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Abstract—While in theory any computable functions can be evaluated
in a Secure Two Party Computation (STPC) framework, practical
applications are often limited for complexity reasons and by the kind of
operations that the available cryptographic tools permit. In this paper we
propose an algorithm that, given a function f() and an interval belonging
to its domain, produces a piecewise linear approximation f̃() that can
be easily implemented in a STPC setting. Two different implementations
are proposed: the first one relies completely on Garbled Circuit (GC)
theory, while the second one exploits a hybrid construction where GC
and Homomorphic Encryption (HE) are used together. We show that from
a communication complexity perspective the full-GC implementation is
preferable when the input and output variables are represented with a
small number of bits, otherwise the hybrid solution is preferable.

I. INTRODUCTION

In the last years an increasing attention has been given to the
development of tools for processing encrypted signals [1]. This
interest is due to the call for security stemming from applications
where two or more non-trusted parties wish to collectively process
one or more signals to reach a common goal. While the parties
involved have in common the same goal, they do not trust each other
and are not available to disclose their private inputs to the other
parties. Therefore there is the necessity that the signals are processed
in a secure way, e.g. directly in encrypted form. In the simplest case,
the above scenario consists of only two parties. One party, say Alice,
owns a signal that has to be processed in some way by the other
party, hereafter referred to as Bob. Since Alice and Bob do not trust
each other, Bob is required to process the signal owned by Alice
without getting any information about it, not even the result of the
processing. At the same time, Bob wants to protect the information
it uses to process the signal provided by Alice.

Several cryptographic primitives exists, that once coupled with
a suitable design of the underlying signal processing algorithms,
allow one to process signals that have been secured in some way,
e.g. (but not only) by encrypting them. In the recent scientific
literature such techniques are usually referred to as s.p.e.d. (standing
for Signal Processing in the Encrypted Domain), or SMPC (for
Secure Multi-Party Computation) techniques (STPC: Secure Two
Party Computation, if only two parties are involved). The main
STPC protocols, used in privacy preserving applications, are based
on Homomorphic Encryption (HE) and Garbled Circuits (GC).

The number of possible applications of STPC techniques is vir-
tually endless, but in practice s.p.e.d. applications are often limited
by the kind of operations that can be performed on the data. HE
allows one to evaluate only linear operations on encrypted data and
in the past years many papers have been published with protocols
(having high complexity) able to compute particular functions such
as bit decomposition, comparison [2], division [3], etc. On the other
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side GC allows one to evaluate any function that can be represented
with an acyclic binary circuit. Some functionalities have simple
implementations, such as comparison, addition, multiplexer, etc.,
while others have higher complexity, such as product, division [4],
logarithm [5], etc. Hybrid protocols, based on HE and GC, have been
proposed to take advantage of the strong points of the two techniques,
so that complex protocols are developed as a concatenation of sub-
protocols, some of them implemented by using HE and other by
using GC [9], [10]. To connect HE and GC subprotocols, an interface
protocol has been proposed in [11]. Recently Fully Homomorphic
Encryption (FHE) schemes [6], [7], [8] have been proposed. They
permit to evaluate any boolean function without interaction by a party
owning only the public key. Unfortunately, FHE is still not efficient,
due to the bit-length of ciphertexts (each one encrypting a single bit)
and public key. Despite the great deal of research carried out so far,
we are still lacking a generic and efficient way to implement any
function, such as trigonometric, hyperbolic and statistical functions,
in a STPC framework.

In this paper we propose a general approach that permits one to
evaluate any function having limited domain and codomain through a
piecewise linear approximation. We suppose that both the input and
output values of the function are secret (input comes from previous
computation and output is used for further computation, hence they
can not be revealed to the parties involved to avoid any leakage of
information) while the function is part of a known protocol and hence
is public.

The main contribution of this paper is a two-phase protocol that
permits to evaluate a linear approximation of a function f(), given
parameters like the maximum representation error and the accuracy
representation of variables, in a STPC scenario. In the first phase
the function is processed in the plain domain so that a particular
piecewise linear representation, permitting an easy and efficient
implementation in the encrypted domain, is obtained. In the second
phase the approximation is implemented by using STPC tools. We
provide two different solutions: the first one based only on GC and
the second one based on a hybrid protocol, obatined by combining
GC and HE. Finally we show that the full-GC solution is preferable
when the input is represented with a small number of bits, otherwise
the hybrid solution is preferable.

This paper is organized as follows. In Section II the main crypto-
graphic tools are presented. The main idea of the protocol is described
in Section III, while its STPC implementations are presented in
Section IV and finally compared in Section V. We conclude the paper
with some conclusions and proposals for future works in Section VI.

II. CRYPTOGRAPHIC TOOLS

We start by presenting the cryptographic primitives our protocol
relies on, namely Garbled Circuits (GC) and Homomorphic Encryp-
tion (HE).



Throughout the paper we adopt the semi-honest security model,
where the parties involved follow the protocol as prescribed but try
to learn as much as possible from the messages exchanged and their
private inputs. The security of the part of our protocol based on GC
is guaranteed by the security of the GC primitive, while the part
implemented by using HE is secure, given the IND-CPA property
of the encryption protocol used. The security of the hybrid protocol
composed by more secure sub-protocols (some based on GC and
some on HE) is proven in [11].

A. Garbled Circuit

In our protocol we adopt the GC construction outlined in [12] for
the secure evaluation of functionality represented by a Boolean circuit
C in the two party setting. Security of the approach has been proved
in [13]. We summarize the main ideas in the following. First the
constructor (say Bob), creates a garbled circuit C̃: for each wire
Wi of the circuit, he randomly chooses a complementary garbled
value W̃i =

〈
w̃0

i , w̃
1
i

〉
consisting of two secrets, w̃0

i and w̃1
i , where

each w̃j
i is the garbled value of Wi’s value j and is represented

with t bits, (t is a security parameter); further, for each gate Gi, Bob
creates a garbled table T̃i such that given a set of garbled Gi’s inputs,
T̃i allows one to recover the garbled value of the corresponding Gi’s
output, and nothing else. The Garbled tables, having size 4t bits each,
are transmitted to the evaluator (say Alice). Then garbled values
corresponding to Alice’s input wires xj are (obliviously) transferred
to Alice. An 1-out-of-2 Oblivious Transfer (OT) protocol [14] is a
two-party protocol, where Bob inputs a pair of `-bit strings S =〈
s0, s1

〉
with s0, s1 ∈ {0, 1}` and Alice inputs a choice bit b ∈

{0, 1}. At the end of the protocol, Alice learns sb, but nothing about
s1−b whereas Bob learns nothing about b. Within a GC protocol, the
OT protocol is used to associate the t-bit long secrets to the input
bits of Alice: Bob inputs complementary garbled values W̃j into the
protocol; Alice inputs xj and obtains w̃xj

j as output. Now, Alice can
evaluate the garbled circuit C̃ to obtain the garbled output simply by
evaluating the garbled circuit gate by gate, using the garbled tables
T̃i.

The basic GC protocol outlined above can be improved in many
ways as shown in [15] and [16]. In particular, in [15] the authors
suggest to use a point and permute technique to decrypt directly
the correct row of the table and replace encryptions by Hash
functions, the scheme proposed in [16] allows “free” evaluation of
XOR gates so that a XOR gate has no garbled table associated
and its evaluation consists of XOR-ing its garbled input values,
resulting in no communication and negligible computation. Several
OT implementations have been proposed, such as the one described
in [17] that is secure against malicious Bob and semi-honest Bob
in the random-oracle model and has asymptotically communication
complexity approximately equal to 6t bits. Considering that OT can
be precomputed [18], many OT’s can be evaluated off-line on random
values (independent from the real values used during the circuit
evaluation) and resulting in an on-line communication complexity
approximately equal to 2t bits.

For the implementation of our protocol, we need many GC sub-
protocols implementing the following functionalities, whose descrip-
tion can be found in [19], [16]. The sub-circuits used have a number
of gates that depends linearly on the input bit-length, except for the
product circuit which has a squared complexity.

B. Homomorphic Encryption

With a semantically secure, additively homomorphic, asymmetric
encryption scheme, it is possible to compute the encryption of Ja+bK

by the encryptions of JaK and JbK, i.e. Ja + bK = JaK � JbK. An
additive homomorphic scheme also permits to compute the product
between an encrypted number and a public factor by repeated sums,
i.e. JabK = JaK � b. A commonly used additively homomorphic
cryptosystem is the Paillier cryptosystem [20] which has plaintext
space ZN and ciphertext space Z∗N2 , where N is a T -bit RSA
modulus and a ciphertext is represented with 2T bits. By using
Paillier cryptosystem it is possible to evaluate the encryption of
the sum of two values through the product of the corresponding
ciphertexts Ja+ bK = JaK · JbK and the product between two values,
one of them public, through exponentiation: JabK = JaKb.

C. Hybrid protocols

The use of hybrid protocols, such as in [5], [9], permits to
efficiently evaluate functionalities for which full-HE or full-GC
solutions would not be efficient (or even impossible). Due to the
different representation of the data for GC and HE, conversion from
homomorphic ciphertexts to garbled secrets (or vice versa) must be
performed by using additive blinding. In particular, by referring to the
protocols described in [11], it is easy to derive that the conversion of
an `-bit long value from HE to GC requires the on-line transmission
of additional 2T+7`t bits, while conversion from GC to HE requires
an overhead of 2T+(`+τ)5t bits, where τ is an obfuscation security
parameter (usually τ = 80).

III. FUNCTION APPROXIMATION IN CIPHERTEXT SPACE

Given a generic, but limited, function f() with domain [xa, xb)
and matched codomain [ya, yb], our goal is to find an approximation
that can be efficiently calculated in the ciphered domain.The easiest
solution consists to represent f() through a piecewise linear function
f̃() in a discrete space, obtained by quantizing the domain, i.e
[xa, xb) is mapped into a sequence of integer numbers {x̂0, . . . , x̂n}.
Each segment of the approximation is fully characterized by its
extreme points, i.e. the k-th segment is characterize by the couples
(x̂k, ŷk) (x̂k+1, ŷk+1). Considering that each extreme is common to
two segments, the N+1 couples (x̂0, ŷ0) (x̂1, ŷ1) . . . (x̂N , ŷN ) are
sufficient to describe N segments.

sample
quantized sample

function
approximation

Figure 1. Sampled function f and its approximation.

Considering that STPC protocols work with integer values, we
need to sample and quantize the values of f(), introducing an
approximation error εd that can be reduced at will. εd decreases by
choosing a smaller step during the sampling of the input x or by
using an higher quantization factor on the output y. These parameters
affect the number of bits bx and by used to represent the values
x̂0 . . . x̂n and ŷ0 . . . ŷn respectively. Note that x̂ = d

(
2bx

xb−xa

)
xc and



ŷ = d
(

2by

yb−ya

)
yc and the sampled and quantized function is f̂(). We

underline that, being x the output of a previous secure computation,
the bit-length bx, and hence the quantization step, are usually imposed
by the operations previously performed.

Two steps are needed to calculate the approximated value ŷ of the
function in a generic point x̂ ∈ {x̂0 . . . x̂n}:

1) the interval c containing x̂ is selected,
2) f̃(x̂) is computed by through linear interpolation.

The first step requires (N − 1) comparisons because we know that
we always have x̂ ≥ x̂0 and x̂ < x̂n. Obviously only an interval
c exists such that x̂c ≤ x̂ < x̂c+1. The second step consists in a
linear interpolation inside the line previously selected, computed by
the formula:

ŷ =
ŷc+1 − ŷc
x̂c+1 − x̂c

(x̂− x̂c) + ŷc. (1)

Taking into account that (1) needs to be calculated on discrete values,
the ratio

mc =
(ŷc+1 − ŷc)
(x̂c+1 − x̂c)

(2)

introduces an additional error when the numerator is not a multiple of
denominator. To solve the problem, all the coefficients mi need to be
quantized. To avoid introducing other errors, we can multiply them
by α = lcm {x̂i+1 − x̂i}N−1

i=0 , so that for each interval i, (x̂i+1− x̂i)
always divides α(ŷi+1 − ŷi). Of course the final result is amplified
by a factor α. Note that the term (2) of each interval can be pre-
computed since it does not depend on x̂. A different solution consists
to evaluate the division in the ciphered space, but this operation has
a high complexity [3], [4].

Unluckily the α value can be very big, hence we decided to impose
the length of the intervals (the distance between the extremes) in
which the piecewise function is decomposed to be powers of two,
i.e. x̂i+1 − x̂i = 2bi for some bi. This constrain has two purposes:

- the value of α is easier to calculate, being the length of the
longest intervals, hence representable with bv = maxi bi bits;

- the final result of the protocol is amplified by a factor α and
has a representation accuracy of 2−bv .

The formula to calculate the function approximation for a general
x̂ ∈ {x̂0 . . . x̂n} then becomes

ŷα =Mc(x̂− x̂c) +Qc, (3)

where

Mc = (ŷc+1 − ŷc)
α

(x̂c+1 − x̂c)
,

Qc = ŷcα. (4)

We can easily observe that:
- the Mi terms are always integers and can be pre-computed;
- the Qi terms can be obtain by left-shifting ŷi.
Having amplified the mi coefficients by α, the approximation

function is suitable to be computed in the ciphered space. The only
drawback is that the result has some more least significant bits that
can be simply ignored.

We now describe the procedure to find a piecewise linear ap-
proximation f̃() of a function f(), given a maximum representa-
tion error εsmax , arbitrarily chosen. First of all f() is discretized:
2bx samples are chosen in the interval [xa, xb] with constant step
and the corresponding y values are quantized and represented by
using by bits, so that their approximation also lies in a discrete
space. The piecewise linear function f̃() we aim to is fully de-
scribed by its discontinuity points(x̂0, ŷ0) (x̂1, ŷ1) . . . (x̂N , ŷN ).

The approximation must introduce an error εs ≤ εsmax . Given an
interval in the space of samples, the approximation error εs,i of
the piecewise linear function in the interval is the largest distance
between a sample and the corresponding point on the segment, i.e.
εs,i = maxx̂∈{x̂i...x̂i+1} |f̂(x̂) − f̃(x̂)|, where f̂() represents the
discrete approximation of f().

We propose a two-step algorithm that generates that piecewise
linear function f̃() starting from the samples of f̂().

1) The first step is a bisection algorithm. At the beginning the
whole function is approximated in the interval {x̂0 . . . x̂n} with
the segment connecting (x̂0, ŷ0) to (x̂n, ŷn). We easily obtain
that

ŷ =
ŷn − ŷ0
x̂n − x̂0

(x̂− x̂0) + ŷ0 ∀x̂ ∈ {x̂0 . . . x̂n−1}, (5)

where

εs = max
i=0..N

{∣∣∣∣[ ŷn − ŷ0x̂n − x̂0
(x̂i − x̂0) + ŷ0

]
− ŷi

∣∣∣∣}. (6)

If εs ≤ εsmax the piecewise linear is fully characterized by the
extremes (x̂0, ŷ0), (x̂n, ŷn). Otherwise the error is too large
and the function domain is split into two parts. The procedure
is repeated on each half, trying to approximate each of them
with a single segment and so on until εs,i ≤ εsmax in each
interval obtained. This procedure always ends after at most bx
iterations. At the end of this step a correct f̃ is obtained even
if it may be suboptimal.

2) Each pair of consecutive intervals is merged if
- both the intervals have the same length, resulting in a

merged interval that still respects the constraint (x̂(i+1) −
x̂i) = 2bi ;

- the error of the approximation in the new interval is still
lower than εsmax .

This step is iterated until there are no more intervals that can
be joined.

Let consider for example the function y = 1
5
x3 + 4

5
x2 − 7

5
x− 2

in the interval [−6, 3). Applying the procedure described above with
different values of b = bx = by and setting different errors ε, we
obtain the number of segments shown in Table I, where the / symbol
denotes that it is not possible to obtain an approximation with the
given parameters.

Table I
# OF INTERVALS FOR ERROR LIMITS

ε�b 4 8 12 16 20 24
0.1 / 25 24 24 24 24
0.01 / / 18 73 73 73
0.001 / / / 219 212 211

IV. STPC IMPLEMENTATIONS

As already outlined in Section II, the main tools for STPC are HE
and GC. Moreover, it is also possible to develop hybrid protocols
by composing subprotocols, each one implemented with the most
suitable solution.

We excluded a priori a purely homomorphic solution since the
protocol introduced in Section III needs too many comparisons, for
which no efficient homomorphic implementation exists. Hence the
choice is between a full-GC solution and a hybrid solution. We start
by describing both the protocols and then we analyse them to estimate
which is the most efficient.



We assume that both the input x̂ and the output ŷ are secret and
available to one of the two parties: during GC computation they
are available to Alice (the evaluator) in the form of garbled secrets,
while during HE computation are available to Bob in the form of
ciphertexts. This assumption mimics a case in which the function
evaluation protocol is embedded inside an outer protocol.

A. Full-GC implementation

To evaluate the function f() by using a full-GC protocol, we need
to describe the circuit that implements its piecewise approximation.
The circuit can be split into two parts resembling the structure of the
algorithm.

1) The sub-circuit of Figure 2 selects the interval c the input x̂
belongs and returns the parameters x̂c|ŷc|Mc associated to the
interval (”|” denotes concatenation). For each segment i, only
three input parameters are needed: the coordinates of the left
extreme (x̂i, ŷi), which are respectively bx and by bit-long, and
the parameter Mi -defined in (4)- which is (by + bv) bit-long.

CMP

M
U
X

CMP

M
U
X

CMP

M
U
X

Figure 2. Pure garbled circuit protocol (first part).

The circuit is composed by N − 1 comparators CMP and
N − 1 multiplexers MUX. The inputs of the i-th CMP, with
i = 1 . . . N − 1, are x̂ and the left extreme of the interval
x̂i, both of them represented with bx bits. The output is 1 if
x̂ ≥ x̂i, 0 otherwise. The i-th MUX chooses between the output
of the (i+ 1)-th MUX (x̂N−1|ŷN−1|MN−1 for the (N − 1)-
th MUX) and x̂i−1|ŷi−1|Mi−1 according to the output of the
i-th CMP, i.e. if the output of CMP is 0, the corresponding
MUX propagates x̂i−1|ŷi−1|Mi−1, otherwise it propagates the
output of the previous (right) MUX (or x̂N−1|ŷN−1|MN−1

for the (N − 1)-th MUX). The inputs of the multiplexer are
represented with (bx + by + (by + bv)) bits.
Because all the parameters are obtained by a well known
plain protocol applied to the public function f(), they are
also considered known to both parties. Hence it is convenient
to embed these values within the circuit as constants, thus
resulting in a lower number of input bits from the garbler and a
reduction in the size of the circuit. The only input to the circuit
is then x̂ which is bx bit-long.
This sub-circuit outputs the secrets relative to the three param-
eters characterizing the segment approximating f() within the
interval that contains x̂.

2) The second part of the circuit (see Figure 3) implements
equation (3). Some simplifications can be applied knowing that
the subtractor never outputs values greater than α (which is bv
bit-long) and that the multiplier never outputs values greater
than ŷmax which is by bit-long. This part of the circuit does
not need any additional input from the garbler or from the
evaluator. The final output is ŷ, represented with (by + bv)
bits, but the least significant bv bits can be ignored because
they provide extra value precision.

SUB

MUL

ADD

Figure 3. Pure garbled circuit protocol (second part).

The main advantage of the full-GC implementation is the use of
only one cryptographic primitive. If the function f() is part of a
protocol, where the previous and following functionalities are also
implemented by using only GC, the integration of the sub-protocols
that approximate f() would be very easy.

B. Hybrid implementation

In this protocol we consider that for the GC part Bob acts as garbler
and Alice as evaluator, while in the HE part, Alice owns the private
key and distributed the public key to Bob.

Our solution is composed by a GC section, implementing the
interval identification, followed by a HE section, implementing
approximation. We assume that the hybrid implementation is placed
between two homomorphic sub-protocols, hence both the input x̂
and the output ŷ are available to Bob in encrypted form. For the
conversion of the ciphertext Jx̂K in the corresponding garbled secrets,
Bob generates a random number r, having bit-length bx + τ , where
τ is the security obfuscation parameter defined in Section II-C, then
he uses r to additively obfuscate Jx̂K and sends the result Jx̂ + rK
to Alice, who can decode it and use the least bx significant bits of
(x̂+ r) as input to the garbled circuit of Figure 4, while Bob inputs
the random value r together with (N − 1) random obfuscation bits
r1, r2, ...rN−1, used to hide the outputs of the circuit to Alice. The
circuit starts by removing the obfuscation r through a subtractor and,
similarly to the first part of the full-GC solution, the obtained x̂ is
used in N − 1 comparison circuits. The XOR between the output of
two adjacent CMP circuits is computed, returning a sequence of bits
bi, where only bc = 1. Finally, the bi bits are obfuscated by using
XOR gates and the array {J(bi ⊕ ri)K}N−1

i=0 is output to Alice.

CMP CMP CMP

SUB

r

(b + r )

r

(b + r )

r

0

(b     + r     )

r

(x+r)

Figure 4. Garbled circuit used inside the hybrid protocol.

In the meanwhile Bob interpolates JŷiK = Jx̂KMi ·J−Mi ·x̂i+Q̂iK,
obfuscates all JŷiK with new random values si and sends them to
Alice. Alice decrypts all the (N − 1) Jŷi + siK and multiplies each



of them for the obfuscated bits computed by the garbled circuit. Then
she encrypts and sends them back to Bob together with the encryption
of the obfuscated bits, i.e. Jbi ⊕ riK. At this point Bob can retrieve
all the ciphertexts Jŷi · biK with the formulas

Jyi·biK =
{

J(bi ⊕ ri)(ŷi · si)K · Jbi ⊕ riK(−si) if ri = 0,

J(bi ⊕ ri)(ŷi · si)K(−1) · JŷiK · Jbi ⊕ riKsi if ri = 1.

Finally Bob adds all the Jŷi · biK by using the homomorphic
property. Considering that only the bit bc associated to the correct
interval assumes value 1, while the others are zero, Bob obtains
JŷcK =

∏N−1
i=0 Jŷi · biK.

V. PROTOCOLS COMPARISON

In this section we are going to compare the protocols described so
far. Providing a computation complexity comparison is a difficult
task, since the complexity of cryptographic tools depends on the
different primitives: Garbled Circuits are based on Hash functions,
while Homomorphic Encryption is based on different computation
performed on big values (discrete exponentiations in the Paillier cryp-
tosystem). Hence in the following we focus only on communication
complexity analysis.

The parameters involved in the protocol are summarized in Table II
together with their bit-lengths and the intervals of values we assigned
them for the communication complexity analysis. By assuming short

Table II
PROTOCOLS PARAMETERS. α AND NUMBER OF SEGMENTS ARE RESULTED

BY TESTS.

content name value(s)
bits for quantization of x axis bx 8− 24
bits for quantization of y axis by 8− 24
bits for quantization of α bv 4− 12
number of segments N 10− 210
homomorphic security parameter T 1024
garbled circuit security parameter t 80
obfuscation parameter for HE to GC conversion τ 80

term security [21], for homomorphic cryptography we need a standard
security parameter of 1024 bits which means that every secret is
2 · 1024 = 2048 bits long, while for the all garbled circuits we
assume a security parameter of 80 bits.

For the implementation of GC we use precomputation of oblivious
transfers, so that an OT 1

2 over t-bit secrets needs the online transmis-
sion of ∼ 2t bits and for each non-XOR gate 4t bits are transferred,
while no communication is needed for the XOR gates.

It is important to remember that the parameters x̂i|ŷi|Mi are public
and hence managed as constants in the circuits. The number of gates
in the circuit can be reduced according to their values. For example if
a constant bit assuming the value 1 is put at the input of an AND gate,
the gate can be erased and the other input bit can be propagated to the
following gates. A difficult task is to estimate the number of non free
gates that can be eliminated due to constant inputs, especially with
large circuits implementing an approximation with many segments.

For the full-GC solution we estimated the impact of the above
simplifications by actually constructing several circuits. To evaluate
the simplification of the circuit obtained by wiring the constant inputs,
we used circuits implementing approximations of the polynomial y =
1
5
x3 + 4

5
x2 − 7

5
x − 2 in the interval [−6, 3). We took the cases

where bx = by = b with b ∈ {8, 12, 16, 20, 24}. For each different
resolution of input and output three tests were run, changing the
desired εsmax in the set {0.1, 0.01, 0.001}. In each test we built both
a simplified circuit and one without simplification. Then the ratio

between the number of non free gates of the first and number of
non free gates of the second was computed. The mean value of these
tests is 0.56 with small variance, so the transmitted bits related to the
number of non free gates becomes 0.56(2(N − 1)bx + 3by + bv +
2bvby) ∗ 4t on the average.

The number of non-XOR gates and the bits transmitted for all the
sub-circuits are shown in Table III, where we do not take into account
the simplification given by the constant inputs, since the number of
non free gates eliminated depends heavily from the values of the
inputs. As already said, we assume that the x̂ input comes from a
previous GC computation and the corresponding secrets are already
available to the evaluator, hence there is no transmission for the input.
Similarly we have no transmission for the output, that is used in
further computations.

For the hybrid protocol, we implemented the garbled circuit part
similarly to the full-GC construction obtaining the complexities
shown in Table IV and Table V. For the homomorphic part we just
considered secrets transmission.

In the hybrid protocol wiring constants is possible only inside the
comparators where one of the inputs is always constant. We can
easy verify that if the least significant constant bit is true we can
eliminate one non free gate. If the two least significant constant bits
are both true we can eliminate two non free gates and so on. In
general the probability of eliminating i gates is equal to 2−i. In a
comparator of bx bits we have an average reduction of

∑bx
i=1 i2

−i =
2−bx(−bx + 2bx+1 − 2). Varying the values bx and N similarly to
the full-GC protocol, we can calculate the average ratio between the
number of non-free gates in the circuit with wired constants and the
standard circuit obtaining an average of 0.78. Hence the transmitted
bits relative to the circuit gates becomes 0.78Nbx ∗ 4t.

Alice inputs the obfuscated value to the circuit hence 2tbx bits
are transmitted during the OT, while the transmission of the secrets
regarding the obfuscation values (r and ri) known by Bob needs other

Table III
NUMBER OF NON FREE GATES IN GARBLED CIRCUITS (WITHOUT

CONSTANT REDUCTION)

Sub circuit # of non free gates # of transmitted bits
Comparators (N − 1)bx (N − 1)bx ∗ 4t
Multiplexers (N − 1)bx + 2by + bv ((N − 1)bx + 2by + bv) ∗ 4t
Subtractor bv bv ∗ 4t
Adder bv + by (bv + by) ∗ 4t
Multiplicator 2bv(by − 1) 2bv(by − 1) ∗ 4t

Total 2(N − 1)bx + 3by
+bv + 2bvby

(2(N − 1)bx + 3by
+bv + 2bvby) ∗ 4t

Table IV
NUMBER OF NON FREE GATES IN GARBLED CIRCUITS (WITHOUT

CONSTANT REDUCTION)

Sub circuit # of non free gates # of transmitted bits
Comparator (N − 1)bx (N − 1)bx ∗ 4t
Subtractor bx bx ∗ 4t
Total Nbx Nbx ∗ 4t

Table V
NUMBER OF BITS TRANSMITTED FOR IO IN GARBLED CIRCUITS

# of IO bits # of transmitted bits

Evaluator Input bx bx ∗ 2t
Output (N − 1) (N − 1)2t

Garbler Input bx + (N − 1) (bx + (N − 1))t
Output 0 0

Total 2(bx + (N − 1)) 3(bx + (N − 1))t



(bx+(N−1))t bits. Moreover, in the protocol 1+(N−1) ciphertexts
are transmitted from Alice to Bob and 2(N − 1) ciphertexts are
transmitted from Bob to Alice for a total of 2T (3N − 2) bits.

In summary, 0.78Nbx ∗ 4t+3(bx +(N − 1))t+2T (3N − 2) bits
are transmitted by the hybrid protocol.

protocols trasmission difference
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Figure 5. Transmission difference between hybrid protocol and full-GC
protocol.

Figure 5 shows the difference between the communication com-
plexity of the hybrid protocol and the one of the pure GC protocol
with different number of bits used to represent x̂ and ŷ (in the x-
axis) and with different number N of segment (in the y-axis). When
the difference is positive the pure GC protocol is more convenient
than the hybrid one from a communication complexity point of view,
while when it is negative the hybrid takes less bits to be transmitted.
The different values of N are represented with different plots.

During the tests, we considered a case in which the domain and
codomain are represented by the same number of bits b = bx = by
and bv = bx

2
(we verified experimentally that this value is sufficient).

We let N vary from 10 to 210 with step 40 and b from 8 to 24 with
step 2. As we can see the pure garbled circuit protocol is convenient
whenever x and y are represented with less than 12 bits.

VI. CONCLUSION

Given a function f() and an interval belonging to its domain,
we considered the problem of approximating f() by means of a
piecewise linear function f̃() in a STPC setting. We have described
two possible protocols implementing the approximation. The first one
relies completely on Garbled Circuit theory, while the other one relies
on a hybrid solution where GC and Homomorphic Encryption are
used together. Considering the presence of constant public inputs to
the circuit, the number of non-XOR gates can be reduced in both the
implementations. The reduction depends on the particular value that
each public input assumes and hence on the function we are going
to approximate and the number of bits used to represent the involved
values. We used a polynomial function as an example, obtaining for
the full-GC circuit an average reduction of 0.56, and 0.78 for the
hybrid protocol. In this setting, we have shown that hybrid solution
is preferable when bx > 12 bits.

The above result obviously depends on the to-be-approximated
function. In practice, given a function and a desired maximum error,
the designer has to vary many parameters, i.e. bx, by and bv , and
calculate for each of them the number of segments. Once described

the circuits for the different parameters, a circuit optimization proto-
col is run and only at this point the best configuration (including the
choice between the full-GC and the hybrid protocol) can be chosen.

In the future, we plan to extend our analysis to multivariate
functions f(x1, . . . , xn), and to consider a setting in which the
function f() has to be kept secret as well. Moreover non-linear
approximation can be approached.
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