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ABSTRACT

Detection of median filtering is an important task in image
forensics, since this operator is frequently used both for be-
nign and malicious processing. In this paper we introduce a
counter-forensic technique that allows to conceal traces left
by median filtering while preserving the quality of the pro-
cessed image. The work aims to hide traces searched by state-
of-the-art tools, and does not require JPEG compression of the
image to hide traces.

Index Terms— Image forensic, counter-forensic, anti-
forensic, median filtering detection.

1. INTRODUCTION

In the last years a great effort has been put into the devel-
opment of digital image forensics techniques, which allow
to investigate the origin and integrity of a given image in
a blind fashion. These techniques are usually based on the
assumption that the acquisition and editing processes leave
some (usually invisible) fingerprints into the image, that can
be leveraged to expose tampering or to infer some information
about the originating device. In its beginnings, image foren-
sics research was mainly focused on detecting “malicious”
editing undergone by images: this includes cut&paste attacks
(where two or more images are spliced), copy-move attacks
(where a portion of the image is replicated to another loca-
tion), and so on. More recently, however, also the detection
of benign editing (such denoising filtering, rotating, resizing)
has come to interest, since these processes affect the history
of the data as well. Furthermore, benign filtering can be used
after a malicious processing in order to conceal the traces in-
troduced during the first step.

Along with research on image forensic methods, counter-
forensics has emerged as the dual discipline: its goal is to
devise processing techniques that allow to edit a digital im-
age without leaving in it those fingerprints that would be re-
vealed by a forensic algorithm (see [1] for a thorough def-
inition). In this work we propose a generalizable counter-
forensic approach that, leveraging on the knowledge of the
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to-be-countered forensic technique, moves the processed im-
age to a similar (i.e. constrained to have a low distortion)
one that no longer exposes the fingerprint searched by the de-
tector. We focus on the case of median filtering footprints
concealment. Median filtering has an overwhelming impor-
tance in image processing: it is known to be a good denoising
filter (excellent for salt-and-pepper noise removal) as well as
a smoothing operator that does not introduce new values in
the signal. To the best of our knowledge, three methods have
been proposed in the literature for detecting median filtering,
that will be briefly described in the following. Among these,
the most recent one [2] yields the best performance. The pa-
per is structured as follows: Section 2 introduces the currently
available median filtering detection tools [2] [3] [4]; Section
3 defines the proposed counter-forensic method and finally in
Section 4 we validate our approach. We focus on removing
footprints defined in [2], and then show that this attack also
hinders the performance of the detectors in [3] and [4].

2. DETECTION OF MEDIAN FILTERING

Median filtering detection is considered an important task in
image forensics, but is also known to be a hard problem be-
cause of the non-linear nature of the median operator, which
limits the usefulness of common statistical tools. Neverthe-
less, some characteristic footprints left by median filtering
have been studied and exploited in the literature. We briefly
describe each one of the proposed techniques, assuming that
the analyzed image is grayscale and has not been JPEG com-
pressed after median filtering (this would facilitate footprints
concealment).

2.1. Kirchner et al. method

Kirchner et al [4] propose a simple yet effective detector
based on the “streaking artifact” that characterizes median
filtered images: the basic idea is that the probability of two
adjacent pixels being equal is greatly increased by median
filtering. The authors therefore compute the difference D
between the image and a 1-pixel shifted version of it, and cal-
culate the histogram hD of this difference. It turns out that,
in median filtered images, the ratio between the bin centered
in 0, h0D and the adjacent ones, h1D, h−1D is far higher than it



is in natural images. Therefore, the value

% = h0D/h
1
D

that is expected to be approximatevely 1 for natural images,
will be much greater for filtered ones and can be considered
a good discriminating feature. Since classification based on
% is less reliable on highly saturated images, this feature is
evaluated block-wise, compensating for this effect.

2.2. Cao et al. method

A similar consideration leads the work by Cao et al [3]. The
authors observe that, in presence of median filtering, it is
much more likely that the difference between two adjacent
pixel is exactly zero. To explore the presence of this footprint,
they compute and binarize the row-based first order difference
∆Ir as follows:

∆Ir(i, j) =

{
1 if I(i+ 1, j)− I(i, j) = 0
0 if I(i+ 1, j)− I(i, j) 6= 0

(1)

where I is the image under analysis. In the same way, they
also compute column-based difference ∆Ic(i, j) for each
pixel. Obviously highly textured regions will rarely show
equal adjacent pixels, independently of median filtering, and
this must be taken into account: a map V (i, j) is computed
evaluating for each pixel the variance of the surrounding re-
gion. Using the first order difference and the variance map,
the actual features of the scheme are computed as:

fr =

∑
i,j ∆Ir(i, j) · V (i, j)∑

i,j V (i, j)

the same is done for column differences (substituing ∆Ic(i, j)
to ∆Ir(i, j) in 2.2) yielding fc. The final scalar feature ρ is
obtained as ρ = [fr, fc] • [ 1√

2
, 1√

2
], where • denotes the dot

product.

2.3. Yuan method

The last, more recent, approach from Yuan [2] is far more
elaborate. Since median is an order operator, its block-wise
application to images will obviously affect the ordering of
pixels within each block. Furthermore, since the filter is ap-
plied to overlapping blocks, some kind of dependencies be-
tween neighboring blocks is expected: the authors state that
this local dependence is an artifact that characterizes median
filtering. To account for these two footprints, a set of five
features is extracted from s × s non overlapping blocks; we
limit ourself to give an informal description of each of them,
since the formal definition would be notationally heavy. All
features compute a value for every pixel in the block (so each
block is represented by five 1 × (s × s) arrays) and their av-
erage value among all blocks is considered.

• Distribution of block median (DBM), denoted with
hDBM : accounts for the fact that, in median-filtered
images, gray levels in a small block tend to be equal to
the block median;
• Occurrence of the Block-Center Gray Level (OBC), de-

noted with hOBC : accounts for the fact that the gray
level of the block center should occur more frequently
in the block after median filtering;
• Quantity of Gray Levels in a Block (QGL), denoted

with hQGL: since the median filter reduces noise with-
out introducing new gray levels, it is likely that after fil-
tering the number of different gray levels in each block
is decreased.

While above features do not consider the sorting of gray levels
in the block, the following take it into account:

• Distribution of the Block-Center Gray Level in the
Sorted Gray Levels (DBC), denoted with hDBC : con-
siders the frequency of the block-center gray level in
the sorted gray levels;
• First Occurrence of the Block-Center Gray Level in the

Sorted Gray Levels (FBC), denoted with hFBC : sim-
ply considers the first occurrence of the block-center
gray level in sorted gray level.

Having defined these features, Yuan proposes an effective
way to merge them together into a single scalar value f , and
this fusion aims to best exploit the discriminant properties of
each of the five features:

f =
hDBM
5 hOBC

2 hQGL
6 (hDBC

3 + hDBC
7 − hDBC

2 − hDBC
8 )hFBC

3

hOBC
1 hQGL

9 (hDBC
2 + hDBC

8 − hDBC
1 − hDBC

9 )hFBC
2 hFBC

9
(2)

Experimental evidence shows that values for f near to the
unit are typical of non-filtered images, while median filtered
ones yield values greater by three order of magnitude. Median
filtering detection is then obtained by simply thresholding f .

3. COUNTER-FORENSIC FOR MEDIAN FILTERING

In this section we present the proposed counter-forensic tech-
nique, that aims at removing traces left by median filtering
while preserving a high fidelity of the image. We believe
that the forensic detection proposed by Yuan is more elab-
orate then the previously existing detection methods: for this
reason, we initially focus in removing traces searched in [2],
and then show that this also hinders the performances of tools
in [3] and [4].

3.1. Problem formulation

The basic idea of our counter-forensic technique is to auto-
matically search a processing operation p (among a class P )
that, starting from a median filtered image (which we will
call “processed”), produces another image that is similar to



the processed one while not showing characteristic traces of
median filtering. This can be thought of as an optimization
problem, where we want to maximize the fidelity between the
processed image and the counter-processed one while remov-
ing footprints searched by the forensic detector.

Formally, we start from a median filtered image M , from
which the algorithm by Yuan extracts the feature fM (com-
puted as in eq. 2). Therefore, we define a cost function
c : R → R that maps each value of the feature f to a cost,
which grows as f increases. Then, given M , we are looking
for a processing p ∈ P that produces an image W = p(M)
whose extracted feature fW has a cost c(fW ) as low as pos-
sible, while introducing as low distortion between M and W
as possible. We choose PSNR as a measure of similarity, and
define the following optimization problem:

min
p

[c(fW )− PSNR(M,W )] (3)

subject to

p ∈ P,W = p(M)

We limit the class P of admissible processing to linear con-
volution filters of size 3×3, without any constraint on their
components. Notice that, in another formulation, we may set
a constraint on the distortion induced by filtering, forcing it to
be under a threshold, instead of embedding this measure into
the objective function. We choose the solution in eq. (3) be-
cause it significantly simplifies the optimization problem; the
attacker will check a-posteriori if the obtained filter yields an
image that satisfies the quality requirements and, if it does not,
he may run another optimization choosing a different starting
point.

Instead of weighting the two components of the objec-
tive function with scalars, we directly choose the function c
in such a way that a good tradeoff between footprint conceal-
ment and quality is retained; since very small displacements
of f from typical values for unfiltered images allow the de-
tector to discriminate well, we need a cost that grows rapidly
when f moves away from a desired value f0. Therefore, we
choose an exponential cost function c(f):

c(f) = exp(f − f0) (4)

and determine the value for f0 experimentally. We found that
taking f0 = 2.2 yields good results.

3.2. Optimization algorithm and strategy

The objective function in eq. 3 is strongly non-linear, inde-
pendently on how the cost function c(·) is chosen and on how
the PSNR is evaluated (logarithmic or linear scale). Actually,
the non-linearity is induced by the way f is defined; looking
back at Section 2.3 it is clear that features are discontinuous:
some of them involve counting the number of occurrences or

the number of different gray levels within each block. Look-
ing at their formal definition in [2] this is definitely confirmed
by the extensive use of the “equality function” δ. Therefore,
we cannot even attempt to calculate any derivative of the ob-
jective function, and must consequently exclude from eligible
optimization algorithms those based on gradient computation.

However, since the problem has been formulated without
constraints other than fixing a class of processing, we can use
the Nelder-Mead optmization algorithm [5] to search for a so-
lution to the problem in eq. 3. The Nelder-Mead algorithm
uses an iterative approach that only requires evaluations of
the objective function: given a function of n unknowns and
a starting point, the algorithm forms an (n − 1)-dimensional
simplex whose vertices are slight perturbations of the starting
point, then it evaluates the function over each one of these ver-
tices and moves the worst one to another point. The simplex
will keep moving along the direction where function evalu-
ates to lower values, and once the final minimum is inside the
simplex, it will contract on it. This algorithm proves to be
effective and computationally compact (obviously, the com-
plexity of the objective function plays a key role in determin-
ing the optimization time), although its convergency has been
proved only for a limited number of variables and classes of
functions [6].

As often happens in optimization, choosing a good start-
ing point is usually as important as not easy to do. In our
specific case, we must specify a linear 3× 3 filter whose ele-
ments will form the nine-dimensional argument of the objec-
tive function. On the other hand, we can reasonably expect
the optimal filter not to be very dissimilar for different im-
ages. Furthermore, since median filtering has a smoothing
effect over the signal, we argue that a sharpening filter would
probably delete median footprints; of course, it would also
revert (to some extent) the desired effect, so it cannot be an
acceptable solution as it is. Based on these considerations, we
use this approach to practically find a counter-filtered image:

1. Select a set of “estimation images”;
2. Solve the optimization problem in 3, using a standard

sharpening filter as starting point, for all estimation im-
ages;

3. Choose the experiment in which the best objective
value was obtained, and use that filter as starting point
for all other images.

Notice that these steps are not providing a filter that is to be
used for all images: they give a hopefully good starting-point
for the ad-hoc optimization, that has to be run separately for
each different image. As a matter of fact, this last optimiza-
tion will probably just “fine-tune” the given filter to yield the
best tradeoff between distortion and footprint concealment
over the specific image.
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ROC curves for the three forensic methods
evaluated on post−sharpened images

 

 

[1] on post−sharp., AUC: 0.706
[2] on post−sharp., AUC: 0.525
[3] on post−sharp., AUC: 0.923

Fig. 1. ROC curves for the three median filtering detection
methods evaluated on images of the UCID dataset, along with
the resulting Area Under Curve (AUC). Images have been
3×3 median-filtered and post-sharpened. Performances of
detectors on simply median-filtered images are almost ideal
(see table 1) and therefore are not reported.

4. EXPERIMENTAL RESULTS

In this section we test the proposed counter-forensic tech-
nique over the well known UCID [7] dataset of images, which
has also been used in all the cited works about median filter-
ing detection. As stated in previous sections, we focused the
design of the counter-forensic filter to conceal the “overall”
footprint f defined in Section 2.3, eq. 2; however, we test the
performances of all the described detector over both median-
filtered and counter-filtered images. First of all, let us show
that using a sharpening filter over the image is a good instru-
ment to delete traces: we apply median filtering to the whole
UCID dataset, then we filter each image with the following
sharpening filter:−0.1667 −0.6667 −0.1667

−0.6667 4.3333 −0.6667
−0.1667 −0.6667 −0.1667

 (5)

and plot ROC curves for the three detection algorithms (figure
1): it is clear that this filtering actually hinders significantly
the performance of detection algorithms.

However, sharpened images are not good for the foren-
sic adversary: the mean PSNR between median- and counter-
filtered images is 23.3 dB on the UCID dataset. Using the
Structural Similarity perceptual metric [8] to evaluate quality,
a significant degradation is confirmed (average is 0.81). This
motivates our search for a more cautious filtering: we select
the first 40 images from the UCID dataset and solve the opti-
mization problem in eq. 3 on each of them, using the filter in
eq. 5 as starting point. The best result obtained is an image
with f = 0.4643 and PSNR = 31.65 (SSIM = 0.97), corre-

Method PSNR SSIM [1] AUC [2] AUC [3] AUC
None - 1 0.972 1.000 0.999

Sharpen. 23.3 0.815 0.706 0.525 0.923
Proposed 30.77 0.940 0.709 0.679 0.924

Table 1. Mean values for PSNR (in dB) and SSIM between
median- and counter- filtered images (UCID dataset), and
AUC obtained with the three forensic detectors.

sponding to the following filter:−0.1447 −0.1253 0.2541
0.2557 1.2685 −0.4993
−0.1715 −0.2050 0.3660

 (6)

It should be noted that, although not being constrained to do
so, the filter in 6 yields almost unitary sum (0.998). This
is not surprising (maximization of PSNR strongly favors this
kind of filters) but supports our choice of introducing the dis-
tortion measure in the objective function of the optimization
problem and not as a constraint. We also point out that op-
timization leads to a filter that is not symmetric: this charac-
teristic contributes to the disruption of traces introduced by
filtering, and therefore should not be eliminated by imposing
additional constraints. For each image in the dataset, we
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ROC curves for the three forensic methods
evaluated on counter−filtered images

 

 

[1] on counter−filt., AUC: 0.709
[2] on counter−filt., AUC: 0.679
[3] on counter−filt, AUC: 0.924

Fig. 2. ROC curves for the three median filtering detection
methods on counter-filtered images. Performance of detectors
on simply median-filtered images are almost ideal (table 1).

use the filter in 6 as a starting point for the Nelder-Mead al-
gorithm. This time, we obtain values for PSNR and SSIM
reported in table 1, and ROC curves reported in figure 2: we
see that counter-filtered images are a good approximation of
median filtered ones (especially from a perceptual point of
view) and that performances of forensic detection methods
are still seriously hindered, even though the detector proposed
in [4] retains an acceptable discrimination rate. By way of
example, we report in fig. 3 one median filtered image and



Median filtered Counter-filtered Difference (logarithm)

Fig. 3. An example of median filtered image and its counter-filtered version. As visible in the difference (logarithm is taken to
enhance visibility) between the two, filtering mostly affects regions with higher variance, resulting in a perceptual high fidelity.

its counter-filtered version the perceptual fidelity is satisfac-
tory, while fingerprints have been removed. Although only
results from experiments with 3×3 median filtering are re-
ported here, the method yields equivalent performances even
in concealing 5× 5 median filtering. This is an important fact
because, being the Nelder-Mead optimization computation-
ally heavy, the optimization of big kernels would be rather
problematic. On the other hand, future work may explore the
possibility of reducing the search space by imposing more
constraints to the problem, so to mitigate its complexity.

As a last consideration, it may be objected that the pro-
posed counter-forensic approach is not useful when median
filtering was meant to remove traces of resampling (as sug-
gested in [2]), since applying the linear counter-filtering
would reintroduce correlations between neighboring pixels.
While this is true in principle, median filtering does not seem
to be the best way to hide resampling, since a slight JPEG
compression would suffice to disrupt correlations [9].

5. CONCLUSION

We propose a simple yet effective method for concealing
traces of median filtering in uncompressed digital images.
The method exploits knowledge of features used by existing
techniques for median filtering detection [2] [3] [4]: an op-
timization problem is devised that, for a given image, yields
a linear filter that allows to remove footprints while keeping
the fidelity between the processed image and the counter-
processed one as high as possible. Experiments show that
performance of detectors in [2] and [3] are seriously hindered
by filtering with such a kernel, while the detector in [4] is
still affected but in a slighter way. Future work may consider
the use of composed objective functions for the optimization
problem, so to obtain a filter that simultaneously conceal
traces searched by different detectors.

6. REFERENCES

[1] Matthias Kirchner and Rainer Bhme, “Tamper hiding:
Defeating image forensics.,” in Information Hiding’07,
Jun. 2007, pp. 326–341.

[2] H. Yuan, “Blind forensics of median filtering in digi-
tal images,” Information Forensics and Security, IEEE
Transactions on, vol. 6, no. 4, pp. 1335 –1345, Dec. 2011.

[3] G. Cao, Y. Zhao, R. Ni, L. Yu, and H. Tian, “Forensic
detection of median filtering in digital images,” in Multi-
media and Expo (ICME), 2010, Jul. 2010, pp. 89 –94.

[4] M. Kirchner and J. Fridrich, “On detection of median
filtering in digital images,” in SPIE Conference Series,
Feb 2010, vol. 7541 of SPIE Conference Series.

[5] J. A. Nelder and R. Mead, “A simplex method for func-
tion minimization,” Computer Journal, vol. 7, pp. 308–
313, 1965.

[6] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E.
Wright, “Convergence properties of the Nelder-Mead
simplex method in low dimensions,” SIAM Journal on
Optimization, vol. 9, pp. 112–147, May 1999.

[7] G. Schaefer and M. Stich, “UCID: an uncompressed
color image database,” in SPIE Conference Series,
M. M. Yeung, R. W. Lienhart, & C.-S. Li, Ed., Dec 2003,
vol. 5307, pp. 472–480.

[8] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli,
“Image quality assessment: from error visibility to struc-
tural similarity,” Image Processing, IEEE Transactions
on, vol. 13, no. 4, pp. 600–612, Apr. 2004.

[9] A.C. Popescu and H. Farid, “Exposing digital forgeries
by detecting traces of resampling,” Signal Processing,
IEEE Transactions on, vol. 53, no. 2, pp. 758 – 767, Feb.
2005.


