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Abstract—In the attempt to provide a mathematical back-
ground to multimedia forensics, we introduce the source identi-
fication game with training data. The game models a scenario in
which a forensic analyst has to decide whether a test sequence
has been drawn from a source X or not. In turn, the adversary
takes a sequence generated by a different source a modifies
it in such a way to induce a classification error. The source
X is known only through one or more training sequences. We
derive the asymptotic Nash equilibrium of the game under the
assumption that the analyst relies only on first order statistics of
the test sequence. A geometric interpretation of the result is given
together with a comparison with a similar version of the game
with known sources. The comparison between the two versions
of the games gives interesting insights into the differences and
similarities of the two games.

I. INTRODUCTION

Understanding the fundament limits of multimedia forensics
in an adversarial environment is a pressing need to avoid the
proliferation of forensic and anti-forensic tools each focused
on countering a specific action of the adversary but prone to
yet another class of attacks and counter-attacks. The most
natural solution to avoid entering this never-ending loop is
to cast the forensic problem into a game-theoretic framework
and look for the optimum strategies the players of the game
(usually a forensic analyst and an adversary) should adopt.
Some early attempts in this direction can be found in [1] and
[2]. In [1], the authors introduce a game-theoretic framework
to evaluate the effectiveness of a given attacking strategy and
derive the optimal countermeasures. In [1] the attacker’s strat-
egy is fixed and the game-theoretic framework is used only to
determine the optimal parameters of the forensic analysis and
the attack. A more general approach is adopted in [2], where
the source identification game with known statistics, namely
the SIks game, is introduced. According to the framework
defined in [2], given a discrete memoryless source (DMS) X
with known statistics PX , it is the goal of the Forensic Analyst
(FA) to decide whether a test sequence xn has been drawn
from X or not. In doing so, he has to ensure that the false
positive probability, i.e. the probability of deciding that the
test sequence has not been generated by X when it actually
was, stays below a predefined maximum value. The goal of the
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adversary (AD) is to take a sequence generated from a different
and independent source Y ' PY and modify it so to let the
FA think that the modified sequence has been generated by
X . In doing so the AD must satisfy a distortion constraint, i.e.
the distance between the original and the modified sequence
must be lower than a threshold. The payoff of the AD is the
false negative error probability, i.e. the probability that the FA
classifies a sequence drawn from Y and further modified by the
AD as a sequence drawn from X . The opposite payoff applies
to the FA, thus qualifying the SIks as a zero-sum, competitive
game [3]. Under the further assumption that the FA relies only
on first order statistics (limited resources assumption) for his
analysis and that the sources X and Y are memoryless, the
asymptotic Nash equilibrium of the game can be found [2],
[4], thus defining the optimum strategies for the FA and the
AD when the length of the test sequence tends to infinity. A
problem with the analysis carried out in [2] is the assumption
that the FA and the AD know the probability mass function
(pmf) of the source X . This is not the case in many practical
scenarios where sources are known only through one or more
training sequences. It is the goal of this paper to reformulate
the analysis carried out in [2] to address this new more realistic
version of the game. As a main result, we derive the asymptotic
Nash equilibrium of the new game, hereafter referred to as the
SItr game, under the same limited resources assumptions used
in [2]. In doing so we will discover that the optimal strategies
for the FA and the AD deviate from those of the SIks game.
In addition, at least in the case that the training sequences
available to the FA and the AD coincide, we can show that
passing from the SIks to the SItr version of the game is to
the AD’s advantage.

The paper is organized as follows. In Section II we introduce
the notation that will be used throughout the paper. In Section
III, we give a rigorous definition of the source identification
with training data game. In Section IV, we derive the asymp-
totic Nash equilibrium of the game. In Section V, we compare
the results obtained in this paper with those referring to source
identification with known sources. Section VI concludes the
paper with some perspective for future research.

II. NOTATION

In the rest of this work we will use capital letters to indicate
discrete memoryless sources (e.g. X). Sequences of length n

199978-1-4673-2287-4/12/$31.00 ©2012 IEEE WIFS 2012

978-1-4673-2287-4/12/ /$31.00 2012 IEEE.



drawn from a source will be indicated with the corresponding
lowercase letters (e.g. xn). In the same way, we will indicate
with xi, i = 1, n the i−th element of a sequence xn. The
alphabet of an information source will be indicated by the
corresponding calligraphic capital letter (e.g. X ). Calligraphic
letters will also be used to indicate classes of information
sources (C). The pmf of a discrete memoryless source X
will be denoted by PX . With a slight abuse of notation, the
same symbol will be used to indicate the probability measure
ruling the emission of sequences from X , so we will use the
expressions PX(a) and PX(xn) to indicate, respectively, the
probability of symbol a ∈ X and the probability that the
source X emits the sequence xn. Given an event A (be it
a subset of X or Xn), we will use the notation PX(A) to
indicate the probability of the event A under the probability
measure PX .

Our analysis relies heavily on the concepts of type and type
class defined as follows (see [5] and [6] for more details).
Let xn be a sequence with elements belonging to an alphabet
X . The type Pxn of xn is the empirical pmf induced by
the sequence xn, i.e. ∀a ∈ X , Pxn(a) = 1

n

∑n
i=1 δ(xi, a).

In the following we indicate with Pn the set of types with
denominator n, i.e. the set of types induced by sequences of
length n. Given P ∈ Pn, we indicate with T (P ) the type class
of P , i.e. the set of all the sequences in Xn having type P .

The Kullback-Leibler (KL) divergence between two distri-
butions P and Q on the same finite alphabet X is defined
as:

D(P ||Q) =
∑
a∈X

P (a) log
P (a)

Q(a)
, (1)

where, as usual, 0 log 0 = 0 and p log p/0 = ∞ if p > 0.
Empirical distributions can be used to calculate empirical in-
formation theoretic quantities, like, for instance, the empirical
divergence between two sequences D(Pxn ||Pyn).

As we said, the goal of this paper is to cast the source iden-
tification problem into a game-theoretic framework, wherein
identification is seen as a two-player, strategic, zero-sum
game. In rigorous terms, a game is defined as a 4-uple
G(S1,S2, u1, u2), where S1 = {s1,1 . . . s1,n1} and S2 =
{s2,1 . . . s2,n2

} are the set of strategies (actions) the first and
the second player can choose from, and ul(s1,i, s2,j), l = 1, 2
is the payoff of the game for player l, when the first player
chooses the strategy s1,i and the second chooses s2,j . A
pair of strategies s1,i and s2,j is called a profile. In a
zero-sum competitive game, the two payoff functions are
strictly related to each other since for any profile we have
u1(s1,i, s2,j) + u2(s1,i, s2,j) = 0. A zero-sum game, then
reduces to a triplet G(S1,S2, u), where we have assumed
u = u1 = −u2. Note that in strategic games the players
choose their strategies before starting the game so that they
have no hints about the strategy actually chosen by the other
player. We say that a profile (s1,i∗ , s2,j∗) represents a Nash
equilibrium if [7], [3]:

u1((s1,i∗ , s2,j∗)) ≥ u1((s1,i, s2,j∗)) ∀s1,i ∈ S1

u2((s1,i∗ , s2,j∗)) ≥ u2((s1,i∗ , s2,j)) ∀s2,j ∈ S2,
(2)

where for a zero-sum game −u2 = u1 = u.

III. SOURCE IDENTIFICATION WITH TRAINING DATA

Let C be the class of discrete memoryless sources with
alphabet X , and let X ' PX be a source in C. Given a
test sequence xn, the goal of the Forensic Analyst (FA) is
to decide whether xn was drawn from X or not1. As opposed
to the source identification game with known sources [2], here
we assume that the FA does not know PX , and that he has to
base his decision by relying on the knowledge of a training
sequence tNFA drawn from X . On his side, the Adversary (AD)
takes a sequence yn emitted by another source Y ' PY still
belonging to C and tries to modify it in such a way that the
FA thinks that the modified sequence was generated by X . In
doing so the AD must satisfy a distortion constraint stating that
the distance between the modified sequence, say zn, and yn

must be lower than a predefined threshold. As the FA, the AD
knows PX through a training sequence tKAD, that in general
may be different than tNFA. We assume that tNFA, tKAD, xn and
yn are generated independently. With regard to PY , we could
also assume that it is known through two training sequences,
one available to the FA and one to the AD, however we will
see that - at least to study the asymptotic behavior of the game
- such an assumption is not necessary, and hence we take the
simplifying assumption that PY is known neither to the FA
nor to the AD. As in [2], we define the game by casting the
identification problem into a hypothesis decision framework.
Let then H0 be the hypothesis that the test sequence has been
generated by X (i.e. the same source that generated tNFA) and
let Λ0 be the acceptance region for H0 (similarly we indicate
with Λ1 = Λc0 the rejection region for H0). We have the
following:

Definition 1. The SItr,a(SFA,SAD, u) game is a zero-sum,
strategic, game played by the FA and the AD, defined by the
following strategies and payoff.
• The set of strategies the FA can choose from is the set of

acceptance regions for H0 for which the maximum false
positive probability across all possible PX ∈ C is lower
than a certain threshold:

SFA = {Λ0 : max
PX∈C

PX{(xn, tNFA) /∈ Λ0} ≤ Pfp}, (3)

where Pfp is a prescribed maximum false positive prob-
ability, and where PX{(xn, tNFA) /∈ Λ0} indicates the
probability that two independent sequences generated by
X do not belong to Λ0. Note that the acceptance region
is defined as a union of pairs of sequences, and hence
Λ0 ⊂ Rn ×RN .

• The set of strategies the AD can choose from is formed
by all the functions that map a sequence yn ∈ Xn into a
new sequence zn ∈ Xn subject to a distortion constraint:

SAD = {f(yn, tKAD) : d(yn, f(yn, tKAD)) ≤ nD}, (4)

1With a slight abuse of notation we use the symbol xn to indicate the test
sequence even if strictly speaking it is not known whether the test sequence
originated from X or Y .
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where d(·, ·) is a proper distance function and D is
the maximum allowed per-letter distortion. Note that the
function f(·) depends on tKAD, since when performing his
attack the AD will exploit the knowledge of the training
sequence.

• The payoff function is defined in terms of the false
negative error probability (Pfn), namely:

u(Λ0, f) = −Pfn = −
∑

tNFA∈X
N , tKAD∈X

K

yn:(f(yn,tKAD),tNFA)∈Λ0

PY (yn)PX(tNFA)PX(tKAD),

(5)
where the error probability is averaged across all possible
yn and training sequences and where we have exploited
the independence of yn, tNFA and tKAD.

Some explanations are in order with regard to the definition
of the payoff function. As a matter of fact, the expression in
(5) looks problematic, since its evaluation requires that the
pmf’s PX and PY are known, however this is not the case in
our scenario since we have assumed that PX is known only
through tNFA and tKAD, and that PY is not known at all. As
a consequence it may seem that the players of the game are
not able to compute the payoff associated to a given profile
and hence have no arguments upon which they can base their
choice. While this is indeed a problem in a generic setup, we
will show later on in the paper that asymptotically (when n,
N and K tend to infinity) the optimum strategies of the FA
and the AD are uniformly optimum across all PX and PY
and hence the ignorance of PX and PY does not represent a
problem. One may wonder why we did not define the payoff
under a worst case assumption (from FA’s perspective) on
PX and/or PY . The reason is that doing so would result in
a meaningless game. In fact, given that X and Y are drawn
from the same class of sources C, the worst case would always
correspond to the trivial case X = Y for which no meaningful
forensic analysis is possible2.

Slightly different versions of the game are obtained by as-
suming a different relationship between the training sequences.
In certain cases we may assume that the FA has a better
access to the source X than the AD. In [8], for example, the
availability of a number of pictures taken from a camera X
and made publicly available is exploited by the AD to take an
image produced by a camera Y and modify it in such a way
that the fake picture looks as if it were taken by X . The FA,
exploits his better access to the source X and the knowledge
of the images potentially available to the AD to distinguish the
images truly generated by X and the fake images produced
by the AD. In our framework, such a scenario can be quite
faithfully modeled by assuming that the sequence tKAD is a
subsequence of tNFA, leading to the following definition.

Definition 2. The SItr,b(SFA,SAD, u) game is a zero-
sum, strategic, game played by the FA and the AD, defined
as the SItr,a game with the only difference that tKAD =

2Alternatively, we could assume that X and Y belong to two disjoint source
classes CX and CY . We leave this analysis for further research.

(tFA,l+1, tFA,l+2 . . . tFA,l+K) with l and K known to the FA.

Yet another version of the game is obtained by assuming
that the training sequence available to the AD corresponds to
that available to the FA.

Definition 3. The SItr,c(SFA,SAD, u) game is a zero-sum,
strategic, game played by the FA and the AD, defined as
the SItr,a game with the only difference that K = N and
tKAD = tNFA (simply indicated as tN in the following). The
set of strategies of the FA and the AD are the same as in the
SItr,a game.

In the rest of the paper we will focus on the SItr,c game,
leaving the other versions for future research.

IV. ASYMPTOTIC EQUILIBRIUM FOR THE SItr,c GAME
WITH LIMITED-RESOURCES

Studying the existence of an equilibrium point for the SItr,c
game is a prohibitive task due to the difficulty of determining
the optimum strategies for the FA and the AD, hence we
consider a simplified version of the game in which the FA can
only base his decision on a limited set of statistics computed
on the test and training sequences. Specifically, we require
that the FA relies only on the relative frequencies with which
the symbols in X appear in xn and tN , i.e. Pxn and PtN .
Note that Pxn and PtN are not sufficient statistics for the FA,
since even if Y is also a memoryless source, the AD could
introduce some memory within the sequence as a result of the
application of f(·). In the same way it could introduce some
dependencies between the attacked sequence zn and tN . It is
then necessary to treat the assumption that the FA relies only
on Pxn and PtN as an explicit - additional - requirement. As in
[2], we call this version of the game ”source identification with
limited-resources”, and we refer to it as the SI lrtr,∗ game. As a
consequence of the limited resource assumption, Λ0 can only
be a union of cartesian products of pairs of type classes, i.e. if
the pair of sequences (xn, tN ) belongs to Λ0, then any pair of
sequences belonging to the cartesian product T (Pxn)×T (PtN )
will be contained in Λ0. Since a type class is univocally
defined by the empirical pmf of the sequences contained in it,
we can redefine the acceptance region Λ0 as a union of pairs of
types (P,Q) with P ∈ Pn and Q ∈ PN . In the following, we
will use the two interpretations of Λ0 (as a set of sequences
or a set of types) interchangeably, the exact meaning being
always clearly recoverable from the context. We are interested
in studying the asymptotic behavior of the game when n and N
tends to infinity. To avoid the necessity to consider two limits
with n and N tending to infinity independently, we decided to
express N as a function of n, and study what happens when
n tends to infinity. With the above ideas in mind, we can state
the following:

Definition 4. The SI lrtr,c(SFA,SAD, u) game is a zero-sum,
strategic, game played by the FA and the AD, defined by the
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following strategies and payoff:

SFA = {Λ0 ⊂ Pn × PN(n) : (6)

max
PX∈C

PX{(xn, tN(n)) /∈ Λ0} ≤ 2−λn},

SAD = {f(yn, tN(n)) : d(yn, f(yn, tN(n))) ≤ nD}, (7)

u(Λ0, f) = −Pfn = −
∑

tN(n)∈XN(n)

yn:(f(yn,tN(n)),tN(n))∈Λ0

PY (yn)PX(tN(n)). (8)

Note that we ask that the false positive error probability
decay exponentially fast with n, thus opening the way to the
asymptotic solution of the game. Similar definitions obviously
hold for the a and b versions of the game.

A. Optimum FA strategy

We start the study of the asymptotic equilibrium point of
the SI lrtr,c game determining the optimum decision region
for the FA. In doing so we will use an analysis similar to
that carried out in [9] to analyze a statistical problem with
observed statistics (the main difference between our analysis
and [9] is the presence of the AD, i.e. the game-theoretic
nature of our problem). The derivation of the optimum strategy
for the FA passes through the definition of the generalized
log-likelihood ratio function h(xn, tN(n)). Given the test and
training sequences xn and tN(n), we define the generalized
log-likelihood ratio function as ([9], [10])3:

h(xn, tN ) = D(Pxn ||PrN+n) +
N

n
D(PtN ||PrN+n), (9)

where PrN+n indicates the empirical pmf of the sequence
rN+n, obtained by concatenating tN and xn, i.e.

rN+n =

{
ti i ≤ N
xi−N N < i ≤ n+N

. (10)

Observing that h(xn, tN ) depends on the test and the training
sequences only through their empirical pmf, we can use the
notation h(Pxn , PtN ). The derivation of the Nash equilibrium
for the SI lrtr,c game passes through the following lemmas.

Lemma 1. For any PX we have:

nD(Pxn ||Prn+N )+ND(PtN ||Prn+N ) ≤ (11)
nD(Pxn ||PX) +ND(PtN ||PX),

with equality holding only if PX = Prn+N .

The proof of Lemma 1 is given in the appendix.

Lemma 2. Let Λ∗0 be defined as follows:

Λ∗0=

{
(Pxn , PtN ) : h(Pxn , PtN )<λ−|X | log(n+ 1)(N + 1)

n

}
(12)

with
lim
n→∞

log(N(n) + 1)

n
= 0, (13)

3To simplify the notation sometimes we omit the dependence of N on n.

and let Λ∗1 be the corresponding rejection region. Then:
1) maxPX

PX{(xn, tN(n)) /∈ Λ∗0} ≤ 2−n(λ−δn), where δn
is a sequence of positive numbers such that δn → 0 for
n→∞,

2) ∀Λ0 ∈ SFA defined as in (6), we have Λ1 ⊆ Λ∗1.

Proof: Being Λ∗0 (and Λ∗1) a union of pairs of types (i.e.
unions of cartesian products of type classes), we have:

max
PX

Pfp = max
PX∈C

PX{(xn, tN ) /∈ Λ∗0} (14)

= max
PX∈C

∑
(xn,tN )∈Λ∗

1

PX(xn, tN )

= max
PX∈C

∑
(Pxn ,PtN )∈Λ∗

1

PX(T (Pxn)× T (PtN )).

For the class of discrete memoryless sources, the number of
types with denominators n and N is bounded by (n + 1)|X|

and (N + 1)|X| respectively [5], so we can write:

max
PX

Pfp ≤ max
PX

max
(Pxn ,PtN )∈Λ∗

1

(15)

[(n+ 1)|X |(N + 1)|X |PX(T (Pxn)× T (PtN ))]

≤ (n+ 1)|X |(N + 1)|X |·
max
PX

max
(Pxn ,PtN )∈Λ∗

1

2−n[D(Pxn ||PX)+ N
n D(PtN ||PX)],

where for the last inequality we have exploited the indepen-
dence of xn and tN and the property of types according
to which for any sequence xn we have PX(T (Pxn)) ≤
2−nD(Pxn ||PX) ([5]). By exploiting Lemma 1, we can write:

max
PX

Pfp ≤ (n+ 1)|X |(N + 1)|X | (16)

max
(Pxn ,PtN )∈Λ∗

1

2−n[D(Pxn ||PrN+n )+ N
n D(PtN ||PrN+n )]

≤ (n+ 1)|X |(N + 1)|X | 2−n(λ−|X| log(n+1)(N+1)
n )

= 2−n(λ−2|X | log(n+1)(N+1)
n ),

where the last inequality derives from the definition of Λ∗0.
Together with (13), equation (16) proves the first part of the
lemma with δn = 2|X | log(n+1)(N+1)

n .
Let now (xn, tN ) be a generic pair of sequences contained

in Λ1 (with Λ0 ∈ SFA), due to the limited resources assump-
tion the cartesian product between T (Pxn) and T (PtN ) will
be entirely contained in Λ1. Then we have:

2−λn ≥ max
PX

PX(Λ1) (17)

(a)

≥ max
PX

PX(T (Pxn)× T (PtN ))

(b)

≥ max
PX

2−[D(Pxn ||PX)]+ N
n D(PtN ||PX)

(n+ 1)|X |(N + 1)|X |

(c)
=

2−[D(Pxn ||PrN+n)]+ N
n D(PtN ||PrN+n )

(n+ 1)|X |(N + 1)|X |
,

where (a) is due to the limited resources assumption, (b)
follows from the independence of xn and tN and the lower
bound on the probability of a pair of type classes [5], and (c)
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derives from Lemma 1. By taking the logarithm of both sides
we have that (xn, tN ) ∈ Λ∗1, thus completing the proof.

The first part of the lemma shows that, at least asymp-
totically, Λ∗0 belongs to SFA, while the second part implies
the optimality of Λ∗0. The most important consequence of
Lemma 2 is that the optimum strategy of the FA is univocally
determined by the false positive constraint. This solves the
apparent problem that we pointed out when defining the payoff
of the game, namely that the payoff depends on PX and
PY and hence it is not fully known to the FA. Another
interesting result is that the optimum strategy of the FA
does not depend on the strategy chosen by the AD, thus
considerably simplifying the determination of the equilibrium
point of the game. As a matter of fact, since the optimum Λ∗0
is fixed, the AD can choose his strategy by relying on the
knowledge of Λ∗0. A last consequence of Lemma 2 is that Λ∗0
is the optimum FA strategy even for versions a and b of the
SI lrtr game.

B. Asymptotic Nash equilibrium

To determine the Nash equilibrium of the SI lrtr,c game, we
start by deriving the optimum strategy for the AD. This is
quite an easy task if we observe that the goal of the AD is
to take a sequence yn drawn from Y and modify it in such a
way that:

h(zn, tN ) < λ− |X | log(n+ 1)(N + 1)

n
, (18)

with d(yn, zn) ≤ nD. The optimum attacking strategy, then,
can be expressed as a minimization problem, i.e.:

f∗(yn, tN ) = arg min
zn:d(yn,zn)≤nD

h(zn, tN ). (19)

Note that to implement this strategy the AD needs to know
tN , i.e. equation (19) determines the optimum strategy only
for version c of the game. Having determined the optimum
strategies for the FA and the AD, we can state the fundamental
result of this paper, summarized in the following theorem.

Theorem 1. The profile (Λ∗0, f
∗) defined by Lemma 2 and

equation (19) is an asymptotic Nash equilibrium point for the
SI lrtr,c game.

Proof: We have to prove that:

u(Λ∗0, f
∗) ≥ u(Λ0, f

∗) ∀Λ0 ∈ SFA (20)

−u(Λ∗0, f
∗) ≥ u(Λ∗0, f) ∀f ∈ SAD. (21)

The first relation holds because of Lemma 2, while the second
derives from the optimality of f∗ when Λ∗0 is fixed, hence
proving the theorem.

V. DISCUSSION AND COMPARISON WITH THE SI lrks GAME.

In this section we give an intuitive meaning to the results
proved so far. To do so we will compare the optimum strategies
of the SI lrtr,∗ game to those of the SI lrks, i.e a version of the
game in which the FA and the AD know the pmf PX ruling
the emission of symbols from the source X . In [2] it is shown

Pxn

PX

D(Pxn||PX)

PtN

PrN+n

Pxn

D(Pxn||PrN+n)

D(PtN ||PrN+n)

Fig. 1. Geometric interpretation of the optimum FA strategies for the SIlrks
(left) and the SIlrtr,∗ (right) games.

that the optimum strategy for the FA relies on the divergence
between the empirical pmf of the sequence xn and PX , i.e.:

Λ∗0,ks =

{
Pxn ∈ Pn : D(Pxn ||PX) < λ− |X | log(n+ 1)

n

}
.

(22)
One may wonder why the optimum FA strategy for the SI lrtr,∗
game does not correspond to the comparison of the empirical
divergence between xn and that of the test sequence. The
reason for the necessity of adopting the more complicated
strategy set by Lemma 2 is that in the current version of the
game, the FA must ensure that the false positive probability
is below the desired threshold for all possible sources in C.
To do so, he has to estimate the pmf that better explains the
evidence provided by both xn and tN . In other words he has
to find the pmf under which the probability of observing both
the sequences xn and tN is maximum. This is exactly the
role of Prn+N (see equation (A3)), with the generalized log-
likelihood ratio corresponding to the log of the (asymptotic)
probability of observing xn and tN under Prn+N (a geometri-
cal interpretation of the decision strategies for the two versions
of the game is given in Fig. 1).

Another interesting observation regards the optimum strat-
egy of the AD. As a matter of fact, the functions h(Pxn , PtN )
and D(Pxn ||PtN ) share a similar behavior: both are positive
and convex functions with the absolute minimum achieved
when Pxn = PtN , so one may be tempted to think that from
the AD’s point of view minimizing D(Pxn ||PtN ) is equivalent
to minimizing h(Pxn , PtN ). While this is the case in some sit-
uations, e.g. for binary sources or when the absolute minimum
can be reached, in general the two minimization problems
yield different solutions. It is possible, and quite easy in fact,
to find two pmf’s P ′xn and P ′′xn for which D(P ′xn ||PtN ) >
D(P ′′xn ||PtN ), while h(P ′xn , PtN ) < h(P ′′xn , PtN ).

Our final comment regards the comparison of the payoff
at the equilibrium for the SI lrtr,c and the SI lrks games. Let us
consider the two optimal acceptance regions, that for sake of
clarity we will indicate with Λ∗0,ks and Λ∗0,tr. The comparison
between Λ∗0,ks and Λ∗0,tr is not straightforward since the
former depends only on Pxn (for a given PX ) while the latter
depends both on Pxn and PtN . In order to ease the comparison
we assume that PX ∈ Pn and that PtN is also fixed and
equal to PX . We can show that under this assumption, and
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for large n, we have Λ∗0,ks ⊆ Λ∗0,tr. To do so we note that
with some algebra the log-likelihood ratio can be rewritten in
the following form:

h(Pxn , PtN ) = D(Pxn ||PtN )− N + n

n
D(Prn+N ||PtN ). (23)

From the above equation we see that h(Pxn , PtN ) ≤
D(Pxn ||PtN ), hence for PtN = PX and n large enough4, the
acceptance region for the game with training data contains
that of the game with known sources. As a consequence, it is
easier for the AD to bring a sequence yn generated by a source
Y within Λ∗0,tr and fool the FA. Version c of the SI lrtr game
is then more favorable to the attacker than the SI lrks game.
While, the above argument holds only when PtN = PX , we
argue that this is the case even in a general setting. We leave
a rigorous proof of the above property to a subsequent work.

VI. CONCLUSIONS

Following the definition of the SIks game, extensively
treated in [2], [4], we took a further step towards the con-
struction of a theoretical background for multimedia forensics.
The source identification game with training data, in fact, is
significantly closer to real applications than the game with
know sources. The solution of version c of the game provided
interesting insights into the optimal strategies for the FA and
the AD, that somewhat differ from those that one would have
obtained by simply extending the optimum strategies of the
known sources case. Additional, even more interesting, results
are likely to derive from the solution of versions a and b of
the SItr game, which will be the goal of our future work,
together with the analysis of the optimal strategies and the
resulting payoff for specific cases of particular interest (e.g.
for Bernoulli sources). Other interesting directions for future
research include the analysis of a version of the game in which
the test sequence xn may have been generated by a (limited)
number of sources each known through training sequences.
The extensions of the analysis to sources with memory and
continuous sources is also worth attention.
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APPENDIX

A. Proof of Lemma 1

We start by remembering that for a memoryless source we
have [5]:

nD(Pxn ||PX) = − log(PX(xn))− nH(Pxn). (A1)

By applying the above property to the right-hand side of
equation (11), we obtain:

nD(Pxn ||PX) +ND(PtN ||PX) = (A2)

− nH(Pxn)−NH(PtN )− logPX(rn+N ),

where we have used the memoryless nature of PX due to
which PX(rn+N ) = PX(tN ) · PX(xn). For any PX ∈ C we
also have5:

PX(rn+N ) ≤
∏
a∈X

Prn+N (a)Nrn+N (a), (A3)

where Nrn+N (a) indicates the number of times that symbol
a appears in rn+N , and where equality holds if PX(a) =
Prn+N (a) for all a. By applying the log function we have:

logPX(rn+N ) ≤ log
∏
a∈X

Prn+N (a)Nrn+N (a) (A4)

= log
∏
a∈X

Prn+N (a)(Nxn (a)+NtN (a))

=
∑
a∈X

Nxn(a) logPrn+N (a)+∑
a∈X

NtN (a) logPrn+N (a).

By inserting the above inequality in (A2), and by using the
definition of empirical KL divergence we obtain:

nD(Pxn ||PX) +ND(PtN ||PX) (A5)

≥
∑
a∈X

Nxn(a) log
Pxn(a)

Prn+N (a)
+
∑
a∈X

NtN (a) log
PtN (a)

Prn+N (a)

= nD(Pxn ||Prn+N ) +ND(PtN ||Prn+N ),

where the equality holds if PX = Prn+N , thus completing the
proof.

5Relationship (A3) can be easily proved by resorting to Jensen’s inequality.
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