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ABSTRACT

This paper is a first attempt to provide a unified framework
for studying signal processing problems where designers have
to cope with the presence of an adversary, including media
forensics, watermarking, adversarial machine learning, bio-
metric spoofing, etc. We focus on the binary decision prob-
lem and discuss which strategies the adversary can use to flip
the decision output at minimal cost, including blind sensitiv-
ity attacks and hill-climbing attacks. As the defender can also
play smarter by considering the presence of a rational adver-
sary, we introduce a game-theoretic approach where some ad-
vances have been recently made. We conclude by discussing
some trends raised by this game-theoretic formulation.

Index Terms— Game-theory, adversary, watermarking,
forensics, biometric spoofing, reputation, binary decision.

1. INTRODUCTION

Security-oriented applications of signal processing are re-
ceiving increasing attention. Multimedia forensics, biomet-
rics, digital watermarking, steganography and steganaly-
sis, network intrusion detection, traffic monitoring, video-
surveillance, are just a few examples of such an interest.
Despite enormous differences, a unique feature character-
izes all these fields: the presence of one or more adversaries
aiming at making the system fail.

So far, research in these disciplines has been carried out
by different communities with no or very few interactions
among them. It is no surprise, then, that similar solutions
are re-invented several times, and that the same problems are
faced with again and again by ignoring that satisfactory solu-
tions have already been discovered in contiguous fields. Sim-
ilar errors are also repeated, e.g., security requirements are
misunderstood. In watermarking, for instance, it took several
years to recognize that robustness and security are contrast-
ing requirements calling for the adoption of different coun-
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termeasures. In a similar way, security issues in biometric
research are often neglected, privileging pattern recognition
issues more related to robustness than security. Similar con-
cerns apply to several other fields. As a natural consequence,
resources are wasted and advances proceed at a much lower
pace than it would be desirable. Even worse, the lack of a
unifying view does not permit to grasp the essence of the ad-
dressed problems and work out truly effective and general so-
lutions. Times are ripe to go beyond this limited view and
lay the basis of a general theory that takes into account the
impact that the presence of an adversary has on the design of
effective signal processing tools, i.e. a theory of adversarial
signal processing (Adv-SP).

Some scattered steps in the right direction have already
been taken: watermarking security is now clearly distin-
guished from watermark robustness [1]; multimedia forensics
in the presence of an adversary has raised the attention of
researchers and counter-forensics (and even counter-counter
forensics) techniques are now studied [2, 3]; the study of anti-
spoofing techniques is an active research field [4]; adversary-
aware machine learning is investigated with applications
to spam filtering, network intrusion detection and malware
detection[5, 6]. It is the aim of this paper to review the
most recent advances in the fields where signal processing
designers have to cope with the presence of an adversary,
highlighting the similarities between the existing approaches,
and provide a unitary view for one of the most commonly
encountered problems, namely binary decision.

2. BROWSING PRIOR ART

The signal processing fields wherein the presence of an ad-
versary can not be neglected include many diverse disciplines:
Multimedia Forensics (MF), adversarial machine learning [5],
watermarking, steganography and steganalysis, traffic analy-
sis [7] and intrusion detection [8] are among the most popular
ones. Other examples include biometric spoofing [4], security
of reputation systems [9], cognitive radio [10], fingerprinting
and traitor tracing, content based information retrieval [11],
and many others. In some cases, researchers are well aware
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of the challenges set by the presence of an adversary and have
started addressing them. In other cases, such awareness has
still to be fully developed and the presence of an adversary is
treated only in some scattered works.

While each of the above fields has its own peculiarities,
there are several common problems, whose solution under a
unified framework would speed up the understanding of the
associated security problems and the development of effec-
tive solutions. Doubtlessly, the most studied problem is hy-
pothesis testing, or binary decision. In MF, for instance, a
common problem is to decide whether a given document (e.g.
a still image) has been generated by a given source (a specific
camera or a camera model), or if a certain signal has under-
gone a given processing or not. A very popular example in
machine learning is spam filtering, i.e. the classification of
e-mails either as spam or authentic messages. In 1-bit wa-
termarking, the detector has to decide whether a document
is watermarked or not, while it is the goal of steganalysis to
distinguish between cover and stego-images. In many other
cases, it is important that malevolent users are distinguished
from fair ones (again a binary classification problem); this is
the case, for instance, of reputation systems where malevolent
feedbacks have to be discarded, and cognitive radio, where
primary users must be distinguished from cheating secondary
users. Despite the similarity of the addressed problems, the
most common approach to face with them is by far the de-
velopment of ad-hoc solutions specifically tailored to fit a
given application. Yet, a closer look reveals that a similar
rationale exists behind some of the most popular techniques
developed so far. When the answer of the detector is avail-
able, the adversary can exert his attack by querying an oracle.
This is the case of the sensitivity and BNSA attacks in water-
marking [12, 13], the hill climbing attack in biometric mas-
querade attacks [4], or the ACRE attack in machine learning
[6]. Countermeasures also rely on similar approaches, start-
ing from classical security by obscurity mechanisms, in which
the access to the detector is denied to the attacker, to more so-
phisticated approaches like detector randomization [14, 15]
or the adoption of complicated detection regions [15, 16].

By referring to MF, some early attempts to define a gen-
eral framework for adversarial hypothesis testing have been
made, including [2, 17], where game-theory and informa-
tion theory are used to derive the Nash equilibrium point of
the source identification game, and [3] where the Kullback-
Leibler distance is used to measure the validity of an attack
regardless of the adopted countermeasures. Similar attempts
have been carried out in the field of adversarial machine
learning (see [5] for a review).

A possible generalization of the basic binary decision
problem regards the number of involved players. In attacks
against reputation systems, for instance, several attackers may
pool to degrade the performance of the system [9], leading
to a multiple-player game. A similar situation is encountered
in traitor tracing systems, with the noticeable difference that

in this case active techniques like fingerprinting may be used
to improve the performance of the system. Attacks against
reputation systems introduce yet another perspective into the
picture: the collaborative nature of the to-be-performed tasks
and the attacks. In addition to the presence of multiple play-
ers, this requires that proper solutions are adopted to either
encourage fair behaviors, e.g. through the definition of a
suitable pay-off function, or to allow cross-checking between
users, as commonly done in sentiment tagging applications.
In these cases, the presence of a large number of independent
users, with a vast majority of fair users, ensures the proper
behavior of the system.

Adversarial machine learning enriches the Adv-SP pic-
ture with a new original twist, due to the possibility for the
adversary to attack the system during the learning phase [5].
This leads to a significant complication of the game-theoretic
framework making it very difficult to determine the equilib-
rium point of the game. In most applications, the players act
in a multi-round sequential fashion, during which they can
adapt their strategies according to the moves of the adversary,
thus leading to a natural formulation of the problem as a se-
quential game. In [18], the possibility of adopting methods
typical of robust statistics is advanced, so to minimize the im-
pact that the injection of a limited amount of fake training
data has on the accuracy of the system. Still in [5], the resort
to data fusion is seen as a possible way to minimize the influ-
ence of targeted attacks, as in [19], where spatial and temporal
features are fused to aid the detection of fraudulent feedbacks.

While the above review is by no means intended to be
an exhaustive one, it clearly shows how similar problems are
encountered in several fields, thus confirming the advisability
of developing a general theory that encompasses all of them.

3. LOOKING FOR A GENERAL FRAMEWORK:
THE CASE OF ADVERSARIAL BINARY DECISION

After the general view we gave in the previous section, we
now delve into one specific problem, namely adversarial bi-
nary decision, showing how the advances made in various
fields actually fit into a unique framework

We decided to focus on the binary decision problem be-
cause this is by far the most studied scenario and most of the
lessons learned here can be extended to the case of multiple
decisions. Moreover, from the adversarial point of view, some
multiple-decision problems can be simplified to binary ones.
We consider a binary decision function φ that takes a feature
vector x and gives a binary output, i.e., φ(x) ∈ {0, 1}. The
set of possible feature vectors is denoted by X ⊂ RN . The
feature vector is usually the result of a dimensionality reduc-
tion function that takes a signal in the original space and maps
it into a space with fewer dimensions. This function may
be proprietary, as often occurs in biometric recognition sys-
tems, although even in this case many details can be learned
or reversed-engineered. We let Rj

.
= {x ∈ X : φ(x) = j},

8683



for j = 0, 1.
The decision function is sometimes designed to optimize

a certain objective. For instance, in the binary hypothesis test-
ing problem, φ is generally chosen according to the Neyman-
Pearson criterion, which minimizes the miss probability sub-
ject to a bound on the false-alarm probability. In binary clas-
sification problems, φ minimizes the empirical risk measured
over the samples in the training set. However, in many cases,
φ is designed ad-hoc to simply test for a certain property that
members in, say, R0 hold whereas members in R1 lack. The
decision function can depend on some secret parameters; for
example, in watermarking, φ (and, in consequence, R0 and
R1) depend on a key that is unknown to the adversary.

Consider now the role of the adversary. Frequently, e.g.
in watermarking, forensics, spam filtering, the adversary has
an object y ∈ X with some assigned value and is inter-
ested in modifying it the least possible so that the object re-
tains its value while fooling the decision procedure. Formally,
given y ∈ R0 and a certain real-valued distortion measure
d(·, ·), the adversary aims at finding some y′ ∈ R1 such that
d(y,y′) ≤ τ , where τ is an acceptability threshold.1 Ex-
amples of distortion measures can be the Euclidean or Ham-
ming distances. A variant of the previous adversarial target
is to find y∗ ∈ R1 such that d(y,y∗) is minimal. Due to
space constraints, here we focus on this variant, which we
call the closest point problem. We notice, however, that there
are other scenarios (e.g., biometric spoofing) where y is not
available and the sole purpose of the adversary is to find a
valid y′ inR1.

If the distortion function is convex and we assume thatR0

is an open set, then the solution y∗ must lie on the boundary
δR. If the decision function is known to the adversary, then
the solution can be either obtained in closed-form or numer-
ically. When φ is not fully known, the adversary may try to
solve the problem by querying the decisor to learn as much as
possible about φ or, better yet, δR, to later generate y∗. Of
course, the feasibility of this solution depends on the number
of queries that can be made, as in some cases the system to be
attacked will stop accepting them after a number of trials. In
the sequel, we will assume an unbounded number of queries,
however bearing in mind the complexity issue. Due to its de-
pendence on a secret key, the case of unknown φ has been
extensively studied in the field of watermarking. We summa-
rize next some of the achievements made therein.

The original sensitivity attack [20] is suitable when φ is
a hyperplane. It starts with a vector y ∈ R0 and modifies it
to z ∈ R0 near the boundary δR (this can be achieved by a
binary search as long as one point in R1 is known). Then, it
works by changing one component of z at a time and observ-
ing the output of the decision function to learn the normal vec-
tor that represents the hyperplane. For more complicated de-
cision boundaries, [12] proposes an iterative approach which

1Actually, in most cases the distortion is measured in the original space.
We use the feature space here to keep the discussion simple.

moves along the hyperplane tangent to the decision bound-
ary at z. In [21] the normal vector is obtained similarly to
the sensitivity attack; from this it is immediate to obtain the
approximate gradient vector at z. Knowledge of this vector
suffices to obtain a good local estimate of the decision func-
tion φ, as long as the adversary knows its form. A similar
approach for the case of linear boundaries and l1-norm dis-
tances has been proposed in the context of machine learning
for spam filtering in the so-called Adversarial Classifier Re-
verse Engineering (ACRE) method [6].

In [13] a powerful variant of the sensitivity attack which
implements Newton’s descent algorithm is presented to itera-
tively find y∗. The algorithm is completely blind, in the sense
that no knowledge of the decision function is assumed; the
first and second order local derivatives information required
by the iterative algorithm are estimated by querying the de-
cisor. The algorithm, termed Blind Newton Sensitivity Attack
(BNSA), has been proven very effective in removing the wa-
termark for a number of existing schemes; moreover, it has
been used in the winning strategy in the popular BOWS con-
test organized by the watermarking community to measure
the effectiveness of oracle-based attacks [22].

All the previous attacks assume the availability of some
vector t in R1 such that given y ∈ R0, there is some λ ∈
(0, 1) for which λt + (1 − λ)y ∈ δR. This value is found
through a binary search. When t is not available, as it occurs
in attacks to biometric authentication systems, a hill-climbing
search is generally performed [23],[24]. This search benefits
from the fact that φ outputs a non-binary matching score, and
starts with some y and modifies it along a number of arbitrary
(but meaningful) directions to find a new point that is closer
to R1 and which serves as the basis for the next iteration.
Quantization of the output values of φ is a relatively effective
countermeasure at the expense of performance [23]; in fact,
had φ a binary output, hill-climbing would not work better
than a brute-force search.

In view of the previous attacks, it seems reasonable to
make the function φ more complicated. Several works have
proposed solutions along this line: in [25] the decision bound-
ary is ‘fractalized’ in an attempt to hamper the use of learning
algorithms; in [12] the boundary is ‘randomized’ so that for
points z close to the boundary, φ(z) is 0 with a certain proba-
bility; both countermeasures can be easily overcome by an ad-
versary respectively using the ‘envelope’ of the fractal bound-
ary or averaging out the boundary randomness. The decision
function can be even implemented in zero-knowledge, so that
the adversary cannot learn anything but the binary output by
querying the decisor. Strikingly, this minimum disclosure of
information (at most one bit per query) is enough for BNSA
to work, especially as most existing proposals, with the ex-
ception of [26], use simple decision boundaries.

The previous paragraphs hint at the existence of a game
between the decision function designer and the adversary.
The most natural way to model the interplay between the dif-
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ferent goals and constraints of the decision function designer,
a.k.a. the defender, and the adversary, is through game theory.
In the following we use the approach outlined in [2] to show
how game theory can be used to formulate a general binary
decision game, whose analysis can shed new light on the
limits and achievable performance of binary decision under
adversarial conditions.

A general, 2-player game is a 4-uple G(S1,S2, u1, u2),
where S1 = {s1,1 . . . s1,n1

} and S2 = {s2,1 . . . s2,n2
} are

the set of strategies the first and the second player can choose
from, and ul(s1,i, s2,j), l = 1, 2 is the payoff of the game for
player l, when the first player chooses the strategy s1,i and the
second chooses s2,j . In a zero-sum game, the win of a player
is equal to the loss of the other, so we have u1(s1,i, s2,j) +
u2(s1,i, s2,j) = 0 . In this case, it is enough to specify the
payoff of the first player (generally indicated by u). A quite
general version of the binary decision game is obtained if we
assume that the feature vector can be generated by sources X
and Y with known pdf’s PX and PY , and that the decision
corresponds to determining whether x was generated by X
or Y (with R0 corresponding to X and R1 to Y ). In this
probabilistic framework, the zero-sum binary decision game
is defined as follows:

The set of defender’s strategies SD is the subset of R0

for which the false positive probability (i.e. the probability
that an x generated byX falls inR1) is below a certain thresh-
old, i.e., SD = {R0 : PX(x /∈ R0) < Pfp}, where Pfp is a
prescribed maximum false positive probability.

The set of attacker’s strategies SA is formed by all the
functions that map a vector y produced by Y into a new vec-
tor y′ subject to a distortion constraint, i.e., SA = {f(y) :
d(y,y′) ≤ Dmax}, where d(·, ·) is a proper distance function
and Dmax is the maximum allowed distortion.

The payoff function is defined in terms of the false neg-
ative error probability (Pfn), namely, u(R0, f) = −Pfn =
−
∑

y:f(y)∈R0
PY (y).

4. A GAME-THEORETIC OUTLOOK

A first advantage of the above game-theoretic formulation is
that it permits to cast under a unique umbrella all the similar
versions of the binary decision problem encountered in dif-
ferent applications, highlighting how most of the approaches
used so far fail to recognize the existence of this game. For
instance, in the closest-point approach the attacker optimizes
a certain payoff assuming a fixed strategy on the defender.
Then, it makes sense to ask which is the best possible move
for a defender who knows that his strategy will be attacked.
In fact, assuming this kind of ‘worst-case’ threat significantly
changes the design constraints for the decision function. To
ellaborate, assume a gradient descent based algorithm to solve
the closest-point problem is used; then, the designer will be
interested in creating a decision boundary that leads to local
minima, where the search can get stuck. This, in turn, will im-

ply that the adversary achieves a smaller payoff. Notice that
the previous requirement is not equivalent to a convoluted de-
cision boundary, as depending on the available information,
the adversary may be focusing on a small region where the
global minimum can be easily found.

An even more difficult problem appears when the two par-
ties must choose their strategies beforehand without knowing
anything about the other player’s move. This usually corre-
sponds to determining the Nash equilibrium(s) of the game
[27], a problem that can be solved only in some very specific
cases. Doing so, however would permit to: i) determine the
optimum strategies of both the defender and the attacker, ii)
compute the payoff at the equilibrium, iii) understand how far
are the available practical solutions from the best achievable
performance. Among the few works where such a problem is
faced with and solved we mention [2], in which the asymp-
totic2 Nash equilibrium of a game very similar to the one
outlined in the previous section is derived, and [28], where a
version of the game in which the sources are known through
training sequences is considered. The latter case is particu-
larly interesting since it opens the way to two very interest-
ing generalizations. First, it could allow the analysis of some
classes of adversarial learning games, where the attacker has
the possibility to modify the training sequence the defender
relies on. Secondly, if we assume that the training sequence
used by the defender is not known to the attacker, it introduces
into the picture the possibility of making the decision regions
partially depend on a secret, thus getting closer to the typical
scenario in watermarking.

One of the drawbacks of assuming rational adversaries is
that the solutions generally lead to very conservative designs
of the decision function which in turn yield a bad performance
even for non-malicious users. A promising approach would
be to distinguish those adversaries trying to solve the clos-
est point problem from normal users and block access to the
oracle in the former case. A striking result, applied to the de-
tection of abnormal behavior in social or sensor networks in
[29], relies on Afriat’s theorem, which can be used to under-
stand if the adversary is trying to maximize a certain payoff
without even knowing such payoff. This is done by probing
the response of the adversaries; in our case probing could be
achieved by slightly changing the decision function at every
query to measure whether the adversary reacts to the change.
Of course, such scenario poses a challenge to the adversary
who is then interested in solving the closest-point problem
without being noticed.

To conclude, we expect that in the near future a general
framework for Adv-SP will be developed, by combining ele-
ments of game, detection, machine learning, optimization and
complexity theories. We envisage that Adv-SP will become
a stimulating and challenging field whose developments will
immediately find a vast number of applications.

2The length of the vector x tends to ∞.
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