

The Security Margin: a measure of Source Distinguishability under Adversarial Conditions

Dept. of Information Engineering and Mathematics - University of Siena , ITALY, e-mail: barni@dii.unisi.it, benedettatondi@gmail.com

We analyze the distinguishability of two sources under adversarial conditions, when the error exponents of type I and type II error probabilities are allowed to take an arbitrarily small value. By exploiting the parallelism between the attacker's goal and optimal transport theory, we introduce the concept of Security Margin defined as the maximum average per-sample distortion introduced by the attacker for which two sources can be reliably distinguished.

conditions

(hypothesis testing) in presence of adversary

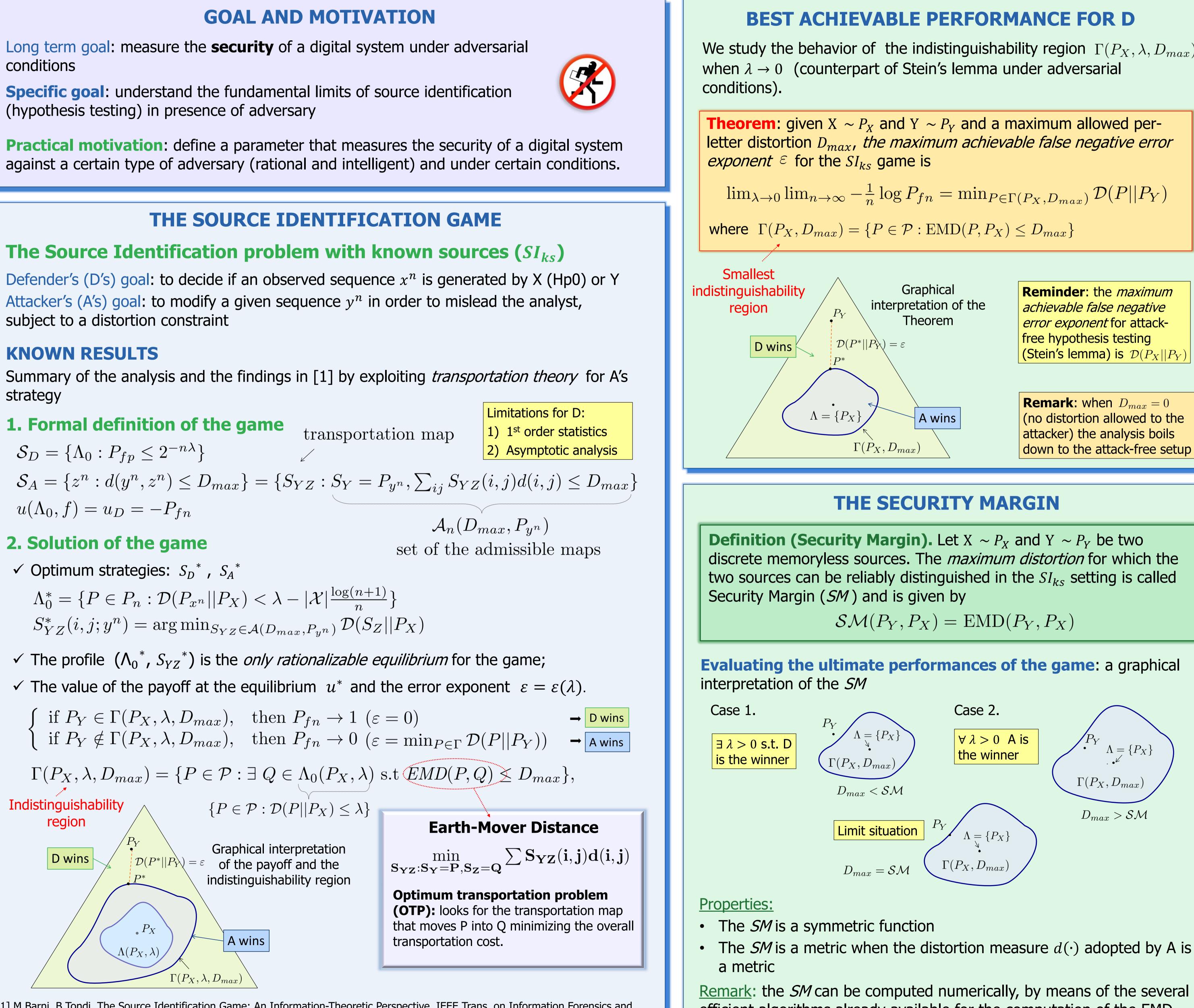
subject to a distortion constraint

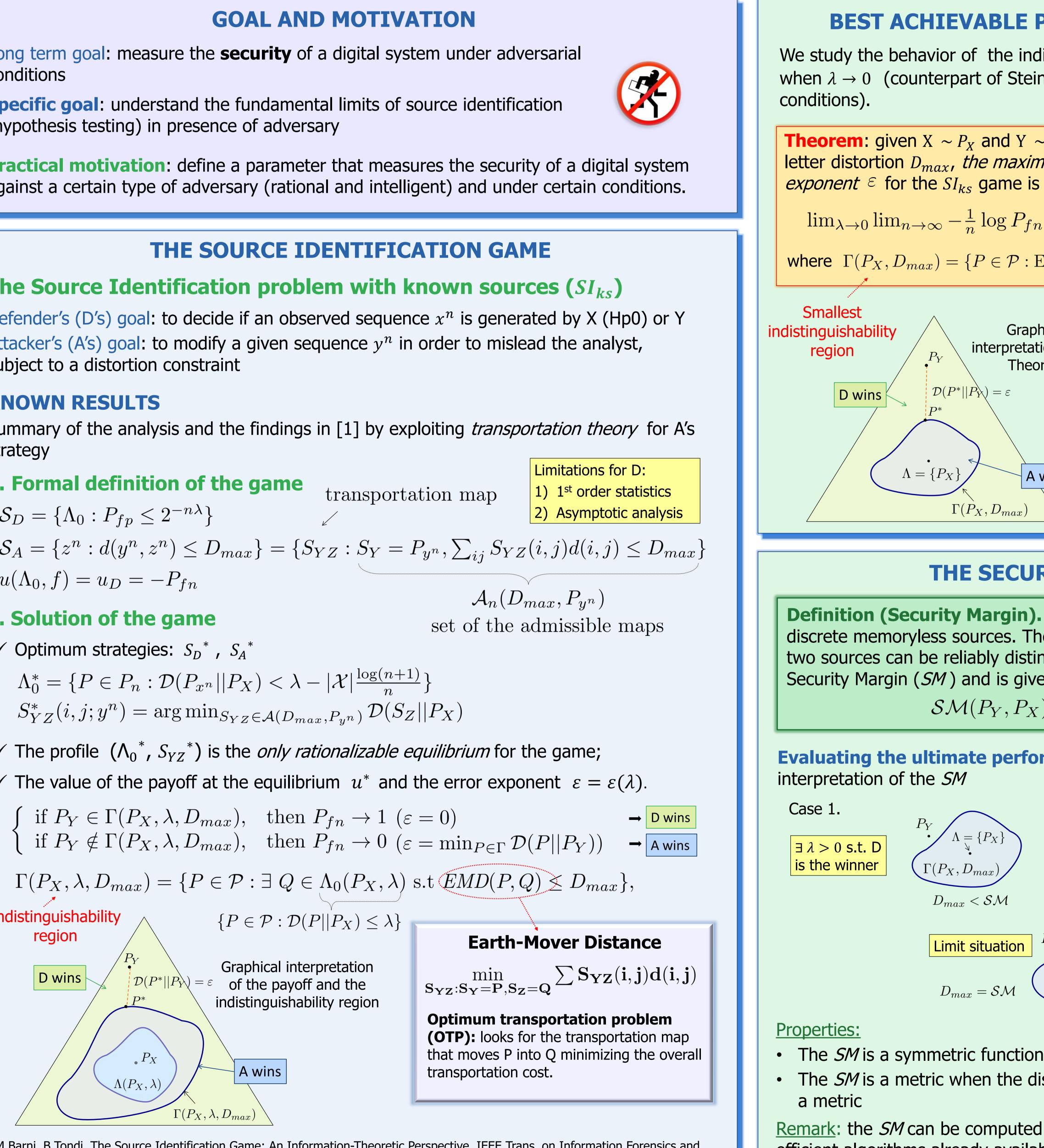
strategy

1. Formal definition of the game

2. Solution of the game

$$\begin{cases} \text{ if } P_Y \in \Gamma(P_X, \lambda, D_{max}), & \text{then } P_{fn} \to 1 \ (\varepsilon = 0) \\ \text{ if } P_Y \notin \Gamma(P_X, \lambda, D_{max}), & \text{then } P_{fn} \to 0 \ (\varepsilon = \min_{P \in \mathbb{R}} P_{P}) \end{cases}$$





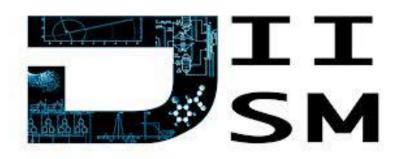
[1] M.Barni, B.Tondi, The Source Identification Game: An Information-Theoretic Perspective, IEEE Trans. on Information Forensics and Security, vol.8, no.3, pp 450-463, March 2013.

M. Barni, B.Tondi

PERFORMANCE FOR D			SEC	
istinguishability region $\Gamma(P_X, \lambda, D_{max})$ n's lemma under adversarial			There are some simple ca computations.	
$-P_{Y}$ and a maximum allowed per-			NOTABLE EXAMPLES	
num achievable false negative error			 Bernoulli sources: <i>I</i> Continuous sources: 	
$\mathcal{D} = \min_{P \in \Gamma(P_X, D_{max})} \mathcal{D}(P P_Y)$			We adopt the squared The EMD can be interp	
$\operatorname{EMD}(P, P_X) \le D_{max}$			$\mathcal{SM}_{L^2_2}(P_X$	
nical ion of the	Reminder : the <i>maximum</i> <i>achievable false negative</i>		From the decomposition	
rem	<i>error exponent</i> for attack- free hypothesis testing (Stein's lemma) is $\mathcal{D}(P_X P_Y)$		$E_{XY}[(X-Y)^2] =$	
			difference i	
wins	Remark: when $D_{max} = 0$ (no distortion allowed to the attacker) the analysis boils down to the attack-free setup		Then, in order to find th	
			General upper bound	
RITY MARGIN			Remark: when X ar	
Let $X \sim P_X$ and $Y \sim P_Y$ be two the <i>maximum distortion</i> for which the inguished in the SI_{ks} setting is called			SM takes a simple a \mathcal{SN}	
en by (D, D)				
$) = \mathrm{EMD}(P_Y, P_X)$			A PRACTIC/	
rmances of the game: a graphical			Inspired by the forensic ap image analysis.	
Case 2. $\forall \lambda > 0$ A is the winner $P_{Y} = \{P_X\}$ $\cdot \cdot \checkmark$ $\Gamma(P_X, D_{max})$			Da be cla	
$P_{Y} \land = \{P_{X}\}$ $\Gamma(P_{X}, D_{max})$ $D_{max} > SM$				
n stortion mea	sure $d(\cdot)$ adopted by A is		The <i>minimum SM</i> betwee gives the minimum effort	
numerically, by means of the several			images in C ₀	

efficient algorithms already available for the computation of the EMD.

[2] M.Barni, M.Fontani, B.Tondi, A Universal Attack Against Histogram-Based Image Forensics, International Journal of Digital Crime and Forensics (IJDCF) 5 (3), 18



CURITY MARGIN COMPUTATION

ases in which the SM can be computed by resorting to analytical

$$P_X(1) = p, P_Y(1) = q \longrightarrow \mathcal{SM}(P_X, P_Y) = |p - q|$$

Euclidean norm L_2^2 (i.e. distortion function $d(i,j) = |i-j|^2$) preted as the squared *Mallow distance*, then

 $X, P_Y) = \min_{\substack{P_{XY}:\sum_x P_{XY}=P_Y\\\sum_y P_{XY}=P_X}} E_{XY}[(X-Y)^2]$

on theorem:

$$(\mu_X - \mu_Y)^2 + (\sigma_X - \sigma_Y)^2 + 2[\sigma_X \sigma_Y - covXY]$$

in **location** in **spread**

the *SM* we have to compute:

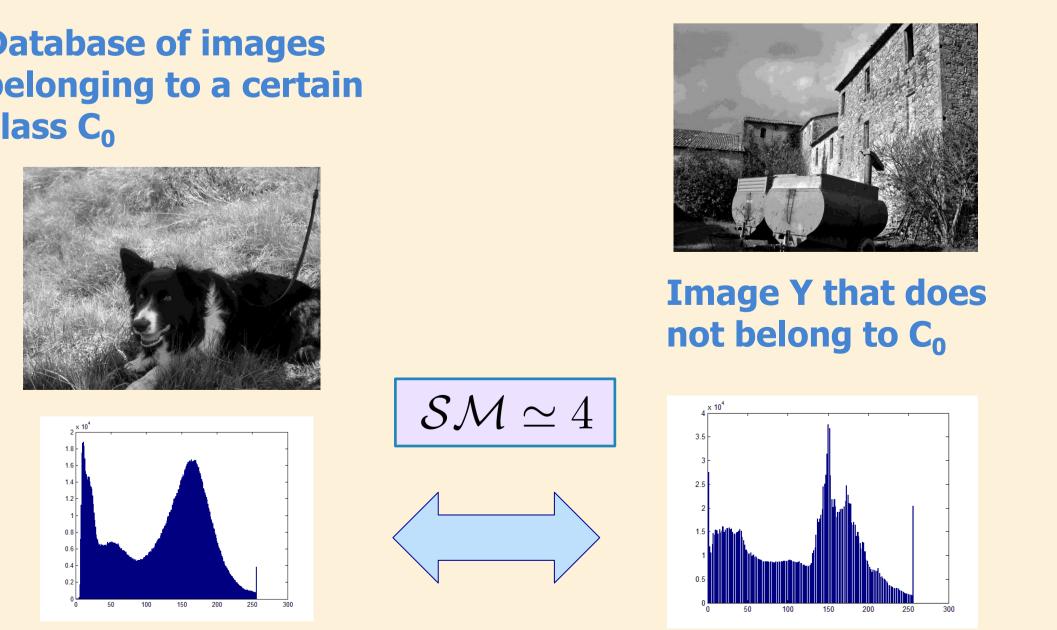
nd for *SM*: $SM_{L_2^2}(P_X, P_Y) \le (\mu_X - \mu_Y)^2 + \sigma_X^2 + \sigma_Y^2$

Ind Y belongs to the same class (e.g. Gaussian, Laplacian,...), the and interesting expression in which the shape term vanishes:

 $\mathcal{M}_{L_{2}^{2}}(P_{X}, P_{Y}) = (\mu_{X} - \mu_{Y})^{2} + (\sigma_{X} - \sigma_{Y})^{2}$

AL MEANING OF THE SECURITY MARGIN

application in [2], we consider an application to histogram-based



en the histogram of Y and those of the images in the database t required to the attacker to make Y indistinguishable from the