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ABSTRACT
Scale Invariant Feature Transform (SIFT) has been widely employed
in several image application domains, including Image Forensics
(e.g. detection of copy-move forgery or near duplicates). Until
now, the research community has focused on studying the robust-
ness of SIFT against legitimate image processing, but rarely con-
cerned itself with the problem of SIFT security against malicious
procedures. Recently, a number of methods allowing to remove
SIFT keypoints from an original image have been devised. Al-
though quite effective, such methods produce an attacked image
with very few (or no) keypoints, thus leaving cues that can be easily
exploited by a forensic analyst to reveal the occurred manipulation.
In this paper, we explore the topic of reintroducing fake SIFT key-
points into a previously cleaned image in order to address the main
weakness of the existing removal attacks. In particular, we evaluate
the fitness of locally adaptive contrast enhancement methods to the
task of injecting new keypoints. The results we obtained are en-
couraging: (i) it is possible to effectively introduce new keypoints
whose descriptors do not match with those of the original image,
thus concealing the removal forgery; (ii) the perceptual quality of
the image following the removal and injection attacks is compara-
ble to the one of the original image.

1. INTRODUCTION
Counterfeiting digital images by means of photo editing tools to al-
ter the original meaning is becoming an immediate and easy prac-
tice. Copy-move forgery is the one of the most common ways of
manipulating the semantic content of a picture, whereby a portion
of the image is copied and pasted once or more times elsewhere
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into the same image. Image forensics literature offers several ex-
amples of detectors for such manipulation [?] and, among them,
the most recent and effective ones [?, ?] are those based on Scale
Invariant Feature Transform (SIFT) [?]. The capability of SIFT to
discover correspondences between similar visual content, in fact,
allows the forensic analysis to detect even very accurate and real-
istic copy-move forgeries. Expectedly, a methodology so power-
ful has drawn the interest of counter-forensic research, where with
the term counter-forensics the study of methods to counter-attack
forensic techniques by concealing manipulations traces is to be in-
tended [?]. The actual reliability of such algorithms can only be
estimated by considering what an attacker can try to do to invali-
date such techniques. Furthermore, since SIFT is a powerful instru-
ment to recognize and retrieve object, an analysis on SIFT security
becomes very important also in the case of Content Based Image
Retrieval (CBIR) [?] systems in order to assess if an attacker is
able or not to succeed in deluding the image recognition process.
The first work in this sense is the one by Hsu et al. [?], in which
first the impact of simple attacks is analyzed and then a method
to strengthen SIFT features (or keypoints) is proposed. Following
this work, Do et al. [?,?,?] focused on a SIFT-based Content Based
Image Retrieval scenario and devised a number of interesting at-
tacks. The aim of the previous works is to modify the SIFT feature
descriptor of a keypoint but they are not interested in the complete
removal of the keypoints. A pioneer work on this has been pre-
sented in [?] where an attack based on local warping techniques
derived from image watermarking was proposed. All these studies
have demonstrated that devising methods to attack SIFT feature is
not a trivial task. SIFT features are not only robust against sev-
eral non-malicious processing but also against tampering attempts.
Most attacks, in fact, though succeeding in erasing keypoints, pay
a high cost in terms of visual quality degradation. Given that, any-
way, there is another basic issue to be taken into account when
performing keypoint deletion that an image that does not contain
SIFT keypoints (or very few of them) is suspicious by itself: such
absence, especially in textured areas, could be taken as a clue of
tampering, thus leading to a detector whose implementation is very
straightforward. Therefore, a smarter attack could greatly bene-
fit from an additional module introducing plausible fake keypoints
which could trigger false positives during the SIFT match detec-



tion. Reinserted keypoints should ideally appear in a neighborhood
of the original spatial locations, but, at the same time, their SIFT
descriptors should be as far as possible from the original one in the
SIFT space. In addition to that, injection should achieve a num-
ber of inserted keypoints as high as possible and, also, a spatial
distribution compliant with the underlying image content (a huge
number of thickened keypoints could be questionable as well).This
topic is crucial in a copy-move forgery detection scenario where
portions of an image are to be considered. Such a main aspect
is investigated in this paper by analyzing different algorithms to
reinsert keypoints in a keypoint-cleaned image while still avoiding
matching in the SIFT domain. The fundamental idea of the paper is
to highlight the security issue of the need of keypoint injection af-
ter a previous removal, to provide some instruments to perform this
action and, finally, to present an analysis on some initial results.

The paper is organized as follows: Section ?? introduces the pro-
cedure devoted to keypoint removal. Section ?? gives a glance of
our idea about keypoints injection in a cleaned image. Section ??
presents experimental results to prove the effectiveness of the pro-
posed method. Section ?? concludes the paper.

2. KEYPOINT REMOVAL
This Section briefly describes the method [?] we used to remove
SIFT keypoints in a target image by combining different attacks
presented in [?] and [?]; such a method is based on keypoint clas-
sification and on an iterative procedure. The idea to adopt a clas-
sification of the keypoint typology permits to use an ad-hoc attack
for each kind of them, thus maximizing performances. Classifica-
tion is basically done by resorting to a histogram description of a
squared neighborhood around every keypoint; on the basis of the
histogram shape three classes are defined: unimodal, bimodal and
multimodal. Furthermore, it has been demonstrated [?] that some-
times an attack may introduce new keypoints in its attempt to delete
those already present. In such cases, a single iteration of the attack
is not enough, since there is the need to deal also with the newly
introduced keypoints. For this reason, we arranged our attacks into
an iterative procedure. For the first part (usually one half) of the it-
erations we attack all the keypoints with the Smoothing attack and
for the second part, we alter the keypoints by means of Collage and
theRMD (Removal with Minimum Distortion) [?] attacks accord-
ing to the previous keypoint classification. The classification-based
attack terminates after a certain number of iterations or when the
desired percentage of deleted keypoints is reached (ideally 100%).
The Smoothing attack reduces the population of keypoints without
a significant loss of quality. The keypoints that survive to this first
round of the attack are somehow “harder” to remove and require
more powerful countermeasures (i.e. Collage and RMD). In the
following, we briefly review each attack taken in account.

The first attack is the Smoothing Attack. A light Gaussian smooth-
ing flattens the pixel values of an image in such a way that its po-
tential keypoints at the level of DoG are reduced. The strength of
the attack can be controlled with the parameters (h, σ), i.e. the size
and the standard deviation of the Gaussian kernel. In our experi-
ments we have found out that h = 3 and σ = 0.7 represent a good
compromise between the removal rate and the overall visual quality
after the attack. This attack has also been used in [?].

The second attack is the Collage Attack, which is a variant of the
attack used in [?]. It consists on the substitution of the original
patch with another patch of the same size. The new patch should
not contain a keypoint and needs to be as similar as possible to the

original one according to some criteria of similarity. To implement
the collage attack we created a database of about 120000 “keypoint-
free” patches extracted from a data set of 80 images characterized
by very heterogeneous visual contents. We chose to measure the
similarity by means of the histogram intersection distance, which
has been widely used in the past in image retrieval applications
[?]. Let now patchorig and patchmin be respectively the original
patch and the most similar counterpart stored in the database (i.e.
the patch whose histogram is at minimum dint); to avoid visible
artifacts along the borders, we do not reinsert patchmin directly
into the original image. Instead, we reinsert the following linear
combination:

patchnew =W · patchorig + (1−W ) · patchmin (1)

where W is an empirical 8 × 8 weighting matrix whose elements
wi,j ∈ [0, 1] are set to 1 along the patch borders and progressively
decrease to 0 near the center.

The third attack is the RMD attack proposed by Do et al. in [?]. The
idea behind this technique is to calculate a small patch ε that added
to the neighborhood of a keypoint allows its removal. The coeffi-
cients of ε are chosen in such a way to reduce the contrast around
the keypoint computed at the DoG level, thus invalidating the check
performed by the SIFT algorithm on all potential keypoints. More-
over, it is requested that the coefficients locally introduce the mini-
mum visual distortion and, differently from the original version of
the algorithm, we used the same weighting window of Eq. (??) to
replace the original neighborhoods with the new patch.

3. KEYPOINT INJECTION
In this Section, the injection of fake keypoints into the cleaned
image, obtained through the procedure described in Section ??,
is investigated. However, before discussing this issue in depth, a
schematization of the whole attack procedure (keypoint removal
and injection) is shown in Figure ?? for sake of clarity.
At the beginning an original gray-scale image I (or a region within
it) is fed to the system, which starts by detecting the SIFT key-
points. Then, for each keypoint, the corresponding 8 × 8 patch is
manipulated by means of the attack procedure described in Section
??. Finally, the manipulated patches are inserted back into the im-
age in their original positions to achieve keypoint removal and the
cleaned image Ic is obtained.
The second step of the procedure is devoted to the injection of fake
keypoints into the cleaned image. We have tested several different
injection algorithms (e.g. contrast enhancement, sharpening and so
on) to introduce new keypoints into the cleaned image. The most
specific and promising ones, taken into account in the experimental
tests presented in Section ??, will be described in subsection ??.
At this stage, the image is processed full-frame, unlike in the pre-
vious stage, so this fact has a negative impact on the visual quality
of the entire image (e.g. flat areas which did not contained key-
points originally). For this reason, in a 8× 8 neighborhood of each
keypoint we mix this image, let us call it pre-injected image, with
the original one I , in a way that is similar to what happened in Eq.
(??). The obtained patches are then substituted onto the cleaned
image Ic producing the final injected image Iinj which now shows
a better visual quality.

In the third step, it is necessary for the attacker to check how
many injected keypoints in the image are really valid. An injected
keypoint is deemed as valid when, first of all, is located in a tex-
tured area and is spatially distributed with respect to the others and,
above all, has a SIFT descriptor which is sufficiently different from
its original homologue not to evidence a match. It is worth to point



Figure 1: Schematization of the proposed framework.

out that it is not so crucial to check that the new injected keypoint is
or is not in the same spatial position (x,y coordinates) with respect
to the original one. So, on this basis, we perform a matching detec-
tion between the original image I and the injected one Iinj . Ideally,
it would be desirable not to obtain matches between the two images,
though having in the injected image Iinj a plausible amount of well
distributed keypoints: the final image Iatt is obtained. It has also
been foreseen, a possible refinement phase (at the moment only one
loop is considered) where a selection of keypoints is made by tak-
ing the valid ones and discarding those presenting a correct match
with their homologue (sometimes wrong welcomed matches are
obtained, see Section ?? for details). For each discarded keypoint,
a corresponding patch (16 × 16 pixels which is the computational
window of the SIFT descriptor) of the cleaned image Ic is selected
and inserted back into the image Iinj refining the injection proce-
dure. The background idea is to primarily avoid a SIFT match at
the expense of the loss of an injected keypoint.

3.1 Injection Algorithms
In this subsection, we briefly describe the techniques that we have
employed to inject fake keypoints into an image. Their choice is
justified by the following idea: we observed that smoothing tech-
niques are quite effective in removing SIFT keypoints by lowering
the image details. Therefore, we hypothesized that enhancement
techniques, which exalt image details, may conversely introduce
new keypoints. However, full-frame enhancement techniques, such
as sharpening or global contrast enhancement, proved to be visually
unsatisfactory, since they do not take into account local properties
of the image. As a consequence, we needed to resort to more com-
plex methods; hereafter four methods that have demonstrated supe-
rior performances and that have been selected for being presented
within experimental result section of the paper are debated.

3.1.1 Contrast limited adaptive histogram equaliza-
tion

Global contrast enhancement (GCE) techniques assume that the
distribution of grayscale pixel values is uniform over all the areas
of an image. When this assumption does not hold, GCE perfor-
mance are poor and the resulting image visually unpleasant. The
CLAHE (Contrast Limited Adaptive Histogram Equalization) [?]
tackles this problem in two ways: first, it adapts to the local prop-
erties of the regions of an image and, secondly, it limits the con-
trast differences across them. In a nutshell, the algorithm proceeds
as follows (see [?] for details). First the image I is divided into
a specified number of non-overlapping regions (tiles) and the his-
togram of each region is computed. Then, a clipping limit β for the
contrast enhancement is obtained by means of the following Eq.

(??):

β =
MN

L

(
1 +

α

100
(smax − 1)

)
(2)

where: [M,N ] are the size of the grayscale image,L = [0, 255] the
histogram bins, α ≥ 0 is the clipping factor and smax is the slope
of the transfer function mapping the contrast from its input value to
its output value; if smax = 1 then no enhancement is performed,
while larger values (usually up to 4) will result into more visible
enhancements. Next, each region’s histogram is clipped in such a
way that its height is limited by β. At this point, it is necessary
to remap the clipped values to the entire intensity range (i.e. to
re-normalize the histogram of the processed image to its original
area). This task can be done in several ways, the most common of
which consists on redistributing the clipped pixels uniformly in all
the bins of the histogram of the whole image.

3.1.2 Brightness preserving dynamic fuzzy histogram
equalization

The BPDFHE (Brightness Preserving Dynamic Fuzzy Histogram
Equalization) [?] is a method to enhance the contrast of an im-
age while preserving its mean brightness, and thus the perceived
subjective quality of the image. Similarly to other contrast en-
hancement techniques, the BPDFHE proposes to divide the image
histogram into segments, which are then independently equalized.
The partitioning, however, is not performed on the normal his-
togram, but rather on its fuzzy counterpart, whereby a pixel may
belong to some degree to more than one of the bins, in accordance
with a fuzzy membership function. Such histogram, in facts, is
smoother, with no missing levels or abrupt fluctuations, thus allow-
ing a more accurate segmentation. The membership function can
be designed in different fashions, in our experiments triangular and
gaussian have been considered.

The algorithm proceeds as follows (see [?] for details): (i) the fuzzy
histogram H̃(k), k = [0, 255] is computed by assigning to each
bin k the number of pixels whose value is “around k" (accord-
ing with the chosen membership function); (ii) the local maxima
{m1,m2, . . . ,mn} are computed and used to define histogram’s
segments S = {[H̃min,m1−1], [m1,m2−1], . . . , [mn, H̃max]},
where [H̃min, H̃max] is the range of H̃; (iii) each segment is equal-
ized by means of a technique depending on the number of pixels
belonging to the partition; (iv) in order to cope with the alterations
that BPDFHE may have introduced, the resulting image’s bright-
ness is finally normalized to match the original brightness.

3.1.3 Anisotropic diffusion
The 2D-Anisotropic Diffusion (2D-AD) is a method to enhance im-
ages by preserving the perceptual quality of semantically relevant
parts (i.e. straight lines, edges, geometric shapes) [?]. In princi-
ple, it is a generalization of the scale-space transform, where an
image I is iteratively convolved with a nonlinear smoothing filter
which adapts to the local content to generate progressively more
blurred versions of I . In this paper, we resort to the works of We-
ickert [?, ?], to which we refer for theoretical details.

The filter model used for anisotropic diffusion is derived by well-
known operators used to extract image details. Let Iσ = I ∗Gσ be
the convolution of an image I with a Gaussian kernel (σ > 0); then,
the gradient ∇Iσ can be employed to highlight structures such as
the edges of I , unless they are parallel. In this case, a more accu-
rate method is required. Let J(∇Iσ) = ∇Iσ∇ITσ be the Hessian



of ∇Iσ; then, Jρ(∇Iσ) = J(∇Iσ) ∗ Gρ, that is the convolution
with a Gaussian kernel (ρ > σ), is called tensor operator, and it
can be used to effectively highlight parallel, flow-like or T-shaped
structures [?]. The eigenvectors {w1, w2} of Jρ give indications
on local orientations, and the corresponding eigenvalues (µ1, µ2)
on the local contrast along these directions. The diffusion tensor
D, that permits to perform the anisotropic diffusion, is defined by
means of the eigenvectors of Jρ and the eigenvalues of Eq. (??-??).

λ1 = c1 (3)

λ2 =

{
c1 if µ1 = µ2

c1 + (1− c1)exp
(

−c2
(µ1−µ2)2

)
otherwise

(4)

where c1 ∈ (0, 1) and c2 > 0. By resorting to D, it is possi-
ble to efficiently compute blurred versions of I(x, t) as numerical
solutions of Eq. (??), where t ≥ 0 is called diffusion time.

∂I

∂t
= ∇ · (D∇I) (5)

In practice, the algorithm proceeds as follows: given I = I(x, 0),
first Jρ(∇Iσ) is computed and D is derived (Eq. (??-??)); then,
I(x, 1) is obtained (Eq. (??)). Starting from I(x, 1), the process
is repeated until a specified number of iterations have been reached
(i.e. t ≤ tmax). Consequently, the final processed image corre-
sponds to I(x, tmax). The tensor D ensures that each iteration
will, at the same time, preserve linear structures and smooth the
image along them. The model can be further refined in such a way
that orientations are invariant to rotation [?].

4. EXPERIMENTAL RESULTS
In this Section, experimental tests carried out to check the perfor-
mances of the proposed procedure for keypoint removal and injec-
tion are presented. A dataset of 35 digital images has been created
by randomly drawing from UCID database [?] with size ranging
from 300× 400 to 600× 800 pixels and with different visual con-
tent: landscapes, animals and faces. We will evaluate the perfor-
mance of the proposed method both from the point of view of num-
ber of injected keypoints and of number of matches obtained after
injection. In the following tests the keypoints have been computed
by means of VLFeat, the Vedaldi and Fulkerson’s implementa-
tion of SIFT [?] (DoG peak and edge thresholds set to 4 and 10).
The threshold for keypoint matching is fixed to 0.6, as suggested
by Lowe in [?]. We set a target keypoint removal percentage of
100% (perfect removal) and a maximum number of allowed itera-
tions (i.e. max_iter = 40). A higher number of iterations would
have an unacceptably negative impact on quality. We continued
with the iterations until we reached the desired removal percentage
or the 40-th iteration. Then, after the keypoint removal, we applied
the injection module. Results refer to four injection tools (CLAHE,
BPDFHE-Tri/Gauss and 2D-AD) presented in subsection ??; such
methods have been used by adopting a parameter setting according
to the values indicated in their reference papers. Section ?? is or-
ganized into two subsections: subsection ?? presents a quantitative
analysis regarding the results achieved by the injection operation,
while subsection ?? discusses some specific cases in detail, paying
attention to the issue of correct generated matches. With this mean-
ing correct, all the SIFT matches that link two keypoints, respec-
tively belonging to two images, located in the same spatial position
or, at most, within a 8× 8 neighborhood are intended.

4.1 Effectiveness of keypoint removal-injection
In this subsection an analysis on the effectiveness of the procedure
for keypoint removal-injection is presented. In Figure ?? (left col-

umn), the number of keypoints detected for each image, belonging
to the selected dataset, is plotted. In particular, we have two refer-
ence trends that are common to both graphs (top-left and bottom-
left): the number of keypoints existing in the original image (Origi-
nal) which represents the upper bound and the ones remained in the
cleaned image after removal (Clean) which, on the contrary, can
be considered as the lower bound. Between these two, the trends
of keypoints after injection performed with the four described tools
are plotted: BPDFHE triangular and gaussian in the top-left graph,
CLAHE and 2D-AD in the bottom-left one. It can easily be noticed
how keypoint removal drastically reduces the number of keypoints
which is globally close to the zero level though, in some cases, a
quite consistent amount of keypoints survives, like for images 1, 6
and 20. After that, injection substantially succeeds in raising the
number of keypoints per image towards the original quantities: all
the four tools show similar behaviors (it is out of the scope to de-
termine the best performing tool), with some borderline situations:
sometimes no keypoints are injected (e.g. images 29, 30 and 31
top-left), sometimes more than the original (e.g. image 18 bottom-
left).

On the other side, in Figure ?? (right column, again tools BPDFHE
triangular and gaussian in the top-right, CLAHE and 2D-AD in
the bottom-right), histograms of the deviations (diff ) between the
number of SIFT matches obtained between the original image and
the injected one, and the original image and the cleaned one are
plotted. It can be observed that histograms are globally located
around zero that means that, though keypoint injection has been
carried out, a low amount of additional matches is actually ap-
peared with respect to the case of the cleaned image. Negative
cases indicate that an inferior number of matches is present after
the injection step.

4.2 An in-depth analysis
In this subsection, we have extracted two images (I15 and I35)
from the previous dataset of 35 images, trying to provide a dif-
ferent analysis point of view of the proposed approach; the tool
BPDFHE-Triangular is taken into account for both. In Figure ??,
the case of image I15, named Dwarf, is pictured; in top row key-
points are visualized respectively, from left to right, for original,
cleaned and injected images. It can be seen that the cleaned image
(top-center) contains only three keypoints while the injected one
presents a higher amount of spatially distributed green circles. In
particular, now keypoints appear on the nose of the dwarf, as pri-
marily was, and, interestingly, on the top of the hood where there
were not in origin. In the bottom row of Figure ??, SIFT matches
are highlighted: between the original image and the cleaned one
(bottom-left), between the original and the injected (bottom-right).
In this favorable circumstance, after keypoint removal we obtained
that three correct matches and two wrong (not horizontal lines) are
left, but, after injection, we got again three correct matches, though
one is different (keypoint on the dwarf nose), and one wrong. This
means that injection operation does not determine an unwanted im-
provement in image matching detection.

In Figure ??, in the same presentation structure as before, the case
of image I35, named Bell Tower, is pictured. Similar results are
obtained as previously, but two aspects are interesting in this case.
Concerning the issue of keypoint extraction: cleaned image (Figure
?? top-center) does not contain any keypoint, that is quite suspi-
cious per se being the image content very textured, as clearly evi-
denced by the original distribution of keypoints (Figure ?? top-left);
instead injected image is more likely: the absence of keypoints over



Figure 2: Graphs for keypoint removal-injection procedure. Left column, keypoints per image and Right column, variation of SIFT
matches per image.

Figure 3: Image I15 (Dwarf ). On the top row, keypoints are shown: original image (left); cleaned (center); injected (right). On the
bottom row, SIFT matches: original vs cleaned (left); original vs injected (right).

the clouds, which is an almost flat area, is not so strange. Con-
cerning the issue of SIFT matches: obviously, the cleaned image,
not containing any keypoint, does not produce any match with the
original at all (Figure ?? bottom-left), but the injected one, which
in turn has 4 matches (Figure ?? bottom-right), does not present
any correct. In fact, looking carefully at the green match line in the
highest part of Figure ?? (bottom-right), it can visually be appre-
ciated that also such line is not horizontal and, as explained at the
beginning of Section ??, this means that the fake keypoint falls out

of a 8× 8 neighborhood with respect to the location of its possible
homologue. Such an aspect could become crucial when an opera-
tion of estimate of the geometric transformation existing between
the two images is carried out based on these matches; this might
be necessary, for instance, for image registration or for region du-
plication localization in forgery detection in a forensic scenario. In
such a circumstance, this would yield to a wrong computation and
consequently to a misleading result.



Figure 4: Image I35 (Bell Tower). On the top row, keypoints are shown: original image (left); cleaned (center); injected (right). On
the bottom row, SIFT matches: original vs cleaned (left); original vs injected (right).

Hereafter, detailed values, both for keypoints and for SIFT matches,
for the two previous images, are provided in Table ??, to allow a nu-
merical analysis of what visually proposed so far. In the left column
of Table ?? with term Correct SIFT matches all the right matches,
as explained previously, between the original image and the cleaned
(injected) one are intended again. As already stated throughout the
paper, here it can be observed that image quality (see PSNR values
at the bottom of Table ??) is not worsened after injection phase in
comparison with what achieved after keypoint removal only; visual
quality with respect to the original image is satisfactorily preserved
too. Indicatively, such a behavior has globally been registered for
all the images of the selected dataset.

5. CONCLUSIONS AND FUTURE WORK
In this paper, the basic issue to inject fake SIFT keypoints in a pre-
viously cleaned image has been underlined and investigated. This
has been moved from the consideration that a complete keypoint-
free image could be per se a clue of counterfeit. Furthermore, a pro-
cedure to firstly remove and then reinsert keypoints has been pre-
sented and a set of possible injection tools has been analyzed. Ex-
perimental results are encouraging and already show that injection
is feasible without causing a successive detection at SIFT-matches

level. Visual quality is still preserved both with respect to the orig-
inal image and, particularly, in comparison with the image quality
achieved after keypoint removal only. Future works will be dedi-
cated to the research of more effective and ad-hoc injection tools
and to evaluate the whole procedure against a wider image dataset.
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Table 1: Performance of keypoint removal-injection attack on two sample images: I9(Dwarf) and I35(Bell Tower).
Description I9 (Dwarf ) I35 (Bell Tower)

Original image keypoints 158 73
Cleaned image keypoints 3 0
Injected image keypoints 20 27

SIFT matches Original-vs-Cleaned 5 0
Correct SIFT matches Original-vs-Cleaned 3 0

SIFT matches Original-vs-Injected 4 5
Correct SIFT matches Original-vs-Injected 3 0

PSNR Original-Cleaned 39.12 dB 42.55 dB
PSNR Original-Injected 39.12 dB 42.02 dB


