LOCALIZATION OF FORGERIES IN MPEG-2 VIDEO THROUGH GOP SIZE AND DQ ANALYSIS

D. Labartino [#], T. Bianchi *, A. De Rosa [#], M. Fontani [†] D. Vázquez-Padín [‡], A. Piva [#], <u>M. Barni</u> [†]

Outline

Overall Structure of the Proposed System

3 Description of Two Main Steps

- Localization of To-Be-Analyzed Frames
- Double Quantization Analysis

4 Experimental Results

Video forensics today

 Many techniques for detecting double compression (probably, more than for images)

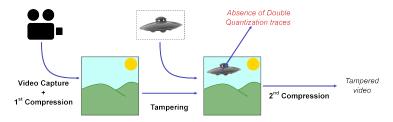
Video forensics today

- Many techniques for detecting double compression (probably, more than for images)
- Revealing video manipulation is much harder
 - ► Naïve approach: double compression ⇒ tampered video
 - Not always the case (e.g. video may be re-encoded during device-to-computer transfer)
- Several works focusing on the removal/copying/replication of whole frames

Video forensics today

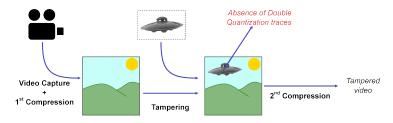
- Many techniques for detecting double compression (probably, more than for images)
- Revealing video manipulation is much harder
 - ► Naïve approach: double compression ⇒ tampered video
 - Not always the case (e.g. video may be re-encoded during device-to-computer transfer)
- Several works focusing on the removal/copying/replication of whole frames
- Existing approaches for intra-frame forgery localization make strong assumptions, e.g. assuming only intra-coded frames, aka M-JPEG

Outline

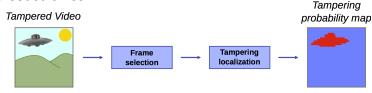

Overall Structure of the Proposed System

Bescription of Two Main Steps
 Localization of To-Be-Analyzed Frames
 Double Quantization Analysis

4 Experimental Results


Proposed Scheme

· Leveraging on the double compression undergone by forged video



Proposed Scheme

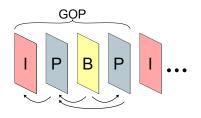
· Leveraging on the double compression undergone by forged video

 Use DQ analysis to localize the forged region within frames that were intra-coded twice

Outline

3

Overall Structure of the Proposed System


Description of Two Main Steps

- Localization of To-Be-Analyzed Frames
- Double Quantization Analysis

Experimental Results

MPEG-2 Coding 1/2

- Frame types
 - I: coded independently (much like JPEG)
 - P: predicted from a previous reference frame (I o P)
 - B: predicted from a previous and/or following reference frame (I o P)

- Macroblock Types (16x16 pixels)
 - intra-coded macroblocks (I-MB)
 - inter-coded macroblocks (P-MB)
 - skipped macroblocks (S-MB)

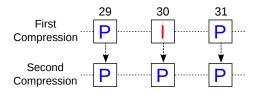
MPEG-2 Coding 2/2

DCT Coefficients Quantization

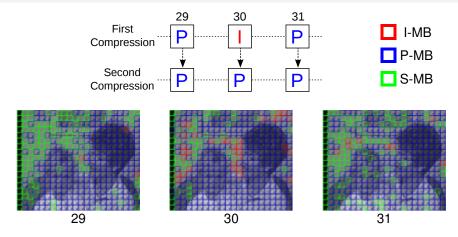
- Differently from JPEG, a quantization matrix is provided by the standard
- Quantization strength adapted through a multiplier integer k
- Different matrices are defined for I- and P- frames (we only care about I-frame quantization)

$$Q_{i,j} = k \times \begin{pmatrix} 8 & 16 & 19 & 22 & 26 & 27 & 29 & 34 \\ 16 & 16 & 22 & 24 & 27 & 29 & 34 & 37 \\ 19 & 22 & 26 & 27 & 29 & 34 & 34 & 38 \\ 22 & 22 & 26 & 27 & 29 & 34 & 37 & 40 \\ 22 & 26 & 27 & 29 & 32 & 35 & 40 & 48 \\ 26 & 27 & 29 & 32 & 35 & 40 & 48 & 58 \\ 26 & 27 & 29 & 34 & 38 & 46 & 56 & 69 \\ 27 & 29 & 35 & 38 & 46 & 56 & 69 & 83 \end{pmatrix}$$

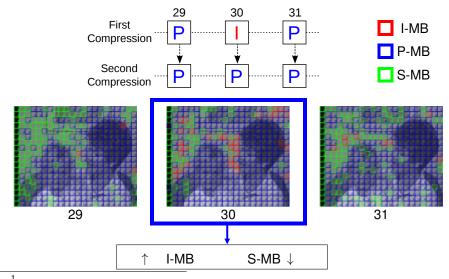
MPEG-2 Coding 2/2


DCT Coefficients Quantization

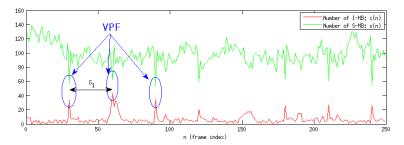
- Differently from JPEG, a quantization matrix is provided by the standard
- Quantization strength adapted through a multiplier integer k
- Different matrices are defined for I- and P- frames (we only care about I-frame quantization)


	/ 8	16	19	22	26	27	29	34 \
${\cal Q}_{i,j}=k imes$	16	16	22	24	27	29	34	37
	19	22	26	27	29	34	34	38
	22	22	26	27	29	34	37	40
	22	26	27	29	32	35	40	48
	26	27	29	32	35	40	48	58
	26	27	29	34	38	46	56	69
	27	29	35	38	46	56	69	83 /

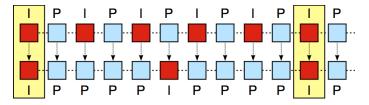
VBR coding


- We assume Variable BitRate coding (VBR) \Rightarrow k is fixed by the user
- ► Knowing *k* gives all the quantization step *Q*_{*i*,*j*} used in a compression
- This facilitates the task compared to JPEG

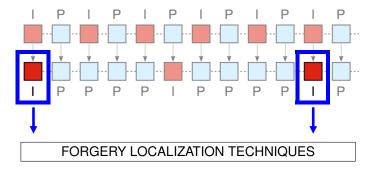
¹D. Vázquez-Padín, M. Fontani, T. Bianchi, P. Comesaña, A. Piva, F. Pérez- González, M. Barni Detection of video double encoding with GOP size estimation, WIFS 2012



¹ D. Vázquez-Padín, M. Fontani, T. Bianchi, P. Comesaña, A. Piva, F. Pérez- González, M. Barni Detection of video double encoding with GOP size estimation, WIFS 2012


¹ D. Vázquez-Padín, M. Fontani, T. Bianchi, P. Comesaña, A. Piva, F. Pérez- González, M. Barni Detection of video double encoding with GOP size estimation, WIFS 2012

• By estimating GOP₁, we can locate those frames that have been intra-coded twice


¹D. Vázquez-Padín, M. Fontani, T. Bianchi, P. Comesaña, A. Piva, F. Pérez- González, M. Barni Detection of video double encoding with GOP size estimation, WIFS 2012

• By estimating GOP₁, we can locate those frames that have been intra-coded twice

¹D. Vázquez-Padín, M. Fontani, T. Bianchi, P. Comesaña, A. Piva, F. Pérez- González, M. Barni Detection of video double encoding with GOP size estimation, WIFS 2012

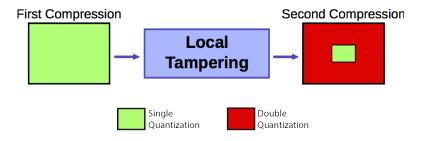
• By estimating GOP₁, we can locate those frames that have been intra-coded twice

¹D. Vázquez-Padín, M. Fontani, T. Bianchi, P. Comesaña, A. Piva, F. Pérez- González, M. Barni Detection of video double encoding with GOP size estimation, WIFS 2012

Outline

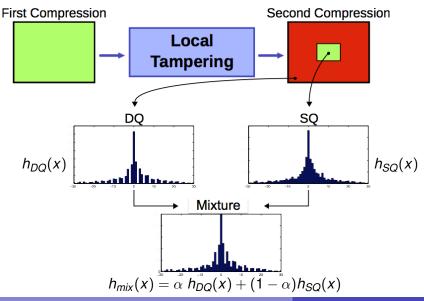
3

Overall Structure of the Proposed System


Description of Two Main Steps

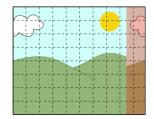
- Localization of To-Be-Analyzed Frames
- Double Quantization Analysis

Experimental Results

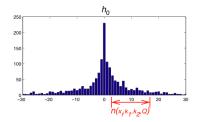

ain Steps Double Quantization Analysis

From Double Quantization to Forgery Localization¹

¹Bianchi, De Rosa, Piva Improved DCT coefficient analysis for forgery localization in JPEG images, ICASSP'11

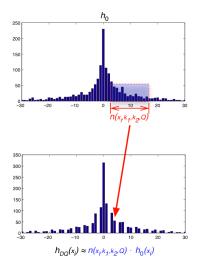

From Double Quantization to Forgery Localization¹


Estimation of h_{SQ} (calibration technique)



Estimation of h_{SQ} (calibration technique)

Estimation of h_{DQ} ¹


For a given k₁, k₂ and Q, we can count how many bins of h₀ fall in each bin of h_{DQ}

Bianchi, De Rosa, Piva Improved DCT coefficient analysis for forgery localization in JPEG images, ICASSP'11

Estimation of h_{DQ} ¹

- For a given k₁, k₂ and Q, we can count how many bins of h₀ fall in each bin of h_{DQ}
- Assuming h_0 locally uniform $h_{DQ}(x) \simeq n(x; k_1, k_2, Q) \cdot \tilde{h}(x)$

Bianchi, De Rosa, Piva Improved DCT coefficient analysis for forgery localization in JPEG images, ICASSP'11

Estimation of h_{DQ} ¹

- For a given k₁, k₂ and Q, we can count how many bins of h₀ fall in each bin of h_{DQ}
- Assuming h_0 locally uniform $h_{DQ}(x) \simeq n(x; k_1, k_2, Q) \cdot \tilde{h}(x)$

MPEG-2 de-quantization formula differs from JPEG ones. The function $n(\cdot)$ was derived, resulting in:

$$n(x;k_1,k_2,Q) = \frac{k_1 \times Q}{16} \left(\left\lceil \frac{16}{Q \times k_1} \left\lceil \frac{k_2 \times Q}{16} \left(x + \frac{1}{2} \right) \right\rceil \right\rceil - \left\lceil \frac{16}{Q \times k_1} \left\lceil \frac{k_2 \times Q}{16} \left(x - \frac{1}{2} \right) \right\rceil \right\rceil \right)$$

¹Bianchi, De Rosa, Piva Improved DCT coefficient analysis for forgery localization in JPEG images, ICASSP'11

Double Quantization Analysis

Estimation of h_{DQ} ¹

- For a given k₁, k₂ and Q, we can count how many bins of h₀ fall in each bin of h_{DQ}
- Assuming h_0 locally uniform $h_{DQ}(x) \simeq n(x; k_1, k_2, Q) \cdot \tilde{h}(x)$

MPEG-2 de-quantization formula differs from JPEG ones. The function $n(\cdot)$ was derived, resulting in:

$$n(x; k_1, k_2, Q) = \frac{k_1 \times Q}{2^6} \left(\left\lceil \frac{16}{Q \times k_1} \left\lceil \frac{k_2 \times Q}{16} \left(x + \frac{1}{2} \right) \right\rceil \right\rceil - \left\lceil \frac{16}{Q \times k_1} \left\lceil \frac{k_2 \times Q}{16} \left(x - \frac{1}{2} \right) \right\rceil \right\rceil \right)$$

¹ Bianchi, De Rosa, Piva Improved DCT coefficient analysis for forgery localization in JPEG images, ICASSP'11

Estimating k_1

Model
$$\tilde{h}_{mix}(x; k_1, \alpha) = \alpha \cdot \underbrace{n(x; k_1) \cdot \tilde{h}(x)}_{h_{DQ} \text{ estimate}} + (1 - \alpha) \cdot \underbrace{\tilde{h}(x)}_{h_{SQ} \text{ estimate}}$$

Estimating k₁

Model
$$\tilde{h}_{mix}(x; k_1, \alpha) = \alpha \cdot \underbrace{n(x; k_1) \cdot \tilde{h}(x)}_{h_{DQ} \text{ estimate}} + (1 - \alpha) \cdot \underbrace{\tilde{h}(x)}_{h_{SQ} \text{ estimate}}$$

Error
$$\boldsymbol{e}(\boldsymbol{k}_1, \alpha) = \sum_{\boldsymbol{x} \neq \boldsymbol{0}} \left[h_{mix}(\boldsymbol{x}) - \tilde{h}_{mix}(\boldsymbol{x}; \boldsymbol{k}_1, \alpha) \right]^2$$

Estimating k_1

Model
$$\tilde{h}_{mix}(x; k_1, \alpha) = \alpha \cdot \underbrace{n(x; k_1) \cdot \tilde{h}(x)}_{h_{DQ} \text{ estimate}} + (1 - \alpha) \cdot \underbrace{\tilde{h}(x)}_{h_{SQ} \text{ estimate}}$$

Error
$$\boldsymbol{e}(\boldsymbol{k}_1, \alpha) = \sum_{\boldsymbol{x} \neq 0} \left[h_{mix}(\boldsymbol{x}) - \tilde{h}_{mix}(\boldsymbol{x}; \boldsymbol{k}_1, \alpha) \right]^2$$

Estimate k_1 and α by minimizing $e(k_1, \alpha)$

Knowing k_1 allows us to write, for the *i*-th coefficient x_i :

 $p(x_i|T) = \tilde{h}(x_i)$ $p(x_i|O) = n(x_i; k_1) \cdot \tilde{h}(x_i).$

Knowing k_1 allows us to write, for the *i*-th coefficient x_i :

$$p(x_i|T) = \tilde{h}(x_i)$$
 $p(x_i|O) = n(x_i; k_1) \cdot \tilde{h}(x_i).$

By Bayes rule, and assuming equal priors:

$$p(T|x_i) = \frac{P(x_i|T) \cdot P(T)}{P(x_i|T) \cdot P(T) + P(x_i|O) \cdot P(O)} = \frac{1}{1 + n(x_i, k_1)}$$

Knowing k_1 allows us to write, for the *i*-th coefficient x_i :

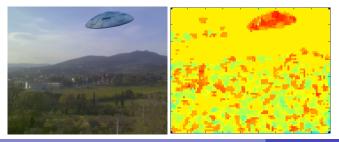
$$p(x_i|T) = \tilde{h}(x_i)$$
 $p(x_i|O) = n(x_i; k_1) \cdot \tilde{h}(x_i).$

By Bayes rule, and assuming equal priors:

$$p(T|x_i) = \frac{P(x_i|T) \cdot P(T)}{P(x_i|T) \cdot P(T) + P(x_i|O) \cdot P(O)} = \frac{1}{1 + n(x_i, k_1)}$$

HYPOTHESIS

statistical independence between coeffs within a block


$$P_{\scriptscriptstyle B} = \frac{1}{\prod\limits_{i|x^{(i)}\neq 0} n(x_i; k_1) + 1}$$

Knowing k_1 allows us to write, for the *i*-th coefficient x_i :

$$p(x_i|T) = \tilde{h}(x_i)$$
 $p(x_i|O) = n(x_i; k_1) \cdot \tilde{h}(x_i).$

By Bayes rule, and assuming equal priors:

$$p(T|x_i) = \frac{P(x_i|T) \cdot P(T)}{P(x_i|T) \cdot P(T) + P(x_i|O) \cdot P(O)} = \frac{1}{1 + n(x_i, k_1)}$$

Outline

Motivation and Goal

- 2 Overall Structure of the Proposed System
- Bescription of Two Main Steps
 Localization of To-Be-Analyzed Frames
 - Double Quantization Analysis

Experimental Results

Dataset

Dataset built from 7 "raw" videos available in the Internet (resolution: 720x576 pixels)

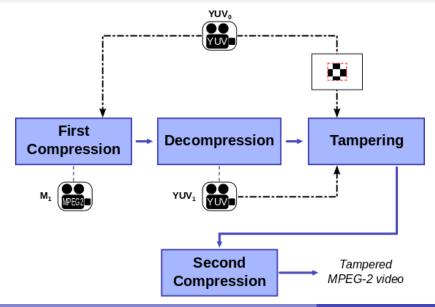
ducks_take_off.y4m

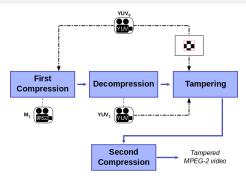
in_to_tree.y4m

old_town_cross.y4m

park_joy.y4m

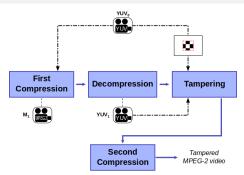
shields.y4m


sunflower.y4m


touchdown_pass.y4m

Experimental Results

Dataset – Tampering Procedure


Dataset – Tampering Procedure

Chosen parameters for creating the dataset (112 video)

- $GOP_1 = 12, GOP_2 = 15$
- $k_1 \in \{12, 16, 20, 24\}$
- $k_2 \in \{4, 6, 8, 10\}$

Dataset – Tampering Procedure

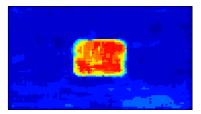
Chosen parameters for creating the dataset (112 video)

•
$$GOP_1 = 12, GOP_2 = 15$$

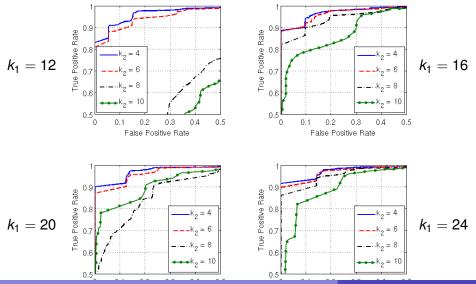
•
$$k_1 \in \{12, 16, 20, 24\}$$

• $k_2 \in \{4, 6, 8, 10\}$

 \longrightarrow constant throughout the frame (VBR coding)


Localization example

Tampered frame


Ground truth

Probability map

ROC curves

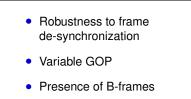
Localization of Forgeries in MPEG-2 Video through GOP Size and DQ Analysis

D. Labartino et al.


ROC curves

AUC obtained with the proposed method:

k_2 k_1	4	6	8	10
12	0.98	0.97	0.68	0.63
16	0.98	0.98	0.96	0.93
20	0.98	0.98	0.91	0.94
24	0.98	0.98	0.97	0.94


Relax constraints:

Relax constraints:

- Variable GOP
- Presence of B-frames

Relax constraints:

Relax constraints:

- Robustness to frame de-synchronization
- Variable GOP
- Presence of B-frames

- Varying k throughout the frame (CBR coding mode)
- $k_2 > k_1$
- Cropping detection

Relax constraints:

- Robustness to frame de-synchronization
- Variable GOP
- Presence of B-frames

- Varying *k* throughout the frame (CBR coding mode)
- $k_2 > k_1$
- Cropping detection

↓ VPF

Thanks for your attention

Thanks for your attention.

This work was partially supported by the REWIND project. More info at www.rewindproject.eu

REWIND