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ABSTRACT

Biometric-based access control is receiving increasing attention due
to its security and ease-of-use. However, concerns are often raised
regarding the protection of the privacy of enrolled users. Signal pro-
cessing in the encrypted domain has been proposed as a viable so-
lution to protect biometric templates and the privacy of the users.
In particular, several solutions have been proposed to protect the pri-
vacy of the biometric probe during the authentication process. In this
paper we focus on privacy-preserving iris-based authentication. The
main innovations compared to the prior art include: i) an iris mask-
ing technique that simplifies the operations on the encrypted data
without sacrificing the recognition rate; ii) the adoption of a match-
ing protocol based only on garbled circuits which offers longer term
security over existing solutions based on homomorphic encryption
or hybrid techniques. The computational and communication com-
plexity of the on-line phase of the proposed protocol is extremely
low, thus opening the way to its exploitation in practical applica-
tions.

Index Terms— Private Iriscode Matching, Garbled Circuit,
Biometric Authentication

1. INTRODUCTION

Due to their immutable and highly-discriminative characteristic, bio-
metric signals such as faces, iris, and fingerprints are widely em-
ployed in access control system to authorize the users’ membership.
However, the widespread deployment of biometric access control
system has raised serious concerns about the leakage of the indi-
vidual’s privacy. Since the biometrical signals are unique to each
individual, the compromise of biometric signals in one system will
directly endanger the security of other systems using the same bio-
metric signals. To mitigate the concerns on the loss of privacy, it is
imperative to process the biometric data in a privacy-preserving way.

One approach to protect the privacy of both the biometric server
and the probe owner is to treat the matching process as an instance
of Secure Function Evaluation (SFE) which guarantees the privacy
of both the biometric gallery and the probe. The two prevailing ap-
proaches of implementing SFE are to use Garbled Circuits (GC) [1]
and Homomorphic Encryption (HE) [2]. GC provides a generic im-
plementation of any binary function by having one party prepared an
encrypted boolean circuit, and another party obliviously evaluated
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the circuit without access to intermediate values. HE is an asymmet-
ric public-key cipher that allows certain arithmetic operations such
as addition to be directly performed on the encrypted data.

In this paper, we focus on using SFE to implement the iriscode
matching process as described in [3]. The matching between two
binary iriscodes is based on a combination of hamming distance and
iris masks that remove erroneous parts of the codes. A customized
SFE of iriscode was first proposed in [4] which is based on Paillier
HE [5]. While HE is very efficient for large integer fields, iriscode
matching consists of mostly binary operations and is conceptually
more suitable for GC. Blanton et al. proposed a hybrid approach of
GC and HE for iriscode and achieved a more efficient implemen-
tation [6]. Recent research efforts have significantly improve the
efficiency of GC [7, 8]. Moreover, GC is likely to become a more ef-
ficient alternative than HE as GC theory relies almost exclusively on
symmetric encryption and HE on asymmetric encryption. The for-
mer is characterized by shorter security parameters, which become
more pronounced when we pass from short term to medium term
and long term security [9]. As such, it is attractive to develop the
iriscode matching by using only GC. In this paper, we demonstrate a
computationally efficient GC-based iriscode matching algorithm. A
novel contribution is the adoption of a simplified masking technique
for iriscode which significantly reduces the complexity of the circuit.

The rest of the paper is organized as follows: Section 2 presents
the overall design of a GC-based private iriscode matching sys-
tem. The impact on privacy and efficiency of mask simplification in
iriscode matching is explained in Section 3. Experiment results and
discussions are presented in Section 4. We conclude this paper with
prospect for the future work in Section 5.

2. GC-BASED IRISCODE MATCHING

In our proposed system, the biometric server, Bob, has an iris gallery
which stores the iris features {X1, . . . , XN} of N members. Xi

is a binary vector denoted as (xi1, . . . , xin). The user, Alice, pro-
vides a probe q = (q1, . . . , qn) and evaluates the GC which pro-
duces a match if there exists at least an i ∈ {1, . . . , N} such that
d(q,Xi) < ϵ for a similarity threshold ϵ. d(q,Xi) is a modified
Hamming Distance (HD) defined below:

d(q,Xi) :=
D(q,Xi)

M(q,Xi)
=

∥ (q ⊗Xi) ∩maskq ∩maskXi ∥
∥ maskq ∩maskXi ∥

(1)
In (1), ⊗ denotes XOR, ∩ AND, and ∥ · ∥ the norm of the binary
vector. maskq and maskXi are the corresponding binary masks
that zero out the unusable portion of the irises due to occlusion by
eyelids and eyelash, specular refections, boundary artifacts of lenses,
or poor signal-to-noise ratio.



We adopt the typical semi-honest adversary model in our system
that Alice and Bob will faithfully follow the protocol but are free to
extract additional information from the received data. Our proto-
cols guarantee that only the final matching result could be shared by
two parties. The biometric probe is protected from Bob and Bob’s
biometric database is kept secret from Alice under any polynomial-
time attacks. We will not consider the attacks on the misuse of the
biometric database, which is out of scope of this paper.

In our protocol, we use GC to implement the above framework.
The basic principle of GC is described in [1] and we summarize it as
follows: Bob first constructs a circuit for computing the final result
of iriscode matching. After Alice receives the circuit, she uses 1-out-
of-2 Oblivious Transfer (OT) [10] to input her probe and computes
the output of the circuit without learning any intermediate values.

Figure 1(a) shows the circuit for private iris-code matching be-
tween the probe q and the entry Xi in the database. It uses the basic
garbled circuits (XOR, AND, and MULtiplication), a COUNT cir-
cuit to compute the number of ones in its input [11], and a COM-
PARE circuit to check if the first input is lower than the second
input [12]. Considering that the division in (1) is a complicated
circuit [13] and multiplication involves fewer gates than division
[14], we roll the denominator M(q,Xi) of (1) into the similarity
threshold ϵ and test whether D(q,Xi) < ϵ · M(q,Xi) instead of
d(q,Xi) < ϵ. Since all computation should be computed over in-
tegers and ϵ is a decimal in the range [0, 1], we scale up ϵ, which
is multiplied by 2m, to an integer in the range [0, 2m] before taking
part in the multiplication circuit with M(q,Xi). Also, D(q,Xi) is
left shifted by m bits so the real COMPARE checks the result of
D(q,Xi) · 2m < (ϵ · 2m) ·M(q,Xi). In order to highlight the over-
all structure of the circuit, we hide the scale-up processing and use
D(q,Xi) and ϵ instead of D(q,Xi) · 2m and ϵ · 2m in Figure 1(a).

The output of the sub-circuit D(q,Xi) < ϵ · M(q,Xi) cannot
be known by Bob in plaintext, otherwise, Bob will know the exact
entry that matches the probe and reveal Alice’s identity. In Figure
1(b), we use OR gates to connect the outputs of all COMPARE sub-
circuits D(q,Xi) < ϵ · M(q,Xi) for i ∈ {1, . . . , N} together. In
the end, only the final output of all OR gates will be decoded and
shared by two parties.

Since XOR gates can be evaluated for free without communi-
cation between two parties [7], only non-XOR gates are considered
for complexity analysis. In the sub-circuit shown in Figure 1(a),
a substantial number of gates are devoted to incorporate individual
masks in the calculation – there are n AND gates used to compare
the two masks and n AND gates for the actual masking, where n is
the bit-length of the iriscode; a COUNT circuit is used to aggregate
the number of non-zero common mask bits and a MUL circuit to
combine the result with the similarity threshold. As such, any effort
to minimize or even eliminate the variability among masks, without
sacrificing the precision, can significantly reduce the complexity of
the circuit. We explore the feasibility of such an approach in the next
section.

3. SIMPLIFICATION OF IRIS MASKS

In this section, we will exploit the impact on privacy and efficiency
of mask simplification in iriscode matching. Each iris-code consists
of two parts: iris feature and mask. While the iris feature is confi-
dential data, it is unclear if the mask itself contains enough sensitive
information for identification. In [4], it is assumed that masks do not
disclose identify information and are treated as public information.
Such an approach can significantly reduce complexity as alluded in
Section 2. Let us first check whether such an assumption is valid.

(a) Sub-circuit: D(q,Xi) < ϵM(q,Xi)

(b) Whole Circuit

Fig. 1. Circuit design for private iriscode matching
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(a) Hamming Distances
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(b) Masks Overlap Sizes

Fig. 2. Mask distance distributions

3.1. Privacy and similarity among iris masks

First, we inspect the relationship between masks and iris similarity.
Li et al. have performed East-Asian/Caucasian classification based
on the investigation of eyelashes, which make up most of the masks
[15]. It has been shown that masks have inherent correlation, even
though they only include the part of eyelashes close to the irises and
cannot recover the original shape of the eyelashes. In this section,
we test a hypothesis that masks from the same individual are similar
to those from different individuals. If this hypothesis is accepted,
there is no identity information leaked through masks and thus can
be released to public.

We use CASIA-IrisV3-Lamp iris database for our similarity ex-
periment [16]. To ensure that we begin with a good quality set of
samples, we removes erroneous samples which cannot extract ac-
curate iriscode based on the Matlab feature generation code from
[17]. Finally, 3763 samples from 292 individuals are included in our
dataset. 28, 006 pairs between the same individuals and 7, 050, 197
pairs between different individuals are compared based on the nor-
malized hamming distance (HD).

Figure 2(a) shows the distribution of these two types of HDs. We
can easily find the distinct difference between the two distributions.



To further test if the difference between hamming distances from the
same and different individuals are statistically significant, we utilize
the distribution-free Wilcoxon Rank-Sum Test between these two
samples [18, Ch.15]. The sample from the same indivuduals’ HDs
are labeled as X and the sample from different indivuduals’ HDs as
Y . Let u1 and u2 be the averages of X and Y respectively. The
null hypotheses is H0 : u1 − u2 = 0 and the alternative hypothesis
is Ha : u1 − u2 ̸= 0. When the samples from X and from Y are
pooled into a combined sample of size m + n, these observations
are sorted from smallest (rank 1) to largest (rank m + n). Then the
sum of ranks of all samples from X is considered as our test statistic
W , i.e. W =

∑m
i=1 Ri where Ri is the rank for the i-th sample of

X . Due to the large sample size, the distribution of the test statistic
z = (W − µW )/σW can be approximated by a standard normal
distribution if H0 is true where

µW =
m(m+ n+ 1)

2
= 9.91× 1010

σ2
W =

mn(m+ n+ 1)

12
= 1.16× 1017

At the confident level of 99%, H0 is rejected if either z ≥ 2.58 or
z ≤ −2.58. In our experiments, W = 5.19 × 108 which implies
that z = −288.91. The null hypothesis is therefore rejected.

To further illustrate the difference, the distribution of mask over-
lap sizes, ∥maskx ∩masky∥, is shown in Figure 2(b). It shows
that masks from the same individuals have larger overlap than from
different individuals. This result can also be verified by Wilcoxon
Rank-Sum Test, which is omitted here as it is essentially the same
as the test of the HDs. Based on these two tests, we conclude that
masks have inter-correlation among each individual, and therefore,
should not be shared between Alice and Bob.

(a) Real masks from database

(b) Common mask

Fig. 3. Real masks and common mask

3.2. Common mask for all irises

Since the information of masks cannot be shared, we exploit a dif-
ferent approach to simplify the usage of masks. A typical mask con-
tains information about eyelashes, eyelids, specular reflections, or
other noise. Samples of masks from different individuals are shown
in Figure 3(a). We can observe that there are a great deal of similar-
ity among masks even from different individuals. Also, our earlier
experiments depicted in Figure 2(a) indicate that there could be up
to 50% bit difference even between masks from the same individual.
As such, it is conceivable to use a common mask to replace indi-
vidual masks without much loss in precision. As we have pointed
out earlier, the use of a common mask can significantly reduce the
complexity of our GC circuits. To test our hypothesis, we use the

(a) Real masks (b) Common mask

Fig. 4. HD distributions

following method to derive the common mask: first, we pre-align all
iriscodes in Bob’s database, both features and masks, to the position
which can get the minimum Hamming distance between every two
pairs of the same individual. The common iris mask is set to ’1’ at all
bit positions where the percentages of the pre-aligned masks being
’1’ at those positions exceed an empirically-determined threshold λ.
The common mask obtained from the CASIA iris database is shown
in Figure 3(b).

Figure 4 shows the distribution of HDs using both real masks
and the common mask. When ϵ = 0.41, False Accept Rate (FAR)
is 0.53% while False Reject Rate is 0.54% for the distribution com-
puted with real masks. The best FAR and FRR is 1.44% and 1.47%
at ϵ = 0.43 for the distribution with the common mask, based on set-
ting λ to 80%. We can see that the accuracy in the case of common
mask is reduced by less than 1%.

Assuming the common mask is known to both Bob and Alice,
the simplified GC sub-circuit for D(q,Xi) < ϵM(q,Xi) is shown
in Figure 5 and the whole circuit is the same as Figure 1(b). In Figure
5, we use MASK to denote the common mask and the blue-line block
to highlight the gates that can be pre-computed. MASK FILTER is a
circuit which only accepts the iriscodes to participant to the matching
processing with the set of corresponding masks. The performance
of GC-based private iriscode matching with the simplified mask is
demonstrated in Section 4.

Fig. 5. Simplified GC sub-circuit for D(q,Xi) < ϵM(q,Xi)

4. EXPERIMENTS

All our experiment are written in Java and run on an Intel Core2
Duo CPU E8400 @3.00GHz 3.00GHz with 8GB RAM on 64-bit



windows 7 Professional. We analyze the results using two sets of
iriscodes – the length of an iriscode is n = 2048-bit based on the
system by Daugman [3] and n = 9600-bit based on an open source
iris recognition system in [17]. Note that circuit construction, circuit
transmission and OT can be performed offline [10], we do not an-
alyze the precomputation for circuit construction and circuit trans-
mission since they are executed only once. We count the OT pre-
computation as the offline time since it needs to be done every time
when our protocol is implemented. The OT offline time is indepen-
dent of the size of biometric database but related to the length of the
iriscode, as shown in Table 1. Table 1 also lists the total amount
of non-XOR gates and runtime needed to implement the sub-circuit
to test if D(q,Xi) < ϵ · M(q,Xi), together to the total amount of
data transmitted during the online computation. The results are de-
rived by averaging the comparisons of 100 pairs of iriscodes in the
database.

The performance of the totally GC-based private iris-code
matching is quite efficient: when we adopt 80-bit security parameter,
it takes 563 ms to compare two 2048-bit iris-codes with private iris
features and masks. If the common mask is used, a speedup factor of
up to 8.7 or 65 ms per comparison can be achieved. This is compa-
rable to 14 ms as reported in [6] but with a pure GC implementation.

Considering that longer cyphertexts will be required to guaran-
tee security with the rapid development in computational capability,
we also list the processing time with the longer term security param-
eters (112 and 128 bits) in Table 1. The execution time is increased
by 11% for the individual masks and 23% for the common mask.
These are much smaller than the 62% increase for the hybrid pro-
tocol as reported in [19]. As such, our GC-only protocol is clearly
preferred in the cases when longer term security is needed.

Table 1. Number of non-XOR gates, runtime (ms) and bandwidth
(KB) based on different secure parameters (bit)

n-bit # non Sec OT Offline Online Time Overall Band-
-XOR Para. Time Alice Bob Time width

Individual Masks

2048 8349
80 19,767 40 108 563 571.5

112 20,260 49 113 606 754.0
128 20,425 61 109 608 845.7

9600 38654
80 90,744 102 508 2530 2655.0

112 93,441 106 539 2769 3503.2
128 92,736 128 557 2816 3828.5

Common Mask

2048 2059
80 10,379 11 24 65 133.7

112 10,396 11 29 74 176.5
128 10,399 16 30 80 197.9

9600 9641
80 45,354 26 115 538 626.1

112 45,431 28 119 545 826.5
128 45,313 57 130 573 926.7

5. CONCLUSION

In this paper, we have developed an efficient GC protocol for pri-
vate iriscode matching. A simplified mask scheme is designed to
reduce the number of non-XOR gates used in the circuit. Such a de-
sign reduces the accuracy by less 1% but provides more than eight
fold increase in performance. Our result is comparable to the cur-
rent state-of-the-art implementation based on a hybrid protocol of
GC and HE. Moreover, our GC-only protocol is more suitable than
HE based approach as the computational complexity of GC circuits
scales better for long-term security. However, one shortcoming of
using GC is that the memory requirement of GC increases with the
size of database. We are currently exploring to improve the memory
requirement of GC with the incorporation of the technique proposed
in [20], which makes GC scale to unlimited gates using a nearly con-
stant amount of memory.
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