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ABSTRACT
Remote health-care applications are gaining popularity as
an alternative for patients who do not require hospitaliza-
tion. In this setting, privacy preserving protocols are useful
to enable the offering of personalized online services, thus
preventing the unnecessary disclosure of personal data. A
problem often neglected in privacy-preserving protocols is
the need to ensure that processed signals, which are often
recorded by non-expert consumers, are of sufficient quality,
hence raising the need for solutions that assess the qual-
ity of the recorded signals to guarantee correct (medical)
decisions. In this paper, we propose a privacy preserving
protocol that assesses signal quality and combines this with
a linear classifier used to decide whether the measured signal
is of high enough quality or not. In particular, the protocol
computes a frame based Signal-To-Noise Ratio (SNR) from
the original signal and a filtered version of the signal itself;
evaluates the mean and the variance of the SNRs obtained
and computes the overall signal SNR. Finally these measures
are combined with a linear classifier used to assess the qual-
ity of the signal. The proposed scheme relies on a hybrid
multi-party computation protocol based on Homomorphic
Encryption and Yao’s Garbled Circuits. The analysis of the
protocol indicates that it needs the transmission of less than
4 MBytes of data to analyze 30 seconds of ECG signals pro-
viding a classification accuracy close to 85%.

Categories and Subject Descriptors
E.3 [Data Encryption]: Public key cryptosystems; G.1.6
[Numerical Analysis]: Optimization—Integer programming ;
J.3 [Life and Medical Sciences]: Health; k.4.1 [Computers
and Society]: Public Policy Issues—Computer-related health
issues,Privacy
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Keywords
ECG Quality Evaluation, Signal Processing in the Encrypted
Domain, Privacy Preserving Solutions, Garbled Circuits, Ho-
momorphic Encryption, SNR, Classification

1. INTRODUCTION
The health-care industry is moving faster than ever towards
technologies offering personalized online self-services, medi-
cal error reduction, customer data collection and more. Such
technologies have the potential to revolutionize the way med-
ical data is managed, stored, processed, delivered and ubiq-
uitously made available to millions of users throughout the
world. Such service offerings raise security and privacy is-
sues. On the one hand, the service provider (a company
or an hospital) may not be willing to provide the end user
directly with its proprietary protocols because of fear of dis-
closing valuable intellectual property to third parties or com-
promising the basis for its service. On the other hand, pa-
tients or users of the service might not be willing to disclose
their personal signal information to a third party (not nec-
essarily a hospital or doctor) for fears of losing control of
their data (e.g., a user might be concerned that due to cer-
tain medical condition his insurance premium will increase
or that he will be discriminated during a job application).

This paper addresses one of the basic safety problems in the
domain of tele-health, which is the problem of guaranteeing
the recorded signals comply with certain quality measures.
Namely, when data remotely measured by patients is used
by tele-health services or in the medical professional world,
healthcare providers need to place greater trust in the infor-
mation that patients report. In particular, in order to make
sound medical decisions based on this remotely measured
biomedical signals, they have to be ensured that a measure-
ment contains as little noise as possible, the amount of noise
being an indication of the quality of the signal. This is very
important because if this is not guaranteed there can be
critical health care decisions made based on wrong (or poor
quality) data, which in turn, can lead to wrong decisions or
treatments. As a particular relevant application, we consider
privacy-preserving quality evaluation of electrocardiograms
(ECGs).



1.1 Electrocardiograms
In this section, we provide an introductions to the electrocar-
diogram and its properties. The interested reader is referred
to [1] for a more detailed treatment of the ECG.

Heart contractions are due to an elaborate electrical con-
duction system that controls the precise timing for depolar-
izing the substantial mass of the electrically excitable my-
ocardium. The graphical recording of electrical heart sig-
nals, named Electrocardiogram (ECG), is obtained by using
surface electrodes attached to the skin in such a way that
different sections of the heart are crossed. The placement of
the electrodes determines the directional viewpoint of the
heart. A single-lead ECG recorder would typically have
three electrodes: the positive electrode, the negative elec-
trode and an indifferent electrode (ground or right-leg drive
electrode). An ECG signal usually assumes values between
-5mV and 5mV and the number of bits used for its represen-
tation depends on the accuracy of the electrocardiograph.

A typical ECG tracing of the heartbeat consists of a P wave
(corresponding to the atrial depolarization), a QRS com-
plex (reflecting the rapid depolarization of the right and left
ventricles), a T wave (showing the ventricles repolarization)
and some other smaller waves. Observing the slope of these
waves and the segments connecting them, a cardiologist can
derive a lot of information (for example the heart rate) or
identify diseases, such as Arrhythmias, ischemia, injury and
infarction. Many other diseases can be identified by ob-
serving or analyzing the ECG as described in [1]. Moreover
many protocols have been proposed to classify ECG between
Normal Sinus Rhythm and some arrhythmias. One of them
has been also implemented in the encrypted domain [10].

In hospitals, electrocardiograms are normally recorded in the
presence of an expert (nurse, doctor or technician), but in
a remote monitoring scenario, the patient is responsible for
performing such measurements without the help of a special-
ized care provider. The recorded ECG can be later analyzed
by a care provider or used as input to a (remote) applica-
tion, which performs some analysis of the data and outputs
a result or advice [10]. Advantages of such a service include
allowing the user to check regularly its health state without
going to an analysis center or hospital. This translates in
cost reductions for the service provider and convenience for
the patient, since monitoring is performed in the comfort of
his home. However, one may ask what happens if the signal
sent to the service provider for analysis is affected by noise.
In this case, the service provider might reach the wrong con-
clusion or provide the user with the wrong advice leading to
unnecessary worries and costs.

ECG signals can be contaminated by noise due to different
factors and with different power. The main sources of noise
are:
Power Line Interference, which consists of 50/60 Hz
pickup and harmonics, depending on the country power line.
Electrode contact noise, which is a transient interference
caused by loss of contact between the electrode and the skin
and can be permanent or intermittent. The switching action
can result in large artifacts (i.e., changes in the ECG due to
external noise) since the ECG signal is usually capacitively
coupled to the system.

Motion artifacts, which are transient base line changes
in the electrode skin impedance produced by electrode mo-
tion.
Muscle contraction, which causes generation of artifac-
tual millivolt level potentials.
Baseline wander, which in ECG signals causes problems
in the detection of peaks.

Power line interference and baseline wander can be easily re-
moved with the filter proposed in [21]. Motion artifacts and
muscle contraction depend on the patient and in general
can not be avoided. On the other hand, electrode contact
noise is the only type of noise that can be prevented with
correct placement of electrodes. Thus, in remote monitor-
ing scenarios in which electrodes are placed by non-expert
people, control of the recorded signal quality becomes very
important.

1.2 Our Contributions
In this paper, we describe a methodology which allows the
service provider to obtain a quality measure so as to guaran-
tee that the input to later computations and the correspond-
ing output (the actual analysis performed on the data) com-
ply with certain confidence criteria. In particular, we pro-
pose a protocol that allows evaluating the quality of ECG
signals and communicates to the user whether the input sig-
nal is good enough to continue with the measurement and
analysis or not. In the negative case, a new measurement
is requested and subsequent re-sending of the signal is re-
quired. The protocol can be easily implemented in a privacy
preserving manner that permits the client C not to reveal his
data to the server S, yet the server is able to perform the
analysis of the ECG quality without revealing the private
parameters (e.g., the filter) of its algorithm. Both the client
and the server can be interested to obtain as much informa-
tion as possible, but they are not interested to deviate from
the protocol, being the patient’s health involved, hence the
semi-honest model is considered.

Our solution is novel especially from a signal processing and
privacy preserving techniques points of view. In particular,
we propose a new technique to analyze the amount of noise
in a biomedical signal based on analysis of the Signal-to-
Noise ratio in small windows of the encrypted signal rather
than the whole measurement [5]. The analysis is based on
the statistics of the raw signal window and a corresponding
filtered signal. To our knowledge no alternative solutions
have been proposed in the literature. In addition, we report
on the performance of a simple linear classifier on the quality
measure, which achieves close to 85% accuracy.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the signal processing and cryptographic
tools we will use in the following sections to develop our so-
lutions. The ECG quality estimation algorithm is presented
in Section 3, together with its privacy preserving version. In
Section 4, we analyze the dimension of the data involved in
the computation and the communication complexity of the
protocol, moreover the results of experiments conducted on
ECG signals from the MIT-Arrhythmia database in terms
of classification accuracy are presented. We end with some
conclusions in Section 5.



2. TOOLS
In this section, an overview of the cryptographic primitives
and signal processing tools used in the paper is provided.

2.1 Cryptographic Tools
Homomorphic Encryption (HE). Out protocol is based
on a semantically secure additively homomorphic public-
key encryption scheme. In an additively homomorphic cryp-
tosystem, given encryptions JaK and JbK (where J·K indicates
the encrypted version of a and b, respectively), an encryp-
tion Ja + bK can be computed as Ja + bK = JaKJbK, where
all operations are performed in the corresponding plaintext
or ciphertext domain. From this property, it follows that
multiplication of an encryption JaK with a constant c can be
computed efficiently as Jc · aK = JaKc. As instantiation of
an additively homomorphic encryption scheme, we use the
Paillier cryptosystem [20, 9], which has plaintext space ZN
and ciphertext space Z∗N2 , where N is a T -bit RSA mod-
ulus. For details on the Paillier encryption and decryption
functions we refer to [20, 9].

Parallel Oblivious Transfer (OT). A parallel 1-out-2 Obliv-
ious Transfer for ` strings of bitlength t, denoted as OT`t, is
a two-party protocol where S inputs ` pairs of t-bit strings
Si =

〈
s0i , s

1
i

〉
for i = 1, . . . , ` with s0i , s

1
i ∈ {0, 1}` and C in-

puts ` choice bits bi ∈ {0, 1}. At the end of the protocol, C
learns sbii , but nothing about s1−bii whereas S learns noth-
ing about bi. We use OT`t as a black-box primitive in our
constructions. It can be instantiated efficiently with differ-
ent protocols [19, 2, 17, 12]. In this paper we consider the
protocol described in [19], which - when implemented over
a suitably chosen elliptic curve - has asymptotic communi-
cation complexity 6`t and is secure against malicious C and
semi-honest S in the random oracle model. Extensions of
[12] can be used to reduce the number of computationally
expensive public-key operations to ≈ 6t2 + 4`t and is used
when ` > 3t. Moreover OT can be precomputed [6], per-
forming an offline OT on random values that is later used
in the online OT phase to obtain the correct result from the
actual input values with asymptotic complexity 2`t bits.

Garbled Circuit (GC). Yao’s Garbled Circuit approach
[23], excellently presented in [16], is the most efficient method
for secure evaluation of a boolean circuit C in the two party
setting. We summarize the main ideas in the following.
First, the circuit constructor (server S), creates a gar-

bled circuit C̃: for each wire Wi of the circuit, he randomly

chooses a complementary garbled value W̃i =
〈
w̃0
i , w̃

1
i

〉
con-

sisting of two secrets, w̃0
i and w̃1

i , where w̃ji is the garbled

value of Wi’s value j. (Note: w̃ji does not reveal j.) Fur-
ther, for each gate Gi, S creates and sends to the evalua-

tor (client C) a garbled table T̃i with the following property:

given a set of garbled values of Gi’s inputs, T̃i allows to re-
cover the garbled value of the corresponding Gi’s output,
and nothing else. Then garbled values corresponding to C’s
inputs xj are (obliviously) transferred to C with a paral-
lel oblivious transfer protocol OT: S inputs complementary

garbled values W̃j into the protocol; C inputs xj and obtains

w̃
xj
j as outputs. Now, C can evaluate the garbled circuit C̃ to

obtain the garbled output simply by evaluating the garbled

circuit gate by gate, using the garbled tables T̃i. Correct-
ness of GC follows from the method of construction of the
garbled tables T̃i. As in [8], we use the GC protocol as a
conditional oblivious transfer protocol where we do not pro-
vide a translation from the garbled output values to their
plain values to C, i.e., C obtains one of two garbled values
which can be used as key in subsequent protocols but does
not know the value key corresponds to.

High-Speed evaluation of GC [18] is feasible by using a cryp-
tographic hash function H(·) (chosen from the SHA-2 fam-
ily). The creation of the garbled table associated to a d-input
gate requires 2d invocations of H(·). A point-and-permute
technique can be used to speed up the implementation of the
GC protocol [18]: the garbled values w̃i = 〈ki, πi〉 consist of
a symmetric key ki ∈ {0, 1}t and πi ∈ {0, 1} is a random
permutation bit. The permutation bit πi is used to select
the right table entry for decryption with the key ki, hence
only one invocation of H() for each table is needed dur-
ing evaluation. The free-XOR gates technique introduced in
[13], can be used to further improve the performance of the
GC technique, so that XOR gates need not be created nor
their corresponding garbled tables transmitted and evalua-
tion is performed by a simple XOR operation. The output
of the GC is converted to plain values by using a two rows
conversion table for each output bit.

2.2 Signal Processing Tools
Filters. A filter is represented in the spectral domain by
the function

H(z) =
num(z−1)

den(z−1)
,

where num() and den() are polynomials, and can be imple-
mented in the time domain by a difference equation. Fil-
ters can be subdivided into two categories: Finite Impulse
Response (FIR) filters and Infinite Impulse Response (IIR)
filters.

An FIR filter is characterized only by a numerator num(z−1) =
c0 +c1z

−1 + . . .+ckz
−k of order k. Each filtered sample yi is

computed by a scalar product between an array composed
by the current and the previous k samples {xi, . . . xi−k}
and the coefficients array {c0, . . . ck} of the numerator (yi =
c0xi + c1xi−1 + . . .+ ckxi−k). The filter introduces a delay
of k/2 samples that can be avoided in non-real time appli-
cations by computing yi = c0xi+k/2 + . . . + ck/2−1xi+1 +
ck/2xi + ck/2+1xi−1 + . . . + ckxi−k/2. Moreover if the fil-
ter is real (has no imaginary components), its spectrum is
symmetric with respect to the frequency f = 0 Hz and the
coefficients are symmetric with respect to the central coef-
ficient c0 and as a result c+j = c−j ∀j = 1..k/2. We can
easily describe a real filter with the difference equation yi =

c0xi +
∑k/2
j=1 cj(xi+j + xi−j), where cj = nk/2+j = nk/2−j .

A filter having floating point coefficients assures greater ac-
curacy than a filter with fixed-point (integer) coefficients.
However filter having fixed point coefficients can be more
easily implemented in the encrypted domain.

An IIR filter has a numerator of kn order and a denomina-
tor of kd order and the i-th filtered sample is computed as
yi = −d1yi−1−. . .−dkdyi−kd+c0xi+c1xi−1+. . .+cknxi−kn



by using the last filtered samples previously obtained, to-
gether with the samples of the original signal. Because the
previous filtered samples use other samples, in a recursive
procedure, the current filtered sample is computed as a func-
tion of all the previous samples. An IIR filter normally re-
quires less coefficients than an FIR filter, but an integer im-
plementation of the IIR filter usually amplifies the filtered
signal. Thus, we avoid divisions, and the IIR filter amplifies
the filtered signal exponentially. On the other hand, known
protocols for division in the encrypted domain are expensive
[22, 14] and the lower complexity obtained by decreasing the
number of coefficients is more than compensated by the over-
head introduced to perform a division immediately after the
computation of every filtered sample. Thus, in general an
FIR filter is more efficient than an IIR filter in the encrypted
domain.

3. PROTOCOL
Different parts of the ECG carry different types of informa-
tion. For example, to evaluate the heart rate or some ar-
rhythmias, it is sufficient to be able to identify the R peaks
(the high peaks of the QRS complexes), for the atrial flutter
we need to observe if there is the “saw-tooth” effect and to
identify an ischemia it is necessary to evaluate the slope of
the ST segment and of the T wave.

An ECG signal can have enough quality to allow the eval-
uation of a particular function or the extraction of partic-
ular information, it can have bad quality not allowing in-
formation extraction, or sufficient quality for certain anal-
ysis/applications but not sufficient for others. Thus, the
quality of an ECG signal is application-dependent.

It is important to stress that quality evaluation techniques
can be split into two main categories: full reference or no-
reference techniques. The former class refers to a situation
in which the quality of a signal has to be judged by refer-
ring to an ideal signal. This is the case in lossy compression
applications wherein the quality of the compressed signal
has to be judged by considering its perceptual distance from
the original signal. In contrast, no-reference techniques have
to measure the quality of a signal without making any ref-
erence to an ideal signal that is supposed to represent the
maximum possible quality. The medical scenarios addressed
in this paper require that no-reference quality measures are
adopted.

In this paper, we propose a system that evaluates ECG sig-
nal quality by identifying the presence of electrode contact
noise. Our purpose is to provide a solution allowing a simple
implementation in the encrypted domain, even if not opti-
mal from the accuracy point of view. Evaluating the quality
of a non-referenced signal is a difficult problem for which
only a few solutions are known even in the plain domain
(see [15, 3] for example). Existing solutions, however, are
generally too complex to allow an efficient implementation
in the encrypted domain.

In [5] a garbled circuit is proposed to evaluate the SNR of
a signal. Clearly, given a clean and a noisy version of a
signal, the signal SNR can be computed. However, a per-
son interested in evaluating the SNR of an ECG signal faces
several challenges. The first one is that in traditional (tele-

monitoring) applications the real clean ECG signal is not
available. Rather, only a noisy version is available. The
signal can be filtered by using a filter that removes all the
frequencies outside the interval where the signal power is ex-
pected to be. The filtered signal is considered an estimation
of the clean signal, while the recorded signal is the noisy sig-
nal. In [5], the authors notice that the larger the estimated
noise in the recorded signal, the larger amount of noise the
filter will remove, even if the filtered signal will still be af-
fected by noise. Hence the SNR between the filtered signal
and the noise signal can be used to estimate if noise is also
affecting the filtered signal.

Unfortunately problem is that generally the correlation of
SNR alone with subjective quality is very poor and it is of
little interest as a general objective measure of signal qual-
ity. The main idea behind the present work is to extend
the method proposed in [5] by using a segmented SNR in-
stead of the overall signal SNR. In doing so, we follow the
approach proposed in [11], where a frame based segmented
SNR is used to assess speech signal quality. In particular,
the same idea can be applied to many other types of signals
having a fixed range of frequencies that can be affected by
burst of noise such as, videos, ECGs, etc. The method in
[11] subdivides the signal into small frames and for each of
them the SNR is computed. Finally, the mean and variance
of the segmented SNR is computed. The use of the vari-
ance is justified by the observation that while the electrode
contact noise has a minor impact on the mean SNR, an occa-
sional burst of noise having small time length can be better
detected by the SNR variance. Hence both the mean and
the variance of the segmented SNR can be used to evaluate
the quality of a signal, together with other features (here
we consider the SNR of the whole signal) to obtain a more
accurate analysis. Notice that in [11], the authors propose
additional“plain”techniques to assess the quality of a speech
signal, but these would be too computationally intensive to
be efficiently implemented in the encrypted domain.

In the following, we describe the steps necessary to com-
pute the SNR in the encrypted domain and reach a decision
based on features (e.g. SNR, mean SNR, SNR variance,
etc.) extracted during the processing of the signal. The
steps are summarized in Figure 1. In the remainder of this
paper, assume that we evaluate τ seconds of an ECG signal
x = {x1, . . . , xτ∗fs}, where fs is the sampling frequency and
each sample is represented with `x + 1 bits (`x bits for the
magnitude and 1 for the sign).

Signal Quantization and Representation. To start with
we observe that signal processing algorithms usually work
on real (floating point) numbers. On the contrary, when
working with encrypted signals, it is necessary to represent
each value by an integer number, thus, quantizing it. This
is equivalent to multiplying the number by a constant and
then round it to the closest integer value.

Baseline Wander and Power Line Interference Removal.
Quality evaluation starts by removing the base-line wander
and the power-line interference by using the filter proposed
in [21] producing a filtered signal y = {y1, . . . , yτfs}. This
filtering operation removes noise, which otherwise could be
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Figure 1: Sequence of steps performed to evaluate the quality of an ECG signal.

incorrectly confused with the electrode contact noise. The
filter is developed in the Fourier domain and it has a peri-
odic spectrum with small stop-band notches at 0 Hz as well
as at fp Hz and at its higher harmonics, where fp is the
frequency of the power line. Since the filter is well-known in
literature, we assume that it is applied in the plain domain.
The client can apply the filter with floating point coefficients
on the quantized integer x signal and then round the value
to the closest integer. Filter operations are designed so to
not amplify the signal, even if sometime some output val-
ues could slightly exceed the maximum value. In particular,
output vector components yi that exceed the maximum rep-
resentable value are clipped to the maximum value that the
electrocardiograph can record. Hence the samples of y can
be represented with the same number of bits as x.

Filtering. According to the American Heart Association
recommendations for ECG recordings, in an ECG the typi-
cal high frequency component is the QRS complex which is
about 20 Hz. To remove high frequency noise, we apply an
integer low-pass filter with cut off frequency fc = 20 Hz to
the signal y, obtaining the filtered signal z = {z1, . . . , zτfs}.
Assuming that the filter is developed by S who is interested
in protecting his intellectual property, S applies the filter on
the HE encrypted samples transmitted by the client. The
reason why HE is preferable to GC for this operation is
threefold. First S can perform all the computation without
the need to interact with the client. In contrast using GC
requires many product circuits to be transmitted between
the client and the server. Thus, the lack of interaction in
the evaluation of the FIR filter allows S to protect the fil-
ter order as well as the coefficients. In addition, S knows
the values of the filter coefficients, hence it can optimize
the computation avoiding the computation of any products
with zero or one coefficients. Moreover, S can further opti-
mize the filter evaluation by computing once each product
between a sample and all filter coefficients having the same
value1.

More formally, C encrypts the τfs samples and transmits
the encrypted signal JyK = {Jy0K, . . . , Jyτfs−1K} to S. The

1We ignore the possible information leakage due to variable
computation timings among filters with different number of
coefficients.

signal JyK is processed by a filter of order 2k, having k + 1
coefficients c0 . . . ck, each coefficient is represented with `c
bits. S computes all the products

JyicjK =

 1 if cj = 0,
JyiK if cj = 1,
JyiKcj else.

Assuming that the filter has α non-null and non-unitary co-
efficients, only ατfs products are evaluated. Then, S ob-
tains each filtered sample by computing JziK = Jc0 ∗ yi +∑k
j=1(cjyi+j + cjyi−j))K = Jc0yiK

∏k
j=1(Jcjyi+jKJcjyi−jK),

where Jyi±jK = J0K ∀i + j > τfs or i − j ≤ 0. A final opti-
mization consists in using the packed signal representation
proposed in [7]. This technique can be used to pack more
samples in a cyphertext, so that communication complexity
is reduced.

Energy Evaluation. Let the noise signal n = {n1 . . . nτfs}
be defined as the difference between the signals z and y.
Before going on, we emphasize that filtering a signal in the
encrypted domain produces a z signal amplified by a factor
amp. Hence, we have to multiply the y samples by the same
factor before the subtraction. Each noise sample is hence
computed as JniK = Jzi − amp ∗ yiK = JziK ∗ JyiK−amp .

Then, we subdivide the signals z and n into frames of w
samples, obtaining m = bτfs/wc frames fz = {fz1 . . . fzm}
and fn = {fn1 . . . fnm}, where it is assumed that τfs = mw.
Otherwise, if τfs 6= mw, the last frame, having less than
w samples, is discarded. For each pair of signal and noise
frames (fzi, fni) the SNR is evaluated as the power ratio
between the signal and the noise in the logarithmic decibel
scale:

SNRf
i = 10 log10

(
∑w
j=1(fz

i
j)

2)
w

(
∑w
j=1(fn

i
j)

2)
w

=
10

log2 10
log2

∑w
j=1(fzij)

2∑w
j=1(fnij)

2
.

Notice that 10/ log2 10 only amplifies the result and there-
fore it can be neglected. Hence the function we need to



compute is

SNRf
i = log2

∑w
j=1(fzij)

2∑w
j=1(fnij)

2
= log2

Efzi

Efni

= log2Efzi − log2Efni ,

where E indicates the signal energy.

To carry out the previous computation in the encrypted do-
main, we compute the frames’ energy using HE and then
obtain the SNR by using GC. Notice that the energy com-
putation protocol has to be applied to each signal frame
fz1, . . . , fzm and each noise frame fn1, . . . , fnm. We recall
that each frame consists of w samples and the samples are
available to S in their encrypted form.

Then, S additively blinds each sample si by adding a value
ri, i.e. Jsi + riK = JsiKJriK. The values ri are randomly
chosen in Z`+κ, where ` is the bitlength of the sample (in
our case `z or `n) and κ is a security parameter (usually k =
80). At this point S transmits the ciphertexts containing the
obfuscated samples to C, who decrypts them and computes
the energy of the obfuscated signal Es,o =

∑w
i=1(si + ri)

2.
To reduce the number of ciphertexts transmitted, S can pack
bT/(`+ κ)c obfuscated samples in a single ciphertext.

In a protocol whose goal is computing the energy, C usually
encrypts the values obtained and transmits them to S, who
removes the total obfuscation by using the homomorphic
property. Considering that the energy values are needed
again on C’s side as input to the GC computing the SNR,
the protocol can be changed to reduce the number of rounds
and the number of transmitted ciphertexts. In particular,
S computes JrK = Jr′ −

∑
i 2ri ∗ siK = Jr′K ∗

∏
iJsiK

−2ri and
transmits these values together with the encryption of the
obfuscated samples, where r′ is a random value chosen in
Z`e+κ (`e is the bitlength of the energy) introduced to avoid
leakage of information to the client due to the disclosure of∑
i 2siri. C, after decryption, adds the value to the obfus-

cated energy, obtaining Es,o′ = Es +
∑
i r

2
i + r′. In this

way the energy is still obfuscated and C is not able to know
its exact value, while S knows the exact obfuscation value
introduced in the energy but not the actual energy value.

The previously described protocol is applied to the 2m frames
fz1, . . . , fzm, fn1, . . . , fnm (using different random values for
each frame). At the end, C obtains the obfuscated energy
for each frame, i.e. E1

fz ,o′ , . . . , E
m
fz ,o′ , E

1
fn,o′ , . . . , E

m
fn,o′ , while

S knows the total obfuscation introduced in the energy of
each frame.

SNR Evaluation. The SNR of each frame is computed by
using a garbled circuit, where C’s inputs are the obfuscated
energies and S’s inputs the obfuscation values.

The boolean circuit first removes the obfuscation affecting
the energies. Considering that a subtraction circuit starts
the computation from the least significant bit, it is sufficient
that S and C submit only the `e least significant bits of
each input (`E bits for the energies relative to the whole
signal and their obfuscation values). The garbled circuit
implementing the SNR computation is the one described in
[5]. Once the obfuscation is removed and the energy of a

generic frame i is obtained, the GC computes the SNR of the
frame by evaluating the logarithm of the energies Efzi and
Efni , which is equivalent to detecting the minimum number
of bits necessary to represent the numbers.

Let E be a generic signal energy represented with `e bits,
whose binary representation is denoted by E`e . . . E1. Notice
that the most significant bits of E can be zero. Let a be the
position of the most significant non-zero bit of E. From
E, one can build a bitstring E′ having all the bits from
the `e-th to the (a + 1) − th position set to 0 and all the
remaining bits set to 1. E′ is obtained by setting the most
significant bit as E`e and then each bit of the result E′ is
computed as E′i = E′i+1 ∨Ei, hence `e− 1 OR (∨) gates are
needed. Instead of computing blog2Ec, the circuit outputs
the secrets corresponding to blog2Ec+ 1 if E is positive and
to 0 if it is null. Counting the bits of E′ equal to 1 and
subtracting 1 the logarithm result can be obtained.

Given Efzi , Efni one can compute E′fzi and E′fni , which in

turn allows one to compute E′fzi ⊕ E
′
fni , which contains the

number of ones equal to the difference between E′fzi and E′fni
or in other words the magnitude of the SNR. Finally, the
SNRfi is obtained by counting the non-zero bits of E′fzi ⊕
E′fni . The counter circuit proposed in [5] requires ≈ `e −
log2(`e + 1) non-XOR gates. In this way the magnitude
of the SNR is obtained, but not the sign, for which it is
sufficient to evaluate Efzi < Efni .

Notice that the SNR values are not the final result, they have
to be used in later computations and hence kept secret. To
avoid their disclosure to C, the GC finally blinds each value
by adding random values rSNRi , each `SNRf + κ bits long.

Note that the computation of the SNR of the whole sig-
nal can be obtained starting from the energy of the frames
previously computed. In fact

SNR = log2

∑mw
j=1(fz j)

2∑mw
j=1(fnj)

2
= log2

∑m
i=1

∑w
j=1(fz ij)

2∑m
i=1

∑w
j=1(fnij)

2

= log2(

m∑
i=1

Efzi)− log2(

m∑
i=1

Efni).

C adds together all the frame energies Ez,o′ and all the frame
energies En,o′ , obtaining the energies of the whole signals
obfuscated by a value that is the sum of the obfuscation
introduced in each frame energy, still known by S. Finally,
the SNR is obtained by another circuit similar to the one
described above but having a larger input bit-length and
hence a larger number of gates.

Once all the obfuscated SNRfi and SNR values are obtained,
C encrypts them and transmits the ciphertexts to S, who can
remove the obfuscation by using homomorphic properties.

Mean and Variance computation. Obtained the values

JSNRf K = {JSNRf
1 K, . . . , JSNRf

mK}, S can compute their
mean and variance. The computation of the SNRs mean
would require division by m. If m is public (or known), this
is a cheap operation. However, if it is a private value, the
division operation can be expensive and requires an interac-



tive protocol [22]. An additional disadvantage is that this
protocol would introduce a rounding error. An alternative
is to avoid the division by m. Then, the mean is amplified
by a factor of m, the accuracy is preserved and the complex-
ity of the protocol is reduced since interaction with C is not
necessary. The amplified mean is simply computed by S as
JµSNRK = J

∑m
i=1 SNRfi K =

∏m
i=1JSNRfi K.

The computation of the variance can be performed by us-
ing an interactive protocol. Given the amplified mean, the
SNRf values have to be amplified by the same factor before
computing the variance. Moreover, following the same ap-
proach we used for the mean, division by m is avoided and
thus, the resulting variance is amplified by a factor m3. No-
tice that C already has each SNRfi value obfuscated with a
random value rSNRi . Thus, S can send the obfuscated SNR
mean JµSNR + rµK (where rµ ∈ Z`µ+κ) to C who decrypts it
and computes

m∑
i=1

(
m(SNRfi + rSNRi)− (µSNR + rµ)

)2
.

Finally C encrypts the result and sends it back to S who re-
moves the obfuscation value

∑
i(mrSNRi−rµ)2−2

∑
i(mSNRfi−

µSNR)(mrSNRi−rµ) by using homomorphic properties, thus,
obtaining the encrypted amplified variance JσSNRK.

Classification. The previously computed values (the over-
all SNR, the frame SNR mean and the frame SNR variance)
can be used to develop simple classifiers that compare them
with thresholds obtained by training. In the following, we
show that by combining them, one can improve the accuracy
of the whole classification by using a simple linear classifier.
To do so, we developed a linear classifier that uses σSNR,
µSNR and the SNR computed on the whole signal as input.
In practice the signal quality is classified by evaluating the
following inequality:

a+ b σSNR + c µSNR + d SNR > 0

where the coefficients a, b, c, d are obtained by training. If
the inequality is true the signal is classified as noisy, other-
wise as clean.

Training is made in the plain domain independently for
each subject by using ECG recorded in a supervised en-
vironment so that the weight vector β = [a, b, c, d] can be
obtained. Assume that a training set of k segments has
been recorded from a patient and that from each segment j,
a vector αj = [1, σSNR

j , µSNR
j ,SNRi] is created in the plain

domain, including an additional bit γj , indicating whether
the signal has been classified as clean (γj = −1), or noisy
(γj = +1). Then, we obtain,

a+ b σSNR
j + c µSNR

j + d SNRj + εj = αj β + εj = γj

where εj is the error committed by the classifier.

By considering all the signals available for training, we com-
pute the matrix A = [α1, . . . , αk]T and the vector G =
[γ1, . . . , γk]T . The goal of the training is finding the vector

β that minimizes the mean square error sum
∑k
i=1 ε

2
i , which

can be obtained as

β = (ATA)−1ATG.

Because [a, b, c, d] are real values they are quantized and rep-
resented with integer numbers to be used in the encrypted
domain. Observe that the scalar product can be imple-
mented by resorting to HE only2. It is important to point
out that the number of bits required to represent the data
depends on many factors and it can change with each train-
ing set. In particular, the bitsize for the coefficients can
be chosen so that the computation precision is similar to
that of a plain implementation. In short, the classification
is computed using HE:

Ja+ b σSNR + c µSNR + d SNRK =

= JaK JσSNRKb JµSNRKc JSNRKd.

The sign of the scalar product is used for the classification,
while the magnitude gives an indication of its reliability.
High values are more reliable than smaller ones. Noticing
that both sign and magnitude are useful for the classification
and depending on the privacy requirements of S and C, the
protocol can choose to disclose the scalar product result to
C. Hence, S sends the encrypted magnitude and sign values
to C who decrypts them and performs the final classifica-
tion (determines to which class the particular measurement
belongs). If S prefers to kept the magnitude secret, it can
obfuscate the scalar product result by using a random value
and then transmit a comparison GC having the obfuscated
value and the random value as inputs.

4. ANALYSIS
In a real implementation the system has to be trained on pa-
tient’s data in a supervised environment. A nurse or a doctor
prepares a training set with intervals of clean ECG obtained
with electrodes correctly and wrongly placed by them and
by the patient. To increase the data set, simulated noise
can be added with different power levels to the whole clean
signals or only in small random intervals. Finally, the nurse
subdivides the ECG in clean and noisy segments. The sub-
division can be made as a function of subjective parameters
(an expert decides if the quality is sufficient or not) or test-
ing the segments with the software that will be later used for
the analysis of the ECG, when the software returns the an-
swer expected by the expert, the signal is classified as clean,
otherwise as noisy. The obtained data set is used to train a
classifier that is then used to evaluate the signals that the
patient will record at home connecting the electrodes with-
out the presence of an expert.

We used the MIT-BIH Arrhythmia Database3 for our exper-
iments. The signals were subdivided into intervals and clas-
sified as noisy or clean according to the annotation available
in the database, even if the type of noise was not specified
explicitly. An interval is considered clean if no samples are
affected by noise, otherwise it is considered clean. To extend
the data set we added artificial electrode contact noise stored
in the MIT-BIH Noise Stress Test Database4 to whole clean

2This assumes that the coefficients are known in plaintext
form to S. Alternatively, a two party multiplication protocol
can be performed similar to the computation of the variance.
For reasons of brevity, this protocol is not included in this
version of the paper.
3http://www.physionet.org/physiobank/database/mitdb/
4http://www.physionet.org/physiobank/database/nstdb/
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Figure 2: Filter plots

segments and partially (only to a randomly chosen section
of the segment).

4.1 Data Dimension
To evaluate the quality of the signal we propose to analyze
τ = 30 seconds of the signal. This interval length is chosen
because it is long enough to allow a correct evaluation and
not so long to delay the beginning of the subsequent analysis,
especially if the patient places the electrodes in a wrong way
and has to evaluate the quality of the signal several times.

The signals in the MIT-BIH Arrhythmia database have a
sample frequency fs = 360Hz and are recorded in the U.S.A.
(with a power-line frequency fp = 60Hz). Each sample is
represented with `x = 10 bits for the magnitude and one
bit for the sign, hence the maximum value it can assume is
maxx = 1023. The same characteristics are considered for y,
the signal obtained after filtering with the protocol proposed
by Van Alsté and Schidler [21] to remove the baseline wonder
and the power-line noise, hence `y = 10 and maxy = 1023.

The filter is an integer low pass filter having sample fre-
quency 360Hz and cut-off frequency 20Hz and it is consid-
ered to be owned by S (i.e., its coefficients should remain
private to S). It was obtained by quantizing a filter devel-
oped in Matlab with fdatool. Figure 2 shows the spectrum
of the filter, and its impulse response (the coefficients). The
filter has been optimized to obtain a small number of coef-
ficients that can be represented with a few bits. The filter
has order 82, hence it can be represented with 83 coefficients
(only 42 coefficients are needed thanks to symmetry) 36 of
which are zero and the remaining ones assume values be-
tween −2 and 8. Hence, each coefficient can be represented
with `c = 4 bits for the magnitude and 1 for the sign. The
amplification introduced by the integer filter is amp = 64,
while the sum of the coefficients is |c0|+

∑k
j=1 |2∗ cj | = 112.

This sum is used to estimate the maximum value a filtered
sample can assume.

In the following, we provide an analysis of the bit-length of

the data involved in the computation by using a worst case
analysis. The maximum value that each variable can assume
can be easily determined by a logarithm computation. Since
the maximum value that a sample can assume is maxy =
2`y − 1, it follows that the maximum value that a filtered
sample can assume is max z = |c0 ∗ maxy| +

∑k
j=1 |cj ∗ 2 ∗

maxy| = maxy ∗ (|c0|+
∑k
j=1 |2 ∗ cj |), and its representation

needs `z bits for the magnitude and 1 for the sign. The
maximum value that a noise sample can assume is max z −
(−ampmaxy). The magnitude of each noise sample can be
represented with `n bits and another bit is required for the
sign.

After some experiments we decided to subdivide the 30 sec-
onds of signal (t ∗ fs = 10800 samples) into m = 30 frames,
each having length one second (w = 360 samples). In the
worst case, all filtered signal (or noise) samples assume the
maximum value. The maximum value of the energy of a
frame of the filtered signal is maxEz =

∑w
i=1 max2

z = w ∗
max2

z and the maximum energy of the noise frames is maxEn =
wmax2

n. For simplicity, we represent both maxEz and maxEn
with the same number of bits `e, obtained by the logarithm
of maxEn . Since the energy is positive, it is not necessary
to add a bit for the sign. Similarly, the maximum value
that both the energies of the whole filtered signal and noise
signal can attain is mw(max z + ampmaxy)2, which can be
represented with `E bits.

By using maxEn as an upperbound for both the filtered and
noise signal energies, the highest magnitude of the SNR is
obtained when the energy of one of them is maximum and
the other is zero. Note that this scenario is not possible, in
practice. Thus, the maximum value that the frame SNR can
assume is maxSNRf = dlog2(maxE

fzi
)e = ±dlog2(w ∗ (2`s −

1)2 ∗ (|c0|+
∑k
j=1 |2 ∗ cj |

2)e and it can be represented with

`SNRf = dlog2 `ee bits for the magnitude and one bit for the
sign. The SNR of the whole signal needs `SNR = dlog2 `Ee+1
bits for its representation.

The highest value that the mean of the SNR can assume is
m∗maxSNRf and needs `µ bits for its magnitude representa-
tion and one for the sign. The differences between the SNR
values amplified by m and the mean require another bit.

Finally we can obtain the maximum value for the variance
by considering that

σSNR =

m∑
j=1

(mSNRf j − µ
SNR)2

<

m∑
j=1

(mmaxSNRf +mmaxSNRf )2

= m3max2
SNRf = maxσ

and needs `σ bits for its representation. Being the variance
positive, the sign bit is not needed.

We do not provide limitation for the representation of the
classification parameters because their values depend on the
training set and different bit-lengths can be necessary for
different people. The correct bit-length is hence chosen so
that classification with quantized parameters is sufficiently



Table 1: Maximum value and number of bits neces-
sary for the magnitude representation of the vari-
ables involved in the computation by worst case
analysis. Another bit is needed for the sign, except
for energies and SNR variance.

Variable Name
Maximum Magnitude

Value Bitlength

Original Signal x 1023 `x = 10
Pre-filtered Signal y 1023 `y = 10
Filter Coefficients c 8 `c = 4
Filtered Signal z 114576 `z = 17
Noise Signal n 180048 `n = 18
Frame Energy Efz, Efn 11670221629440 `e = 44
Frame SNR SNRf 44 `SNRf = 6
Full Energy Ez, En 350106648883200 `E = 49
SNR SNR 49 `SNR = 6
SNR Mean µSNR 1320 `µ = 11
SNR Variance σSNR 52272000 `σ = 26

similar to the classification involving real parameters, pay-
ing attention that the scalar product result does not ex-
ceed the maximum value allowed by the ciphertext. In some
cases, shortest bit-lengths will mean significant lower com-
putational complexity. The results of the above analysis are
summarized in Table 1.

4.2 Communication Complexity
This section provides an analysis of the communication com-
plexity of the protocol (summarized in Table 2). For our
analysis, we assume the use of the following parameters
(short term security): T = 1024, t = 80, κ = 80 bits.
The protocol starts with the transmission of τfs = 10800
cyphertexts having size 2T from C to S. During energy
computation S transmits the filtered and noise samples to
C, together with the obfuscation values r′ −

∑
i 2risi that

C has to remove from the energy. The 2τfs samples can be
packed in ⌈

2τfs
bT/(`n + κ)c

⌉
ciphertexts, while the 2m obfuscation values can be packed
in d 2m

bT/(max{2`n+κ+1,`e+κ}+1)ceciphertexts. At this point C
needs to evaluate the GC. The circuit can be transmitted
offline and is composed by m sub-circuits computing the
frame SNR and one sub-circuit computing the whole SNR.

Since the energy values can be represented with `e bits, the
GC that computes each SNRf is composed by 2 subtrac-
tion circuits (`e non XOR gates), the circuit implementing
the SNR computation (2(`e − 1) + `e − dlog2(`e + 1)e +
`e = 4`e − dlog2(`e + 1)e − 2 non-XOR gates) and a con-
trolled addition/subtraction circuit [10] that blinds the re-
sult (`SNRf + κ non-XOR gates). Similarly the SNR from
the whole filtered and noise signal energies (having bitlength
`E) is computed and the circuit related is composed by
6`E − dlog2(`E + 1)e − 2 + `SNR + κ non-XOR gates. The
whole circuit is hence composed by m(6`e−dlog2(`e + 1)e−
2+`SNRf +κ)+6`E−dlog2(`E+1)e−2+`SNR +κ non-XOR
gates having size 4t bits each. C’s inputs to GC are 2m ener-
gies represented with `e bits each and 2 energies represented
by `E bits. The secrets relative to C’s input are transmitted
by using OT. Since the number of input bits is greater than

Table 2: Online and offline bandwidth (bits) re-
quired by the protocol

Offline Online

HE 0 26,626,048
circuit 3,402,240 0
C secrets to GC (OT) 914,560 438,080
S secrets to GC 432,320 0

Total 4,749,120 27,064,128

3t, the complexity of the OT is reduced to the transmission
of ≈ 6t2+4(2m`e+2`E)t bits offline and 2(2m`e+2`E)t bits
online. S’s inputs to the GC are the secrets corresponding
to the random values used to blind the energies at the input
and the SNR at the output. Notice that the values can be
generated offline. Thus, they can also be transmitted of-
fline together with the circuit, resulting in the transmission
of 2m`e + 2`E + m(`SNRf + κ) + (`SNR + κ) secrets of size
t bits. C sends S m ciphertexts containing the obfuscated
frame SNR, one ciphertext containing the SNR and, finally,
two ciphertexts to compute the SNR variance.

4.3 Classification Performance
From each signal in the dataset, we obtained segments that
can be subdivided into clean (c) or noisy (n). A segment
is considered noisy if classified as such in the Physiobank
databases. In a real implementation an expert decides if the
signals used for training are clean or noisy.

Due to the short length of the signals in the database (30
minutes), the number of segments for test is limited. Fur-
thermore, if there are few (< 10) clean or noisy segments
extracted from a Physiobank database signal, the signal is
discarded by the test. We performed three different tests in
which we trained and evaluated the classifiers on three dif-
ferent data sets. The first data set (c/n) was built by using
only real clean and noisy sections. The second (c/a) data set
was built by using clean sections and sections where artifi-
cial noise was added to whole clean sections (a), considering
them as noisy sections. The last data set (c/p) is similar
to the second one, but, instead of completely noisy sections,
we used clean sections where the noise was added only to a
randomly chosen interval (p).

For each signal 60% of the segments of the different types
were randomly chosen for the training and the others were
used for the testing. A different β vector was obtained for
each individual (signal). Table 3 shows the results obtained
by using the linear classifier proposed in Section 3. More-
over the table shows the performance that we can obtain
by using only the mean of the frame SNR, the variance or
the frame SNR of the whole section. The table contains the
mean of the results of all the signals used for the tests. It is
clear from these results that the combination of all derived
values with a simple linear classifier significantly improves
the classification results.

5. CONCLUSION
In this paper, we have proposed a protocol to evaluate the
quality of an ECG signal specifically geared towards remote
health monitoring applications. The algorithm that we pro-
pose divides the incoming signal into windows, computes the



Table 3: Performance of the protocol using the lin-
ear classifier or a single feature.

Test type Linear classifier σSNR µSNR SNR

c/n 0.8490 0.8158 0.7061 0.7325
c/a 0.8365 0.8005 0.8368 0.8234
c/p 0.7377 0.6729 0.6695 0.6666

signal-to-noise ratios of the windows and its first and second
order moments (mean and variance). These values are then
used together with the SNR of the whole signal to classify it
as clean or noisy depending on the result of a linear classifier,
whose training set is specific to each individual. Implement-
ing such a classification method in the plain domain, we
achieve more than 84% correct classification rate on signals
of the MIT Arrhythmia database, while the classification ac-
curacy obtained with ECGs where synthetic noise is added
is a bit lower. We expect to be able to improve the quality of
the classification result by using more advanced techniques
(PCA,LDA, etc.). The privacy-preserving version would re-
quire the transmission of ≈ 3.4 Mbytes of data, making a
real implementation feasible. We also describe how to map
this methodology to the encrypted domain using both ho-
momorphic encryption primitives and Yao’s garbled circuits.
Similarly to [4], the protocol complexity can be reduced by
performing tests to determinate the real bitlength of the val-
ues involved.
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