG compressed image (quality QF1) and pasted 
preserving JPEG grid alignment. 

To be compliant with the assumptions in section III-A, each 
tool has to output a value in [0,1], where values near 1 indicate 
a high confidence about the analyzed region being tampered. 
For ToolA, this value is obtained using the approach in [12] to 
get a probabilistic output from the SVM (training is performed 
on a separated dataset); for ToolB, the detection is taken as the 
median (over the suspected region) of the probability map [2]; 
for Toole, the value of the KS statistic is directly used [3], 
exploiting the fact that the DST framework does not require 
the input values to have a probabilistic meaning. 

To build the test dataset, we considered four different 
tampering procedures that, starting from two images (of whom 
at least one is in JPEG format) automatically produce a forgery 
by cut-and-pasting a portion (256x256 pixel) of one image 
into the other and saving the result in JPEG format. Namely, 
Class 1 forgeries are obtained by recompressing only the pasted 
region (that is, host image is not JPEG) breaking JPEG grid 
alignment, according to [1]; images in Class2 are obtained 
by recompressing only the untouched region (source image 
is not JPEG) preserving grid alignment according to [2]; 
Class3 is obtained by recompressing only the pasted region 
preserving grid alignment, according to [3] and finally images 
in Class4 are produced by recompressing both the pasted and 
the untouched regions, breaking JPEG grid alignment only 
in the former, thus matching requirements in [1] and [2]. 
The original, non-tampered, images are obtained by applying 
JPEG compression to uncompressed TIFF images ( I024x I024 
pixels), choosing randomly the quality factor of the compres­
sion from the set {40, 50, ... , 100}. For tampered images, 
the quality factor of the first compression (QFd is chosen in 
the same way, while the quality of the second compression is 
set to QF2 = QF1 +20. From the above description and from 



experimental evidence gathered by testing each single tools 
separately we can write the following compatibility table. 

TABLE I 
DETECTION COMPATIBILITY: EACH ELEMENT OF THE TA BLE SPECIFIES 
WHETHER THE CLASS OF TAMPERING (COLUMN) IS DETECTED (Y) OR 

NOT (N) BY THE TOOL ON THE LEFT ROW. 

Tool Class 1 Class 2 Class 3 Class 4 Original 
ToolA Y N N Y N 
ToolB N Y N Y N 
Toole N Y Y Y N 

We built a dataset of 1600 images as trammg set for 
tuning the model parameters and to obtain a ROC curve for 
each of the available tools. Among these 1600 images, 800 
are kept unmodified and 800 are used to simulate different 
kinds of tampering (200 images are produced for each of the 
four defined classes). Tuning model parameters consists in 
choosing for each tool a reliability value and a mapping from 
its scalar output to the three values of its BBA, according to 
eq. (3). Note that there is no need for cross-tooL training, thus 
considerably simplifying the tuning process. By relying on our 
tests and on available knowledge about tools performances, 
we defined the reliability of the various tools as follows: for 
TooLA we let R = 0.4· QF2 (where QF2 is scaled to [0,1]), for 
TooLB we set R = 0.4 and for ToolC R = 0.85. The mapping 
of detection values into BBAs (eq. 3) are reported in the right 
column of fig. I. These curves have been chosen by looking 
at the histogram of each algorithm response both for original 
and tampered images (left column of figure 1), considering 
only images that satisfy the working assumptions of the tool 
(see table I). As shown in figure 1 the only algorithm for 
which doubt is employed is TooLB: this choice has been made 
considering that TooLB tends to return "extreme" detection 
values (so the central bins in detection histogram are not very 
populated). It is reasonable to associate some amount of doubt 
to detection values that falls in a region where few examples 
were observed. On the contrary, doubt is not employed for 
TooLA and TooLe because, although their detection values 
overlap in the central part of the histogram, they seem to 
be "equally sure" about those images being tampered or 
original instead of unsure about both. Experiments confirm 
that assigning similar value to "tampered" and "untampered" 
propositions for these "confused" detection values performs 
better than assigning strong doubt. 

Validation of tamper detection tools is usually carried out by 
relying on Receiver Operating Characteristic (ROC) curves, so 
we need to train an aggregate ROC for the three algorithms, 
which represents their behavior when combined with the 
OR operator. The ROC curve for logical disjunction was 
then obtained as follows: first the ROC of each algorithm is 
calculated separately, considering only images that satisfy the 
corresponding working assumptions (see table I); then for each 
value of false alarm probability (P FA) these ROCs are used 
to find the threshold that gives that PFA for each algorithm. 
These threshold triplets are then used to binarize the output of 
the algorithms on the whole dataset, and the final decision is 

taken as the logical disjunction of these outputs, thus obtaining 
a point for the aggregated ROC. 
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Fig. 1. For each tool, the histogram of detection values on training dataset 
are shown on the left column. The right column shows how this histogram 
is interpreted to define a mapping from tool detection value (x-axis) to mass 
assignment (y-axis). See eq. 3 for an explanation of each line meaning. 

SVM-based fusion of tools's outputs is obtained by training 
the SVM using a RBF kernel with parameters (obtained 
through as-fold c.v.) 'Y = 2.48 and C = 0.1. To obtain a 
ROC for this model, we use again the method in [12] to get 
probabilistic outputs from the SVM (sigmoid parameters are 
A = 2.14, B = 0.033), then we threshold this soft output 
with values sampled from [0,1].2 Another approach, which 
we may consider in future experiments, could be to use the 
margin distance to get a sort of classification confidence. 

B. ResuLts 

We performed two different sets of experiments. In the first 
one, we built a test dataset of 1600 images, generated with 
exactly the same procedure used to build the training set, but 
using different images. We have 800 original images (that is, 
JPEG compressed once with QF in {40, 50, . . .  , 100}) and 
800 tampered images, 200 for each of the four classes. We run 
the three forensic tools and fuse their outputs on all of these 

2Jt should be noted that the SVM is trained to maximize the total accuracy, 
which maps to a single point in a ROC. However, this way of obtaining a 
ROC from an SVM is extensively used in machine learning literature. 
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Fig. 2. ROC for logical disjunction (red dashed-dotted line), proposed model 
(solid blue line) and SVM (dashed green line) on the standard dataset. 

images, using for each fusion model the parameter set defined 
during the training phase. In figure 2 we compare the ROC 
and the Area Vnder Curve (AVC) for the various methods. 

We can see that, although we are binarizing the output 
of the model, the proposed framework gives better results 
with respect to both logical disjunction and SVM. The gain 
is not exciting (approx. +2.6% in AVC on OR, +0.7% on 
SVM), but it is encouraging, especially because it has been 
obtained on a dataset that was built in such a way to match 
the working assumptions of the various tools hence minimizing 
the presence of uncertain situations for which the DST should 
provide the greatest advantages. 

To better highlight the usefulness of the proposed frame­
work, we performed a second experiment: we generated 200 
original and 50x4 forgeries, using only images showing 
strong textures (e.g. trees or city landscapes) and compressing 
original images with high quality factors (picked from the set 
{0.85, 0.90, 0.95, I}). We chose these settings because we 
noticed that Tool2 produces a large number of false positives 
on this kind of images, and we want to test how robust the 
various fusion techniques are in the presence of non-ideal 
situations. Results obtained on this new dataset are reported 
in figure 3: in this case DST fusion significantly outperforms 
logical disjunction (+ 13.9% in AVC), and increases his ad­
vantage also on SVM (+2% in AVC). That is because, when 
Tool2 generates a false positive, the output triplet "NYN" is 
observed, but this triplet, being not included in table I, is 
mapped to the nearest plausible one. This behavior derives 
from the combination of the compatibility BBA (m" in sec. 
III-D) with the global mass assignment obtained from tools. 

V. CONCLUSIONS 

In this paper we have addressed a central problem in image 
forensics, namely the fusion of information stemming from 
the application of several tamper detection tools. The fusion 
strategy we have developed is easily extendable to even a large 
number of tools. Other advantages derive from the adoption 
of a DST framework, since such a theory permits to cope 
with situations in which incomplete information is available 
about the a-priori tampering probabilities. Information about 
the dependence among the output of the single tools and 
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Fig. 3. ROC for logical disjunction (red dashed-dotted line), proposed model 
(solid blue line) and SVM (dashed green line) on the "critical" dataset. 

their reliability can also be easily incorporated within the 
model. Experimental results are encouraging: the proposed 
model gives significantly better results than a fusion approach 
based on logical disjunction, and also outperforms SVM-based 
fusion (that presents the additional disadvantage of requiring 
a global training of the final SVM classifier, limiting the 
scalability of this approach). 

Future work wiII focus on validating the proposed scheme 
on larger datasets and assess its capacity to handle situations 
in which the output of more than three tools has to be fused. 
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