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Abstract—We analyze the distinguishability of two sources under
adversarial conditions, when the error exponents of type I and type II
error probabilities are allowed to take an arbitrarily small, yet positive,
values. By exploiting the parallelism between the attacker’s goal and
optimal transport theory, we introduce the concept of Security Margin
defined as the maximum average per-sample distortion introduced by
the attacker for which the two sources can be reliably distinguished. We
compute the security margin for some classes of sources and derive a
general upper bound which is valid for any kind of sources assuming that
the distortion is measured in terms of the mean square error between
the original and the attacked sequences.

I. INTRODUCTION

Driven by the necessity of understanding the fundamental limits
of source identification in the presence of an adversary, [1] and [2]
have introduced the source identification game as a game played by
a Defender (D) and an Attacker (A) defined as follows: given two
discrete memoryless sources X ∼ PX and Y ∼ PY , with the same
alphabet X , and a test sequence xn = (x1, x2 . . . xn), the goal of
D is to decide whether xn has been drawn from X (hypothesis H0)
or not (hypothesis H1). At the same time, the goal of A is to take
a sequence yn generated by Y and modify it in such a way that D
classifies it as being generated by X . In doing so, D must ensure
that the false positive error probability Pfp of deciding for H1 when
H0 holds stays below a given threshold, whereas A has to respect a
distortion constraint, limiting the amount of modifications that can be
introduced into yn. The payoff of the game is the false negative error
probability (i.e. the probability of deciding for H0 when H1 holds),
in that D and A aim, respectively, at minimizing and maximizing it.

In [2], a version of the game in which the defender is confined
to base its analysis only on first order statistics of xn is studied,
and the asymptotic equilibrium point of the game is determined
when the length of the test sequence tends to infinity and the false
positive error probability is required to tend to zero exponentially
fast with decay rate at least equal to some λ. Given two probability
mass functions (pmf) PX and PY , a false positive error exponent
λ, and the maximum allowed distortion Dmax, the analysis in [2]
permits to determine whether, at the equilibrium, the false negative
error probability Pfn tends to 0 or to 1 when n → ∞. This,
in turn, permits to define the so-called indistinguishability region
Γ(PX , λ,Dmax) as the set of the pmf’s that can not be distinguished
reliably from PX when n→∞ due to the presence of the attacker.
If PY ∈ Γ(PX , λ,Dmax), in fact, a strictly positive false negative
error exponent can not be achieved and the attacker is going to win
the game.

An undesirable feature of the analysis carried out in [2] is the
asymmetric role of the false positive and the false negative error
exponents, i.e. λ and, say, ε (ε = limn→∞− 1

n
logPfn). In [2], in

fact, the defender is required to ensure a given λ, while he is satisfied
with any strictly positive ε. In this paper, we relax this constraint

and allow the defender to diminish λ so to ease attaining a positive
ε. More precisely, in a way that resembles Stein’s lemma [3], we
analyze the behavior of Γ(PX , λ,Dmax) when λ→ 0 to see whether,
given a maximum allowable distortion Dmax, it is possible for D to
simultaneously attain strictly positive error exponents for the two
kinds of error, hence permitting to reliably distinguish between PX
and PY despite the presence of the adversary. Having done so, we will
adopt a slightly difference perspective and introduce the new concept
of Security Margin, defined as the maximum distortion allowed to the
attacker for which two sources X and Y can be reliably distinguished.
As we will see, this is a powerful concept that permits to summarize
in a single quantity the distinguishability of two sources X and Y
under adversarial conditions.

The rest of this paper is organized as follows. In Sec. II, we
formally introduce the source identification game and summarize the
main results proven in [2]. With respect to [2], we give a novel,
more insightful, interpretation of the set of strategies available to the
attacker, based on the concept of transportation map. In Sec. III, we
investigate the relationship between the optimal attacker’s strategy
and optimal transport theory, laying the basis for the subsequent
analysis. In Sec. IV, we study the behavior of Γ(PX , λ,Dmax) when
λ → 0 and give a rigorous definition of Security Margin. In Sec.
V, we demonstrate the powerfulness of our analysis by deriving the
Security Margin for some common pmf’s. The paper ends with some
conclusions and directions for future work in Sec. VI.

II. THE SOURCE IDENTIFICATION GAME (SIlrks)

A 2-player game is defined as a 4-uple G(S1,S2, u1, u2), where
S1 = {s1,1 . . . s1,n1} and S2 = {s2,1 . . . s2,n2} are the set of
strategies the first and the second player can choose from, and
ul(s1,i, s2,j), l = 1, 2, is the payoff of the game for player l, when
the first player chooses the strategy s1,i and the second chooses s2,j .
A pair of strategies (s1,i, s2,j) is called a profile. In a zero-sum
competitive game we have u1(s1,i, s2,j)+u2(s1,i, s2,j) = 0, so that
the win of a player is equal to the loss of the other. In our set up, the
sets S1, S2 and the payoff functions are assumed to be known to both
players. In addition, we assume that the players choose their strategies
before starting the game so that they have no hints about the strategy
actually chosen by the other player (strategic game). Given the above
definitions, the source identification game with known sources and
limited resources, hereafter referred to as SIlrks, is defined as follows.

Defender’s strategies. To start with, we consider the strategies of
the Defender (SD). As outlined in the Introduction, we simplify the
problem by requiring that D bases its analysis only on first order
statistics of xn, that is we require that the acceptance region for
hypothesis H0 (referred to as Λn0 ) is a union of type classes1. Since

1A type class is defined as the set of all the sequences having the same
empirical distribution [3], [4].



a type class is univocally defined by the empirical pmf (type) of
the sequences contained in it, this is equivalent to define Λn0 as a
union of types P ∈ Pn, where Pn is the set of all the possible types
for sequences of length n. In addition, we consider the asymptotic
version of the game and require that Pfp decreases exponentially fast
with decay rate at least equal to λ. Under the above assumptions, the
set of strategies of D is defined as follows:

SD = {Λn0 ∈ 2Pn : Pfp ≤ 2−λn}, (1)

where 2Pn is the power set of Pn.
Attacker’s strategies. Given a sequence yn drawn from Y , the goal

of the attacker is to transform it into a sequence zn belonging to the
acceptance region chosen by D. Let us indicate by n(i, j) the number
of times that the i-th symbol of the alphabet is transformed into the
j-th one as a consequence of the attack. Similarly, we indicate by
SY Z(i, j) = n(i, j)/n the relative frequency with which the i-th
symbol is transformed into the j-th one. In the following, we refer
to SY Z as transportation map. An interesting property of SY Z is
that, for any additive distortion measure, the per-sample distortion
d(yn, zn)/n between yn and zn depends only on SY Z , since we
have d(yn, zn) =

∑
i,j n(i, j)d(i, j), where d(i, j) is the distortion

introduced when the symbol i is transformed into the symbol j.
Equivalently, the average per-sample distortion between yn and zn

is
∑
i,j SY Z(i, j)d(i, j). Even more interestingly, the empirical pmf

(i.e. the type) of the attacked sequence is univocally determined by
SY Z . In fact, by indicating with Pzn(j) the relative frequency of
symbol j into zn, we have:

Pzn(j) =
∑
i

SY Z(i, j) , SZ(j). (2)

Finally, we observe that the attacker can not change more symbols
than there are in the sequence yn, as a result a transportation map
SY Z can be applied to a sequence yn only if:

SY (i) ,
∑
j

SY Z(i, j) = Pyn(i). (3)

Equation (3), together with (2) suggests an interesting interpretation
of SY Z , SY and SZ , which can be seen, respectively, as the joint
empirical pmf between the sequences yn and zn, the empirical pmf
of yn and the empirical pmf of zn.

Since due to the limited resources assumption, Λn0 depends only on
the empirical pmf of the test sequence, and given that the empirical
pmf of the attacked sequence depends only on SY Z through SZ , we
can restrict the action of the attacker to the choice of a transportation
map among all the admissible maps, a map being admissible if:

SY = Pyn (4)∑
i,j

SY Z(i, j)d(i, j) ≤ Dmax.

In the following, we will refer to the set of admissible maps as
A(Dmax, Pyn). Given the above, the set of strategies available to the
attacker is the set of all the possible ways of associating an admissible
transformation map to the to-be-attacked sequence. In the following
we will refer to the result of such an association as SY Z(i, j; yn).

The payoff. The payoff of the game is the false negative error
probability, that is:

uD = −uA = −
∑

yn:SZ(j;yn)∈Λn
0

PY (yn), (5)

where PY (yn) is the probability that the source Y outputs the
sequence yn.

Equilibrium point. The main result of [2] is summarized by the
following theorem.

Theorem 1. The profile (Λ∗,n0 , S∗Y Z(i, j; yn)) with

Λ∗,n0 =

{
P ∈ Pn : D(P ||PX) < λ− |X | log(n+ 1)

n

}
, (6)

and

S∗Y Z(i, j; yn) = arg min
SY Z∈A(Dmax,Pyn )

D(SZ ||PX), (7)

is the only rationalizable equilibrium of the SIlrks game, which, then,
is a dominance solvable game [5].

In the above theorem, D(P ||Q) indicates the divergence (or
Kullback-Leibler distance) between two pmf’s P and Q [3]. Given
the optimal acceptance region Λ∗0, we can introduce the indistin-
guishability region Γn(PX , λ,Dmax) as follows:

Γn(PX , λ,Dmax) = (8)

{P ∈ Pn : ∃ SY Z ∈ A(Dmax, P ) s.t. SZ ∈ Λ∗,n0 }.

Note that the above analysis applies only to sequences of length n
(as explicitly indicated by the apex n in Λ∗,n0 and Γn), so the values
assumed by the empirical pmf’s and the transportation map belong
to Qn, i.e. the set of rational number with denominator n.

Due to the density of rational numbers in R, by letting n tend
to infinity we obtain the asymptotic counterpart of Γn, namely Γ,
specifying whether two sources can eventually be distinguished for
increasing values of n. Region Γ can be expressed as follows

Γ(PX , λ,Dmax) = (9)

{P ∈ P : ∃ SY Z ∈ A(Dmax, P ) s.t. SZ ∈ Λ∗0(PX , λ)},

where Λ∗0 is the asymptotic version of the set Λ∗,n0 :

Λ∗0(PX , λ) = {P ∈ P : D(P ||PX) ≤ λ}. (10)

Note that now the values P (i) and SY Z(i, j) are no longer required
to belong to Qn. More precisely, by using a slightly different
formulation with respect to [2], we can state the following theorem

Theorem 2. For the SIlrks game, the error exponent of the false
negative error probability at the equilibrium is given by:

ε = min
P∈Γ(PX ,λ,Dmax)

D(P ||PY ), (11)

leading to the following cases:
1) ε = 0, if PY ∈ Γ(PX , λ,Dmax);
2) ε 6= 0, if PY /∈ Γ(PX , λ,Dmax).

III. RELATIONSHIP WITH OPTIMAL TRANSPORT THEORY

Before going on with our analysis, we find it convenient to rephrase
the results described in Section II as an optimal transport problem
[6]. Let P and Q be two pmf’s, and let c(i, j) be a measure
specifying the cost of transporting the i-th symbol into the j-th one.
The optimal transport problem looks for the transportation map S∗PQ
that transforms P into Q by minimizing the average cost of the
transport. By using the notation introduced in the previous section,
this corresponds to solving the following minimization problem:

S∗PQ = arg min
SY Z :SY =P,SZ=Q

∑
i,j

SY Z(i, j)c(i, j). (12)

By interpreting the pmf’s P and Q as two different ways of piling up
a certain amount of earth, the minimum cost achieved in (12) can be
seen as the minimum effort required to turn one pile into the other,



where c(i, j) is the cost necessary to move a unitary amount of earth
from position i to position j. Due to such a viewpoint, the minimum
in (12) is usually called the Earth Mover Distance (EMD) between
P and Q (see [7]).

Optimal transport theory permits us to rewrite the indistinguisha-
bility region in a more compact and easier-to-interpret way. In fact,
it is immediate to see that (9) can be rewritten as:

Γ(PX , λ,Dmax) = (13)

{P ∈ P : ∃ Q ∈ Λ∗0(PX , λ) s.t EMD(P,Q) ≤ Dmax},

where in the definition of the EMD we let c(i, j) = d(i, j).
We point out that when the L2 distance is used to measure the

distance between symbols, that is when d(i, j) = (i− j)2, the EMD
between two probability distributions PY and PX corresponds to
the squared Mallows distance [8]. Given two sources X ∼ PX and
Y ∼ PY , the squared Mallows distance between PX and PY is
defined as the minimum mean square error between X and Y taken
over all joint probability distributions PXY such that the marginal
distribution are respectively PX and PY :

M2
2 (PX , PY ) = min

PXY :
∑

x PXY =PY∑
y PXY =PX

EXY [(X − Y )2]. (14)

Note that even if we introduced the EMD by considering finite-
alphabet sources, there is no need to restrict the definition of the
Mallows distance to discrete random variables; in fact at the end of
this paper we will extend our analysis and use the EMD or Mallows
distance to measure the distinguishability of continuous sources.

IV. THE SECURITY MARGIN

We now study the behavior of Γ(PX , λ,Dmax) when λ → 0.
Doing so will allow us to investigate whether two sources X and
Y are ultimately distinguishable in the setting defined by the SIlrks
game. The rationale behind our analysis derives directly from (9) and
(10). In fact, it is easy to see that decreasing λ in the definition of
SD leads to a more favorable game for the defender, since he can
adopt a smaller acceptance region and obtain a larger payoff uD .
Stated in another way, from D’s perspective, evaluating the behavior
of the game for λ→ 0 corresponds to exploring the best achievable
false negative error exponent under adversarial conditions. In a more
rigorous way, we can state the following theorem (closely reminding
Stein’s lemma for attack-free hypothesis testing [3]):

Theorem 3. Given two sources X ∼ PX and Y ∼ PY and a max-
imum allowable average per-letter distortion Dmax, the maximum
achievable false negative error exponent ε for the SIlrks game is

lim
λ→0

lim
n→∞

− 1

n
logPfn = min

P∈Γ(PX ,Dmax)
D(P ||PY ), (15)

where

Γ(PX , Dmax) = {P ∈ P : EMD(P, PX) ≤ Dmax}. (16)

Proof: Due to space limitations, we only provides a sketch of
the proof. When λ → 0, we see from (10) that the set Λ∗0(PX , λ)
collapses into the single point PX . From (13), it is easy to argue
that for λ → 0, Γ(PX , λ,Dmax) takes the form expressed in (16).
Reasoning like in Stein’s Lemma we can prove that Γ(PX , Dmax) is
exactly the smallest indistinguishability region that can be achieved
by D and that the expression of the false negative error exponent in
(15) holds. Figure 1 gives a geometrical interpretation of Theorems
2 and 3 and the indistinguishability regions. Point P ∗ represents
the minimum-achieving pmf in the two cases, while the shaded area

D(P ∗||PY ) = ε

PY

P ∗

Γ(PX , λ,Dmax)

PX

Λ∗(PX , λ)

D(P ∗||PY ) = ε

PY

Γ(PX , Dmax)

Λ∗ = {PX}
P ∗

Fig. 1. Geometric interpretation of Theorems 2 and 3.

represents the set of points (pmf’s) P for which EMD(P,Q) > Dmax
for any Q ∈ Λ∗, and hence can be distinguished from PX .

Theorem 3 permits to interpret Γ(PX , Dmax) as the smallest
indistinguishability region for the SIlrks game. In particular, defi-
nition (16) suggests that the distinguishability of two pmf’s under
adversarial conditions ultimately depends on their EMD. In fact, if
EMD(PY , PX) > Dmax, the defender will be able to distinguish
X from Y by adopting a sufficiently small λ. On the contrary, if
EMD(PY , PX) ≤ Dmax, then there is no positive value of λ for
which the two sources can be asymptotically distinguished.

By adopting a slightly different perspective, given two sources X
and Y , one may wonder which is the maximum attacking distortion
for which D can distinguish X and Y despite the presence of the
adversary, naturally leading to the following definition.

Definition 1 (Security Margin). Let X ∼ PX and Y ∼ PY be two
discrete memoryless sources. The maximum distortion for which the
two sources can be reliably distinguished in the SIlrks setting is called
Security Margin and is given by

SM(PY , PX) = EMD(PY , PX). (17)

We observe that the EMD is a symmetric function of PX and PY
[7], and hence the security margin does not depend on the role of X
and Y in the test, i.e. SM(PX , PY ) = SM(PY , PX).

V. NOTABLE EXAMPLES

A. Discrete sources

In general the EMD between two sources can be computed by
resorting to numerical analysis, and in fact, due to its wide use as
similarity measure in computer vision applications, several efficient
algorithms have been developed to compute the EMD between
discrete sources (see [9] for example). In some cases, however, a
closed form expression can be found, as shown in the following.

Bernoulli sources. Let X and Y be two Bernoulli sources with
parameters p = PX(1) and q = PY (1) respectively. Let also assume
that the distortion constraint is expressed in terms of the Hamming
distance between the sequences, that is d(i, j) = 0 when i = j and
1 otherwise. Without loss of generality let p > q. Clearly, we have:∑

i,j

SYX(i, j)d(i, j) = SYX(0, 1) + SYX(1, 0). (18)

Since p > q, it is easy to conclude that the minimum of the above
expression is obtained when SYX(1, 0) = 0 (if the source X outputs
more 1’s than Y , it does not make any sense to turn the 1’s emitted
by Y into 0’s). As a consequence, to satisfy the constraint SX(1) = p
we must let SYX(0, 1) = p− q, yielding SM(PX , PY ) = |p− q|.

Uniform sources with multiple cardinalities. Let X and Y be two
uniform pmf’s with alphabets X and Y . It is possible to prove that the



optimum transportation map is obtained by taking the bin of Y with
the smallest value and start moving it into the bin with the smallest
value in X . When the smallest bin of X is full, we go on with the
second smallest bin in X . When the smallest bin in Y has been
emptied, we go on with the second smallest bin in Y . The procedure
is iterated until all the bins in Y have been moved into those of X .
When the cardinality of Y is a multiple of the cardinality of X such
a procedure permits to express the SM in closed form as follows:

SM(PX , PY ) =
1

|Y|

|X|−1∑
i=0

α−1∑
j=0

(|Xl − Yl|+ j + (α− 1)i)2, (19)

where we have assumed that |Y| = α|X |, with α ∈ N, and where
Xl and Yl denote the lower non-empty bins of X and Y respectively.
The formula implicitly assumes that Yl > Xl, the extension to the
case in which such a relationship does not hold being immediate.

B. Continuous sources

The analysis carried out in the previous sections is limited to
discrete sources. When continuous sources are considered, we can
quantize the probability density functions (pdf’s) of the sources and
apply the analysis for discrete sources. By letting the quantization
step tend to zero, the EMD (which in this case can be interpreted
as the Mallows distance) between PX and PY can still be regarded
as the security margin between the two sources. In the following we
assume that the squared Euclidean norm (L2

2) is used as distance
metric so to use the expression given in (14). Let then X and Y be
two continuous sources with means µX and µY and variances σX
and σY . As shown in [10] (decomposition theorem), the expectation
in (14) can be rewritten as follows

EXY [(X−Y )2] = (µX−µY )2+(σX−σY )2+2[σXσY −covXY ],
(20)

where the three terms express, respectively, the difference in location,
spread and shape between the variables X and Y [11]. Interestingly,
the covariance term covXY is the only term in (20) which depends
on the joint pdf of X and Y . Then, in order to find the security
margin, we only have to compute:

max
PXY :X∼PX ,Y∼PY

covXY. (21)

By assuming PX,Y = PXPY , i.e. by assuming that X and Y are
independent, we have covXY = 0, hence permitting us to derive a
general upper bound of SM:

SML2
2
(PX , PY ) ≤ (µX − µY )2 + (σX − σY )2 + 2σXσY . (22)

When the pdf’s of the two sources have the same shape, for
instance when they are both distributed according to a Gaussian or
a Laplacian distribution, the security margin assumes a particularly
simple expression. In this case, in fact, it is possible to turn PX
into PY by imposing a deterministic relationship between X and Y ,
namely Y = σY

σX
X + (µY − σY

σX
µX). In this case the covariance

term is maximum and equal to σXσY , and hence the contribution of
the shape term in the security margin vanishes, yielding:

SML2
2
(PX , PY ) = (µX − µY )2 + (σX − σY )2. (23)

This is a remarkable, and in principle unexpected, result, stating that
the distinguishability of two sources belonging to the same class
depends only on their mean values and variances, regardless of their
particular pdf.

VI. CONCLUSIONS

In the attempt to analyze the distinguishability of two sources in an
adversarial setting, we studied the behavior of the SIlrks game when
the defender is allowed to arbitrarily reduce the false positive error
exponent. This allowed us to study the ultimate distinguishability of
two sources X and Y . It turns out that when an adversary is present,
the source distinguishability can be summarized into a single param-
eter called Security Margin. If the attacker introduces a distortion
lower than the security margin, in fact, the defender will always be
able to distinguish the two sources assuming that the length of the
sequence he observes tends to infinity. By exploiting the parallelism
between the optimum attacker’s strategy and optimal transport theory,
we have shown that the security margin corresponds to the Earth
Mover Distance between the two sources and computed it for some
common class of sources. In practice, just to mention a possible real
application, the concept of security margin allows to give a measure
of distinguishability between untouched images and processed ones in
the image forensic scenario under adversarial conditions considered
in [12]. As a future work, we plan to compute the security margin for
a wider class of sources, and extend the concept of security margin to
different versions of the source identification game, like, for instance,
the game with training sequences [13].
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