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ABSTRACT
We propose a universal counter-forensic technique for con-

cealing traces left on the image histogram by any processing
tool. Under the assumption that the forensic analysis relies
on first-order statistics only (which is true in many practi-
cal applications), the proposed scheme allows the attacker to
conceal traces left by any processing operation, while main-
taining a high fidelity between processed and “cleaned” im-
ages.

Categories and Subject Descriptors
I.4 [Image Processing]: Miscellaneous

General Terms
Security

Keywords
Universal Counter Forensics, Histogram, Contrast Enhance-

ment

1. INTRODUCTION
Multimedia (MM) Forensics is an emerging discipline that

aims at revealing the history of digital contents (image,
video, audio) using a blind approach. The idea at the basis
of MM Forensics is that when a processing tool is applied to
a digital content, a number of footprints are left into the me-
dia. Several methods have been proposed that leverage on
these footprints to reach some conclusions on the past his-
tory of the object under analysis: there are techniques for
integrity verification, source identification or classification,
analysis of near-duplicates dependencies and many others
(see [10] for a recent survey). Together with the continuous
development of new forensic techniques, however, counter-
forensic (CF) methods are being developed as well. As sug-
gested by the name, counter-forensics aims at concealing
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the traces introduced by processing tools when the user ed-
its/tampers a MM content. As it will be clarified in Sec-
tion 2, existing approaches are mostly targeted at deceiving
a specific detector: they exploit knowledge of the forensic
algorithm and try to erase the traces it looks for. In do-
ing so, they may introduce some other kinds of artifacts,
that could be detected using different (perhaps more sophis-
ticated) forensic tools. This can lead to a “cat-and-mouse”
game where several iterations of the forensic/counter-forensic
loop are carried out. It would be interesting, instead, to
devise universal CF methods that give the attacker more
warranties about the undetectability of the processing oper-
ations, at least under some assumptions.

In this work we propose a universal approach for conceal-
ing traces left in the image histogram. This is an extremely
useful tool if we assume that the Forensic Analyst (FA) can
only consider first order statistics to perform its tests (as,
for example, in [16] and [17]), and that the Adversary (AD)
must satisfy some requirements in terms of desired image
quality. Under these assumptions we developed a counter
forensic technique that is “universal” in the sense that:

• the AD does not need to know anything about the FA
detection algorithms (apart from the fact that they are
based on first-order statistics only);

• the AD can use the proposed technique, without any
changes, to hide histogram traces introduced by any
kind of processing tool.

In brief, the idea is that the AD will first process the image
and then perform slight modifications on the resulting im-
age so to bring the histogram as close as possible to that of
another, original, unprocessed image, while respecting strict
distortion constraints. Intuitively, if the AD manages to do
so, the FA will be forced to classify both the original and
the tampered images in the same way, thus committing ei-
ther a false positive or a false negative error. Of course, this
will hold only if the two images are no longer distinguish-
able based on the statistic the FA relies on (that is, image
histogram).

The paper is structured as follows: in Section 2 a brief
overview of existing counter-forensic techniques is given; then
in Section 3 we sketch and present the proposed CF ap-
proach. Experimental results are reported in Section 4,
showing the effectiveness of our approach for different kinds
of processings.



2. COUNTER FORENSICS: A BRIEF
OVERVIEW

The origins of counter-forensics trace back to a work by
Kirchner et al. [7]: in that paper, the authors introduced the
concept of fighting against image forensics, and proposed a
method for resampling an image without introducing pixel
correlations. It is worth noting that a simple yet important
taxonomy was introduced in [7], were a first distinction is
proposed between post-processing and integrated techniques,
and between targeted and universal ones. In a nutshell, a
counter-forensic technique belongs the post-processing class
if it consists of two steps: first the attacker performs the
tampering, thus obtaining a desired modified content, then
she processes the content so to conceal/erase the detectable
traces left during the first step. On the contrary, an in-
tegrated counter-forensic technique modifies the image so
that by construction it does not expose detectable traces.
It is easy to guess that, developing integrated methods is
much harder in most cases. The second distinction regards
the target of the counter forensic method: if it aims at re-
moving the trace searched for by a specific detector, then
it belongs to the targeted family. A universal method, in-
stead, attempts to maintain as many statistical properties
as possible, so to make the processed image hard to detect
also with tools unknown to the AD.

Some time later, Cao et al. [4] proposed a targeted method
to hide traces of contrast enhancement, a common enhance-
ment operator that leaves traces in the histogram of the
image, so to deceive the detector developed by Stamm et
al. [16]. Cao’s method is based on the introduction of lo-
cal random dithering in the enhancement step, so it can
be classified as integrated attack. Nevertheless, the authors
also mention the possibility of turning this attack into a
post-processing one.

Stamm et al. proposed several works for hiding traces of
JPEG compression [18] [19], that also allow to hide some
kinds of tampering that are revealed thanks to JPEG com-
pression side effects [14]. The basic idea underlying these
works is to remove an important trace left by JPEG com-
pression into the image, namely the quantization of DCT
coefficients. Since the goal is pursued by introducing ad-
ditive noise to remove discontinuities in DCT coefficients
values, these methods can be thought of as post-processing
CF attacks. Lastly, JPEG counter-forensics incurs in a per-
ceptual cost over the tampering result, that has been studied
by Valenzise et al. in [20].

Counter-forensics is also entering the field of video: Stamm
et al. faced this topic [13] providing a targeted method that
allows to remove/add frames from a MPEG video without
introducing statistical artifacts in the prediction error, a
trace exploited in the detector introduced by Wang et al.
[22] to detect video doctoring.

Very recently, counter forensic is moving towards more
theoretical approaches: Barni [1] and Stamm et al. [15]
proposed game theoretical formulations. In [1] the source-
identification problem with known statistics is modeled as
a zero-sum game played by two decision-makers: the FA,
whose task is to perform classification through hypothesis
testing, and the AD, who wants to perform the attack in
such a way that FA’s classification is deceived. Under the
limited resources assumption for the analyst, the author de-
rives the optimal strategies for the two players and then

proves the existence of a Nash equilibrium for the game. In-
spired by [1], in Section 3.2 we propose to use the divergence
function as the objective function for the AD, since it is well
known that the divergence is the statistical function which
gives the appropriate measure of distinctiveness between two
distributions [5].

As to [15], a framework is proposed to evaluate the proba-
bility that a forgery is detected assuming that both the AD
and the FA play their optimal strategies.

3. A NEW UNIVERSAL COUNTER
FORENSIC TECHNIQUE

When designing counter-forensic methods, it is always
necessary to simultaneously consider the presence of, at least,
two players: the Forensic Analyst and the Adversary. The
goal of the FA is to devise a method (detector) that is able
to tell apart untouched images from those that have under-
gone some (usually very specific) processing. In a realistic
scenario, it is reasonable to assume that the FA has limited
resources for performing measurements over the signal. In
this paper, we focus on the case in which the FA can only
consider first order statistics of the observed signal (barely
speaking, the histogram of the image) and wants to classify
images as original or modified.

The AD has a different goal: she wants to produce a pro-
cessed image, having some desired characteristics, and do
that in such a way that FA’s tools will misclassify it as orig-
inal. As stated in the Introduction, she can follow two pos-
sible strategies to achieve this goal: the integrated approach
or the post-processing one. The latter scheme however, if
correctly interpreted, is much more appealing from the point
of view of generality: if the AD finds a general way to make
the statistical characteristic of a processed image similar or
equal to those of an untouched one, she will be able to re-use
the same tool for concealing traces left by different process-
ing tools1.

Outline of the proposed scheme
Following the arguments given in the previous section, we

opted for a post-processing approach, and devised a univer-
sal counter-forensic method that conceals traces left in the
histogram of the processed image (see Figure 1). From now
on, all images will be denoted with the underline notation,
e.g. x. We denote with x(i) ∈ I the value of the i-th pixel
of the image among the set of possible values I, and use hx

to indicate the histogram of x. To begin with, let us assume
that the AD has already created the processed image y, and
that she has access to a set S of histograms of untouched
images. Then the AD proceeds as follows:

1. Histogram retrieval (Section 3.1): among all histograms
in S, find the one that is most similar to hy, denote it
with hx;

2. Histogram mapping (Section 3.2): find the best way to
modify hy so to bring it as close as possible to hx, while
satisfying some constraints on the maximum distortion
incurred by y;

3. Implementation of the mapping (Section 3.3): actually
change pixels in the image according to the histogram

1It is worth observing that the gain in generality may come
at the expense of lower performance in terms of trace con-
cealment.



mapping, keeping the perceptual distortion as low as
possible.

3.1 Histogram retrieval
The goal of this phase is the following: given a (processed)

image y with histogram hy find the most “similar” histogram
hx among a set S. Of course, we also want to maintain the
properties induced on hy by the processing, otherwise the
counter-forensic method would remove the benefits the AD
is looking for.

To do so, we propose that the AD uses a constrained
research over the set S, looking for histograms that mini-
mize a chosen distance to hy , while respecting a set of con-
straints that will vary according to the kind of processing.
Among the various families of histogram distance functions
we choose the χ2 distance that, given two histograms P and
Q, is defined as follows:

χ2 =
1

2

∑
i

(Pi −Qi)
2

(Pi +Qi)
.

If we denote with Γ the set of original histograms that
satisfy the constraints imposed by the AD, the histogram
retrieval problem is solved by searching for an h∗ such that:

h∗ = arg min
hx∈Γ

χ2(hx, hy). (1)

where the metric is always evaluated between normalized
histograms (i.e. histograms obtained dividing the popula-
tion of each bin by the total number of pixels).

Notice that, in this phase of the scheme, we are more inter-
ested in retrieving an histogram that is near to hy from the
“shape” point of view than from the statistical one. In fact,
besides the constraints in Γ, we would like the retrieved his-
togram to have, say, the same number of modes of the target
one; the statistical distinguishability of the processed and at-
tacked histograms will be treated within the histogram map-
ping phase. However, it may happen that the best matching
histogram according to the χ2 distance is statistically too
different from hy , thus making the histogram mapping very
expensive or even impossible (as will be discussed in Section
3.2). To face this fact, we retrieve the best K matching his-
tograms from the database, and run the histogram mapping
on all of them; among these K candidates, the one resulting
in the best mapping (based on the value assumed by the
objective function in the optimum) will actually be used.

The choice of χ2 distance has several motivations: firstly
this metric weighs the contribution of each bin based on
its population, so the contribution due to very populated
bins is mitigated. This perfectly suits the needs of the AD,

since changing the value of pixels that are sparely present in
the image will probably incur a high perceptual cost, while
highly populated bins can be managed more smartly, balanc-
ing the perceptual impact of the change (see Section 3.3).
Secondly, the χ2 distance can be efficiently evaluated, and
this is essential to our application since it allows the AD to
search among a sufficiently large dataset of histograms. On
the other hand, this metric does not take into account rela-
tionships between adjacent bins. More sophisticated cross-
bin histogram distances like Earth Mover’s Distance [11] or
the Quadratic-Chi [9] could improve search results at the
cost of a higher complexity; we leave the investigation of the
benefits allowed by cross-bin distances for future work.

As a last consideration about histogram retrieval, we point
out two important facts. The first is that the search is con-
ducted directly on histograms, and not on images. This con-
siderably reduces the size of the dataset (10.000 histograms
can be represented with less than 10MB) and the search rou-
tine, since only the histogram of the processed image must
be computed on-line. The second observation is that the
goal of this phase has nothing to do with content based re-
trieval: the AD simply wants to know if an original image
exists (no matter what its content is) whose histogram is not
far from that of the processed one, but she is not interested
in what is actually represented in the image.

3.2 Histogram mapping problem
Given the processed image y and an original histogram

hx coming from the reference histogram database, the AD
wants to create an attacked image z that is similar to y but
has an histogram as close as possible to hx. This problem
is similar to the Optimal Transport problem [21], where the
goal is to find a transport map which moves a given distri-
bution into another minimizing some cost function; actually,
our case is a bit different since the AD does not need a per-
fect match between the two histograms.

For sake of clarity, we assume that all images have the
same number of pixels n, we will relax this assumption
later. Let hz(i) and hy(i) be the number of times the i− th
pixel value appears, respectively, in z and y, and let νz(i)
and νy(i) be the corresponding relative frequencies (νz(i) =
hz(i)/n, νy(i) = hy(i)/n). In our framework the νy vector
is known, since it is computed from the processed image y,
while the νz vector has to be found. We introduce a displace-
ment matrix N = {n(i→j)}i=0...255,j=0...255, whose (i, j)-th
element tells how many elements of the histogram should be
moved from the i-th to the j-th bin.

The goal of the AD is to find the displacement matrix
N∗ that minimizes the divergence between hz and hx while

Histogram
Retrieval

Pixel 
remapping

Histogram 
Mapping

Image
Processing

Original 
image

Processed 
image

Attacked 
image

Counter-Forensic scheme

Figure 1: A schematic representation of the proposed universal counter forensic approach. Notice that, at
least in the theoretical development, we are not interested about the specific processing carried by AD.



satisfying some constraints on the distance between z and
y. The divergence between two histograms is defined as:

D(νz||νx) =
255∑
i=1

νz(i) log
νz(i)

νx(i)
. (2)

We choose this objective function because, since the diver-
gence measures the statistical distinguishability of two dis-
tributions, minimizing this quantity turns out to be the op-
timal strategy for the adversary (see [1] for a thorough ex-
planation). As to the distance between the images, since
huge changes of pixel values would almost surely lead to an-
noying artifacts, we impose a maximum value Dmax for the
absolute pixel distortion:

max
i

|y(i)− z(i)| ≤ Dmax. (3)

Furthermore, we must consider that the AD cannot move
from each bin of hy more elements than those actually avail-
able. This results in the following constraint:

hy(i) = n(i→i) +
∑
k �=i

n(i→k) =
∑
k

n(i→k). (4)

Eq. (4) suggests that also hz can be easily written in terms
of the elements of the displacement matrix:

hz(i) = n(i→i) +
∑
k �=i

n(k→i) =
∑
k

n(k→i). (5)

Substituting (5) in (2), we can rewrite the objective function
in terms of the n(i→j) variables:

D(νz||νx) = min
n(i→j)

|I|∑
i=1

(
∑

k n(k→i))

n
· log (

∑
k n(k→i))

nνx(i)
.

(6)
and we can therefore rephrase the optimization problem as
follows:

min
n(i→j)

|I|∑
i=1

(
∑

k n(k→i))

n
· log (

∑
k n(k→i))

nνx(i)
(7)

subject to⎧⎪⎪⎨
⎪⎪⎩

∑
j n(i→j) = hy(i) ∀i

n(i → j) = 0, ∀(i, j) ∈ I : |i− j| > Dmax

n(i→j) ≥ 0 ∀i, j
n(i→j) ∈ N

(8)

where the second constraint is equivalent to eq. (3) and
limits the maximum distortion per pixel.

The above optimization problem can be classified in the
MINLP2 class. Furthermore, since it can be proved (using
the log-sum inequality [5]) that the objective function is con-
vex in the n(i→j) variables, the problem is actually a con-
vex MINLP problem [3], for which several efficient solvers
[2] yielding the global optimum solution exist.
Some observations about the above problem are in order.
The first is about the number of optimization variables, that
is quadratic in |I|. This means that the complexity of the
problem does not depend on the size of the image, but only
on its bit-depth (so we will usually have |I| = 256). Fur-
thermore, although it makes sense to consider only solutions

2Mixed integer nonlinear problems

for which one between n(i→j) and n(j→i) is equal to 0, it is
not necessary to explicitly express this constraint, since the
solutions for which this condition does not hold can be easily
pruned after the optimization problem is solved. As a last
consideration, we notice that in some cases the mapping may
not be feasible: for example, suppose we have Dmax = 10,
histogram hx is such that hx(j) = 0 ∀ j ∈ [128, 255] and his-
togram hy has a peak in 250. There is no way to map hy to
hx respecting the constraint about maximum distortion, so
the problem is not solvable, and D(νz||νx) is infinite. How-
ever, should this happen for one mapping, the fact that we
solve K times this problem with different target histograms
makes it very unlikely that we cannot find one admissible
mapping.

3.2.1 Generalization to arbitrary image size
Before moving to the last step of the CF scheme, we relax

the hypothesis that the number of pixels in x and y is the
same. Let |x| denote the number of pixels in image x. As a
matter of fact, since histogram retrieval is based on relative
frequencies, most of the times we will have |x| �= |y|. In
order to generalize the problem without leaving the MINLP
class we re-define hx and hy as follows:

hx(i) = νx(i)× lcm(|x|, |y|)

hy(i) = νy(i)× lcm(|x|, |y|)
where lcm denotes the least common multiple operator. This
will simply require, after the optimization, to scale back the
elements of the displacement matrix N by dividing each of
them by |x|: doing so, quantities in N will be referring to
the number of pixels of y, which is obviously the same for z.

3.3 Pixel Remapping
After the target histogram hz has been obtained, the AD

needs to actually modify y into z. All the operations per-
formed in this phase will not affect the result of FA’s foren-
sic tools, since we assumed that they only consider the his-
togram of the image. Nevertheless, the AD is not interested
in obtaining an attacked image z that is perceptually distant
from the processed one y. In this section we describe an ap-
proach that allows the AD to implement the pixel mapping
defined by the displacement matrix N∗ in a perceptually
convenient way.

We begin by recalling that the human visual system (HVS)
is known to be less sensitive to noise when this affects highly
textured regions. On the contrary, noise in uniform regions,
like the sky or a flat wall, is usually much more evident to
the observer [23]. Therefore, the first intuition is that, when-
ever a choice is possible, regions of the image having high
variance should be modified first. Furthermore it is useful to
iteratively determine which parts of the image are more in-
sensitive to noise through all the computation, using a kind
of similarity map between the currently achieved image and
y. To compute this map, we adopt the Structural Similarity
(SSIM) metric introduced by Wang et al. in [23]. This met-
ric quantifies and localizes the structural similarity between
two images, and provides a similarity value for each pixel;
to determine this value, the system considers the contrast,
brightness and other perceptually relevant information in
the region surrounding the pixel. Since the image changes
during pixel mapping, the map is evaluated several times in



order to allow a better (i.e. less perceptible) distribution of
noise throughout the image.

Based on the above considerations we propose the follow-
ing scheme, and comment it next:

1. Set all pixels as admissible
2. Compute a map of local variance3 of y;
3. For each couple (i, j):

(a) find admissible pixels location having value i;
(b) scan them selecting the first n(i→j) with higher

values in the map;
(c) substitute them with j;
(d) remove selected pixels from the admissible ones4;
(e) if no more pixels of value i have to be remapped,

compute the SSIM map between the current im-
age and y;

The first comment we make is about multiple computa-
tions of the similarity map: there is a clear tradeoff be-
tween computational complexity and perceptual fidelity. If
we compute the map only once, then we do not take into
account the distortion that is progressively introduced, and
experimental results show that this can lead to annoying
false-contouring artifacts. On the other hand, computing
the SSIM after each single pixel substitution is clearly pro-
hibitive (and useless). We think an excellent tradeoff is ob-
tained by computing the map |I| times, specifically when
no more pixels from the i-th level are left to move. Notice
that for the first iteration we cannot resort to SSIM (which
is a full-reference metric) to get a similarity map, because
no changes have been performed still. Considering the HVS
properties introduced before, we simply compute a map of
the local variance of the image (working block-wise, with
block size 5×5) and use it just for the first step.

While postponing a rigorous experimental validation to
Section 4, we report in Figure 2 an example that shows the
output of each of the steps described so far: the histogram
of a contrast-enhanced image (notice the peak-and-gap ar-
tifacts) is fed to the histogram retrieval module, which re-
turns the histogram yielding the lowest χ2 distance in the
DB. After pixel remapping (Dmax = 6), the histogram of
the attacked image is close to that of the original one, and
the perceptual similarity between processed and attacked
images is really satisfactory.

4. EXPERIMENTAL RESULTS
In this section we extensively evaluate the proposed counter

forensic technique in a realistic scenario, and show that it
yields excellent results in hiding traces (AUC of the detector
before and after CF attack is evaluated) while retaining a
very high quality for the attacked images (PSNR and SSIM
are used for quality assessment).

4.1 Experiments scenario and setup
To provide an experimental validation we need to choose a

specific scenario: this consists in selecting a detector for the
FA and a (set of) processing operation for the AD. During
the whole procedure, the AD can not exploit the knowledge
of the detector used by the FA since we are aiming at a
universal CF technique.

3SSIM cannot be evaluated before applying the first modi-
fication (see comments).
4This avoids multiple substitutions of the same pixel.

Experiments scenario
Among the image forensic algorithms based on first or-

der statistics, probably the most popular is the one for de-
tecting contrast enhancement, proposed by Stamm et al.
in [16]. This tool exploits the fact that typical contrast
enhancement techniques leave a characteristic fingerprint
in image’s histogram, namely the peak-and-gaps artifact.
This effect is easily exposed in the frequency domain, where
peak-and-gaps behavior results in an anomalous amount of
high-frequency components. Therefore, by investigating the
Fourier transform of image’s histogram, the authors devised
a very reliable detector.

From the AD point of view, we choose to implement two
different techniques for contrast enhancement of grayscale
images: one based on γ-correction and one based on his-
togram stretching. γ-correction enhancement is very simple,
being fully described by the following equation:

y(i) = 255×
(
x(i)

255

)γ

(9)

where y denotes the enhanced image and x denotes the orig-
inal one.

To formally define the histogram stretching operation, let
us denote with lmin the gray level at the 1st percentile of
the histogram and with lmax the gray level at the 99th per-
centile: then, we perform histogram stretching as:

y(i) = 255× x(i) − lmin

lmax − lmin
. (10)

Comparing Figure 2(a) and 2(b), the effect of histogram
stretching in improving image quality is evident.

Since the AD wants to preserve the benefits induced by
processing the image, he must define a constraint that filters
the search for the best matching histogram. We adopt the
Michelson definition of contrast [8], that for a given image
histogram h is

c(h) =
(hmax − hmin)

(hmax + hmin)

where hmax is the greatest non-empty bin and hmin is the
lowest non-empty bin of h. Then, when searching in the
set S of available untouched histograms, the AD defines the
subset Γ of admissible histograms as:

Γ = {h in S : c(h) ≥ c(h̄)}
where h̄ is the histogram of the contrast-enhanced image,
thus preventing the selection of target histograms having
lower contrast than the one obtained with processing.

Experiments setup
We conducted our experiments by using images from the

UCID dataset [12]. We also used another independent dataset,
MIRFLICKR [6] (25.000 images), to prepare the database
of untouched histograms. Throughout the experiments, all
color images are converted to grayscale using the rgb2gray
Matlab function. The only parameters the attacker has to
choose are the number of candidates for which the optimiza-
tion problem is solved (we use K = 10, each optimization
runs in few seconds) and the maximum distortion per-pixel;
of course, allowing a higher distortion will yield a more pre-
cise mapping of the attacked histogram to the one coming
from the database but will also result in a lower quality.
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Figure 2: Top row: (a) an original image; (b) its processed (contrast stretched) version, and (c) the image
resulting from the proposed CF technique. Bottom row: (d) histogram of the processed image, which is
compared to those in the DB to find the best matching one (e), then the histogram mapping problem is
solved yielding (f). Notice that the peak-and-gap artifacts in the left histogram have been removed in the
right one.

We repeated the experiments with Dmax = 2, 4 and 6 in
order to investigate the relationship between distortion and
effectiveness of the approach.

We evaluate the performance of the forensic method in
[16] using the Area Under Curve indicator, and use the Peak
Signal to Noise Ratio (PSNR) and SSIM index to assess the
quality of the attacked image.

4.2 Results for γ-correction processing
We performed contrast enhancement over all pictures in

the UCID dataset according to eq. (9) and run the FA’s de-
tector on the resulting images; since values of γ very near to
1 would not result in a sensible modification, γ was chosen
randomly from the set [0.5; 0.8] ∪ [1.2; 2]. Then, we applied
the proposed counter-forensic scheme on each processed im-
age, for various Dmax, and run again the detector. Figure
3(a) shows the ROC curves obtained for different values of
maximum per-pixel distortion: we can state that the foren-
sic detector no longer distinguishes untouched images from
attacked ones even for Dmax = 2. Experiments also confirm
that, by allowing higher distortion, the AD can further hin-
der the performances of the detector. Of course, this fact
alone is meaningless until we also investigate the fidelity of
the attacked images to the processed ones: this information
is reported in Figure 3(b); notice that PSNR is sufficiently
high even for Dmax = 6, and the SSIM index confirms an
extremely low perceptual distortion. This confirms that the
CF attack does not produce annoying artifacts, nor it re-
moves the benefits introduced by the γ-correction.

4.3 Results for histogram stretching attack
Histogram stretching is a more intensive processing from

a forensic point of view, in that it significantly modifies the
histogram of the image. As in the previous experiment, we
applied the processing described in eq. (10) to images of
the UCID dataset, and plotted ROC curves in Figure 4(a).
Though AD is using exactly the same CF attack scheme in
front of a different processing (also the DB of untouched
histograms remains the same), results are almost identical:
for the FA’s detector histograms of attacked images are no
longer distinguishable from those of original images. Figure
4(b) confirms that, also in this experiment, attacked images
are perceptually very near to the processed ones.

5. CONCLUSIONS
We have presented a universal counter forensic approach

against detectors based on first-order statistics (image his-
tograms). The approach belongs to the post-processing class
of the CF attacks: after having processed the image, the AD
uses the proposed technique to: i) search the best match-
ing histogram (in a set of untouched ones) for the processed
image; ii) solve an optimization problem for mapping the
processed histogram into the retrieved one, satisfying some
constraints on distortion; iii) actually modify (remap) pixels
of the processed image, yielding an attacked image that is
perceptually similar to the processed but has an histogram
as close to the desired one as possible. Experimental re-
sults show the effectiveness of the proposed approach. Fu-
ture work will focus on investigating the benefits that can
be achieved: i) by using more sophisticated histogram sim-
ilarity functions; ii) by merging the histogram search phase
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No CF AUC = 95.4%
Max D = 6 AUC = 53.9%
Max D = 4 AUC = 55.9%
Max D = 2 AUC = 60.0%

(a)

Dmax PSNR(db) SSIM AUC
2 44.8 0.994 0.600
4 39.3 0.981 0.559
6 36.2 0.964 0.539

(b)

Figure 3: Results for γ-correction counter-forensics.
(a): ROC curves for Contrast Enhancement Detec-
tor running on γ-corrected images (solid line) and
on attacked ones (marked lines); (b): mean values
for PSNR and SSIM between γ-corrected and and
attacked images, along with Area Under Curve ob-
tained by the forensic detector. Experiments are
carried on the UCID dataset

with the histogram mapping one; iii) by exploring connec-
tions with optimal transportation theory. In facing the men-
tioned issues, we will also consider the fact that the objective
function we are using now (the Kullback-Leibler divergence)
is proved to be optimal in the case of “known sources” (see
[1]), while our case falls in the class of “known training se-
quences”, since the attacker and the analyst do not know
the probability density function of the unprocessed images;
we will investigate if more appropriate distances exist for
the latter scenario, and, if they exist, evaluate their impact
on performances. Finally, we will test the method against
different histogram-based detectors.
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No CF AUC = 96.3%
Max D = 6 AUC = 53.0%
Max D = 4 AUC = 55.6%
Max D = 2 AUC = 59.6%

(a)

Dmax PSNR(db) SSIM AUC
2 44.9 0.994 0.596
4 39.2 0.984 0.556
6 36.1 0.971 0.530

(b)

Figure 4: Results for histogram stretching counter-
forensics. (a): ROC curves for Contrast En-
hancement Detector running on γ-corrected images
(solid line) and on remapped ones (marked lines);
(b): mean values for PSNR and SSIM between γ-
corrected and remapped images, along with Area
Under Curve obtained by the forensic detector. Ex-
periments are carried on the UCID dataset
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