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Abstract—We address the problem of binary hypothesis testing based
on multiple observations in the presence of an adversary corrupting
part or all the observations. We propose a general framework based
on game-theory that encompasses a wide variety of situations including
distributed detection, data fusion, multimedia forensics, sensor networks.
The proposed approach extends the Neyman-Pearson approach to an
adversarial setting in which the analyst must ensure that type I error
probability stays below a threshold, and the adversary tries to induce
a type II error. We derive the equilibrium point of the game in an
asymptotic set up, showing that a dominant strategy exists for the analyst.
The paper opens the way to further analysis in which the payoff of
the game at the equilibrium is analyzed thus permitting to understand
the ultimate achievable performance of multiple-observation hypothesis
testing under adversarial conditions.

I. INTRODUCTION

Adversarial Signal Processing (Adv-SP), i.e. the study of signal
processing techniques explicitly thought to withstand the attacks of
one or more adversaries aiming at system failure, is receiving an in-
creasing attention due to its applicability in a wide number of scenar-
ios, including multimedia forensics, biometrics, digital watermarking,
steganography and steganalysis, network intrusion detection, traffic
monitoring, video-surveillance, just to mention a few [1]. Adversary-
aware hypothesis testing (or binary decision) is undoubtedly one of
the most common problems in Adv-SP, due to its importance in
several application scenarios. In multimedia forensics, for instance,
the analyst has to decide whether a document has been generated
by a given source (a specific camera or a camera model), or has
undergone a given processing. In spam filtering, e-mail messages
have to be classified either as spam or authentic messages. In 1-
bit watermarking, the detector has to decide whether a document is
watermarked or not, while it is the goal of steganalysis to distinguish
between cover and stego-images. In yet other situations, the security
of a system relies on the capability of distinguishing malevolent users
from fair ones (again a binary classification problem). Even if specific
solutions have been proposed for each of the above problems, the
need for a general theoretical framework that models the interplay
between the analyst and the attacker is becoming evident [1], [2].
In [3], [4], a game-theoretic framework has been introduced to
analyze the hypothesis testing problem under adversarial conditions.
By assuming that the analyst can rely only on first order statistics
of the observables and that the attacker has to satisfy a distortion
constraint, the asymptotic equilibrium point of the game is derived
when the length of the observed sequence tends to infinity.

In this paper, we extend the framework introduced in [3] to deal
with binary hypothesis testing under multiple observations. This is
a relevant scenarios in several applications, including multimedia
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Fig. 1. The multiple-observation hypothesis testing setup.

forensics [5], data fusion, distributed hypothesis testing and detection
[6], sensor networks [7] and cognitive radio networks [8]. In all
these cases, a fusion center has to take a binary decision about the
status of a system by relying on a number of observations made
available by different sensors (as in [6]) or a number of traces detected
by different investigation tools (as in [5]). In many situations, it
is possible, actually probable, that an attacker (or more attackers)
corrupts the observations or deliberately provide misleading data
to induce a decision error at the fusion center. It is the goal of
this paper to introduce a general information-theoretic framework
to analyze the above situations and devise the optimal strategies for
both the analyst and the attacker in a game-theoretic sense, that is
by determining the equilibrium point of the game. We will do so for
several versions of the game, thus encompassing a large number of
scenarios addressing many diverse applications. The rest of this paper
is organized as follows. In Section II, we introduce the Multiple-
Observation Hypothesis Testing setup. In Section III, we adopt the
point of view of the analyst and derive the optimum decision strategy.
In Section IV, we consider the optimum attacking strategy. The main
results of the paper are summarized and discussed in Section V.

II. THE SETUP

A sketch of the Multiple-Observation Hypothesis Testing (MO-
HT) setup considered in this paper is reported in Fig. 1. The status
of a system is observed by k nodes which gather k observation
sequences, xn1 , xn2 . . . xnk , each of which consists of n samples,
i.e., xnl = (xl,1, xl,2 . . . xl,n), l = 1 . . . k. The nodes summarize
their observations into k feature sequences of length m (m ≤ n),
fm1 , f

m
2 . . . fmk , with fml = (fl,1, fl,2 . . . fl,m), l = 1 . . . k. The

summaries are sent to a fusion center which has to either accept
or reject a certain hypothesis H0 about the status of the system.
This is a very general setup that can be used to model a wide
variety of situations. The most obvious application regards distributed
hypothesis testing [6]. As an example, the nodes may be part of a
sensor network and the observed sequences xn1 . . . xnk may describe
the physical state of the system over time. e.g., the temperature,



measured at different locations. In more complex situations, the
observed sequences may correspond to complex signals like a video
or an audio sequence. As to the summaries, in the simplest case they
coincide with the observed sequences. More often, they are obtained
by extracting a number of features from the observed sequences, or
by taking a local decision on the system status. In the latter case,
m = 1 and fml = 0 or 1 depending on the local decision on the
validity of hypothesis H0 taken by node l.

A less obvious instantiation of the setup reported in Fig. 1 regards
the use of data fusion techniques for multimedia forensics. In this
case, the observed system is a document, for instance an image or
a video, which is analyzed by means of different tools (identified
here by N1, N2 . . . Nk). Each tool analyzes a different aspect of the
document. In the case of still images, for instance, the tools may
analyze different color bands, or different frequency coefficients, in
the case of video, the observables may refer to the audio and video
tracks and so on. The tools extract a number of features and send them
to a data fusion center, that is in charge of taking the final decision
on a certain aspect of the analyzed document (e.g. its origin). As
in the distributed hypothesis testing scenario, two extreme cases are
obtained when the features correspond to the entire set of observables,
and when each tool takes a local decision and the fusion is carried
out at the decision level.

When MO-HT is framed in an adversarial setting, we must take
into account the possibility that an adversary corrupts part of the
system so to induce a decision error. In this paper we consider two
main possibilities. As a first case, we assume that the attacker corrupts
h out of k summaries. This is possible if the attacker seizes h nodes
or if he controls h links between the nodes and the fusion center (see
for instance [9]). Two sub-cases are possible depending on whether
the attacker can choose which nodes he is going to attack or not.
For the rest, we do not put any further limitation on the attacker’s
actions. In the following, we will refer to this setting as MO-HT
with (chosen) corrupted nodes1. In a second scenario, the nodes and
the links between the nodes and the fusion center are under the full
control of the analyst and hence the attacker can only modify h out
of k observed sequences. This is typically the case in applications
wherein the system is analyzed from different points of view by using
different analysis tools and the decision on system status is taken
by fusing the output of the tools. As an example, we mention data
fusion for multimedia forensics analysis, in which an analyst studies
various aspects of the document at hand, and takes a decision on the
provenance or integrity of the document by fusing the results of the
different analyzes. The attacker, on his side, modifies the document so
to hide its true origin or its previous history. In these cases, it makes
sense to require that the amount of modification the attacker can
introduce into the document is limited. In the following, we will refer
to this scenario as MO-HT with corrupted observations. A graphical
representation of the two kinds of attacks is given in Fig. 2.

Several versions of the two general settings described above are
obtained depending on the actions allowed to the attacker and the
analyst, their specific goals, the knowledge they have about the
system, including its status and its statistical characterization, the
knowledge that the attacker has on the links and nodes that he does
not control and so on. In the next sections, we will analyze some

1In principle we should distinguish between an adversary that takes full
control of the nodes and an adversary that controls only the links between the
nodes and the fusion center, since in the former case the attacker can observe
the sequences xnl of the corrupted nodes, thus acquiring information about
the system status. In this paper we consider an omniscient attacker, hence
making the distinction between the two cases irrelevant.

Fig. 2. Multiple-observation hypothesis testing under adversarial conditions.

of these variants, by framing them into a rigorous game-theoretic
setting. As we will see, game-theory provides a natural and flexible
way to take into account all the above information and to study the
optimal strategies of the two players in terms of game equilibrium
and achievable payoff.

III. DOMINANT FUSION STRATEGIES FOR THE DEFENDER

As anticipated, we use game-theory to give a formal definition of
the MO-HT problems outlined in the previous section. In this section
we adopt the perspective of the analyst, hereafter referred to as the
Defender (D), defining his goals, his possible actions and deriving
the optimum fusion strategies under some general assumptions.

A. Game-theory in a nutshell.

A 2-player game can be seen as a 4-uple G(S1,S2, u1, u2),
where S1 = {s1,1 . . . s1,n1} and S2 = {s2,1 . . . s2,n2} are the
set of strategies the first and the second player can choose from,
and ul(s1,i, s2,j), l = 1, 2, is the payoff of the game for player
l, when the first player chooses the strategy s1,i and the second
chooses s2,j . A pair of strategies (s1,i, s2,j) is called a profile. When
u1(ss1,i, s2,j) + u2(s1,i, s2,j) = 0, the win of a player is equal to
the loss of the other and the game is said to be a zero-sum game. In
the set-up adopted in this paper, S1, S2 and the payoff functions are
assumed to be known to the two players. In addition, we assume that
the players choose their strategies before starting the game without
knowing the strategy chosen by the other player (strategic game).

A common goal in game theory is to determine the existence of
equilibrium points, i.e. profiles that in some sense represent a satisfac-
tory choice for both players [10]. The most famous equilibrium notion
is due to Nash. Intuitively, a profile is a Nash equilibrium if each
player does not have any interest in changing its choice assuming the
other does not change its strategy. Despite its popularity, the practical
meaning of Nash equilibrium is doubtful, since there is no guarantee
that the players will end up playing at the equilibrium. A notion with
a more practical meaning is that of dominant equilibrium. A strategy
is said to be strictly dominant for one player if it is the best strategy
for the player, no matter how the other player decides to play. In
many cases dominant strategies do not exist, however when one such
strategy exists for one of the players, he will surely adopt it (at least
under the assumption of rational behavior). The other player, in turn,
will choose his strategy anticipating that the first player will play
the dominant strategy. It is then easy to see that when a dominant
strategy exists, the players have only one rational choice called the
only rationalizable equilibrium of the game [11]. Games with the
above property are called dominance solvable games.

In the rest of this section we consider three versions of the MO-
HT game, by focusing on the strategy and payoff of the defender. As
we will see, in our setup a dominant strategy exists for the defender
(i.e., the games are dominance solvable), hence opening the way to



the derivation of the equilibrium point of the game (see Section IV).
Such results are summarized in Theorems 1 through 3 in the sections
below. Due to lack of space we report only the proof of Theorem 3,
since in our opinion this is the most original proof among the three.
The reader may get a feeling about the way the other proofs work
by referring to the proofs of the Theorems in [3].

B. Notation and definitions

In our framework the system is modeled by a vector of discrete2

random variables X = X1, X2 . . . Xk taking values in the same al-
phabet X . Being related to the same system, the random variables are
not independent and hence they are described by means of the joint
probability mass function (pmf), say PX(x1, x2 . . . xk) = PX(x).

Our analysis relies on the concepts of type and type class defined
as follows (see [12] and [13] for more details). Given a sequence
xn with elements belonging to an alphabet X , the type Pxn of xn

is the empirical pmf induced by the sequence xn. In the following,
we indicate with Pn the set of types with denominator n, i.e. the
set of types induced by sequences of length n. Given P ∈ Pn,
we indicate with T (P ) the type class of P , i.e. the set of all the
sequences in Xn having type P . Being interested in vector sequences,
we will also use the vector extension of the above definitions. By
considering, for instance, the observation vectors, we indicate by
xi = (x1,i, x2,i . . . xk,i) the vector with the observations of all the
nodes at the time instant i, and with xn = x1,x2 . . .xn the sequence
with all the observed vectors xi. We then use the notation Pxn to
indicate the empirical joint pmf (the type) induced by the sequence
xn and with T (P ) the type class with all the vector sequences having
the empirical pmf equal to P . Finally, we indicate with Pn all the
types for vector sequence of size k and length n.

Throughout the paper, we adopt a Neyman-Pearson perspective
according to which D is interested to accept or reject the hypothesis
H0 that the state is in a safe or normal condition characterized by a
pmf PX. In doing so D must ensure that the false positive error
probability (Pfp) of rejecting H0 when H0 holds stays below a
threshold. On his side, the attacker aims at inducing a type II error,
i.e. to hide the fact that the system exited its normal status. We
indicate by PY the pmf when H0 does not hold (H1). As in [3],
we consider an asymptotic version of the problem (by letting n go
to infinity) and require that Pfp decays exponentially fast with error
exponent at least equal to λ. In addition, we force D to rely on first
order statistics only, i.e. to neglect the possible dependence between
consecutive observations (this assumption is sometimes referred to as
limited resources assumption [3]).

C. MO-HT with full knowledge

As a first scenario, we consider a simplified case in which the
nodes take the observed sequences and pass them to the data fusion
center as they are, i.e., fml = xnl ,∀l. Even if the above condition
is rarely verified in practice, this scenario represents a kind of most
favorable case for the defender since he can base his decision on all
the available information. In addition, the analysis is rather simple
since it is a straightforward extension of the game considered in [3].
In the following, we will refer to this scenario as the MO-HT game
with full knowledge. Let us, then, define the strategies and payoff of
the defender. Mimicking the Neyman-Pearson approach to hypothesis
testing, the possible strategies for D are all the possible acceptance
regions ensuring a given false positive error probability. In formula:

SD = {Λ0 ∈ 2Pn s.t. Pfp ≤ 2−λn}, (1)

2Rigorously speaking our analysis is valid only for discrete random vari-
ables, the case of continuous variables, however, can be treated by quantizing
the continuous alphabet at a resolution which is fine enough.

where Λ0 is seen as a union of types (a subset of the power set of Pn)
due to the limited resources assumption. Thanks to this assumption,
in fact, if a vector sequence stays in Λ0, all the other sequences in
the same type class must belong to Λ0, hence permitting to define
Λ0 as a union of type classes and hence a union of types.

As to the payoff, the defender wishes to minimize the type II error
probability, i.e.

uD = −Pfn = −
∑

yn:Pyn∈Λ0

PY(yn), (2)

where with a light abuse of notation PY(yn) indicates the probability
that Y emits the vector sequence yn. Our main result regarding the
MO-HT game with perfect knowledge is the following.

Theorem 1. The strategy

Λ∗0 =

{
P ∈ Pn : D(P ||PX) < λ− |X |k log(n+ 1)

n

}
(3)

where D(P ||PX) indicates the divergence [12] between P and PX,
is a dominant strategy for D.

Proof: The proof is virtually identical to the proof of Lemma 1
in [3] and is omitted.

In practice the fusion center gathers all the observations and
verifies if their joint empirical pmf is in accordance with the expected
statistics of X when H0 holds.

D. Marginal-based MO-HT

As a second scenario we consider a situation in which the nodes
summarize their observations by passing to the fusion center the first
order statistics of the observed sequences. In other words, we assume
that m = |X | and f

|X|
l = Pxn

l
. As an example in which such

a scenario applies, we may consider the case of a sensor network
in which the nodes observe the system but their link to the fusion
center has a very low transmission rate (hypothetically tending to
0). The nodes, then, transmit only the empirical pmf of the observed
sequences, i.e. the number of times that each symbol of X appears in
xnl . The number of necessary bits to transmit such an information is
upper bounded by |X |× log2 n, since each symbol of X may appear
in xnl at most n times. The rate necessary to code this information is
hence |X|×log2 n

n
, which tends to 0 when n→∞. Another possible

justification for this scenario is the practical difficulty of getting a
reliable estimate of the empirical joint pmf. It makes sense, then, for
the defender to rely only on the empirical marginal pmf’s, but still
exploit the knowledge he has on the joint pmf of X.

Given that decision fusion is carried out by considering only the
empirical marginal distribution of the vector of observations xn, the
defender is forced to choose a region for H0 which is a subset of
the Cartesian product among the marginal types, i.e. Pkn = Pn ×
Pn . . .Pn. More precisely we have:

SD = {Λ0 ∈ 2P
k
n s.t. Pfp ≤ 2−λn}. (4)

As to the payoff, D still aims at minimizing Pfn (equation (2)).
Finding the optimal acceptance region requires that we compute the
probability that a source with a joint pmf PX emits a sequence having
certain marginals. This can be done by considering the probability,
under PX, of all the joint type classes having the desired marginals.
To elaborate, let us indicate by An(P1, P2 . . . Pk) the set with all
joint types with marginals P1, P2 . . . Pk, that is:

An(P1 . . . Pk) = {P ∈ Pn :
∑
−i

P (x1 . . . xk) = Pi ∀i}, (5)



where
∑
−i indicates summation over all variables xj but xi. Given

that the probability of a generic type class Q under PX decays
exponentially fast with exponent D(Q||PX) and given that the
number of types increases polynomially with n, we can proceed as
in Lemma 1 in [3] to prove the following theorem.

Theorem 2. The strategy

Λ∗0 =

{
(P1 . . . Pk) ∈ Pkn : (6)

min
P∈An(P1...Pk)

D(P ||PX) < λ− |X |k log(n+ 1)

n

}
is a dominant strategy for D.

Proof: The proof is omitted for sake of brevity.
One may wonder how the above result changes when the defender

does not know PX but only its marginals. This is the case, for
instance, of JPEG forensic tools that analyze separately the DCT
coefficients of an image without considering the dependencies be-
tween them. In this case it makes sense to adopt a worse case
perspective and require that Pfp ≤ 2−λn for all joint pmf’s with
assigned marginals. The dominant strategy then includes a double
minimization as follows:

Λ∗0 =

{
(P1 . . . Pk) ∈ Pkn : (7)

min
PX∈A(PX1

...PXk
)

min
P∈An(P1...Pk)

D(P ||PX) < λ−|X |k log(n+ 1)

n

}
.

E. MO-HT based on local decisions

The last scenario we are going to consider assumes that the nodes
can send to the fusion center only one bit of information (m = 1 and
f1
l ∈ {0, 1}). This is a common situation, occurring, for instance but

not only, when the nodes take their own decision about the state of
the system and data fusion is carried out at the decision level. This
scenario also models a multimedia forensic analysis in which the
analyst applies several tools each of which provides a binary output
regarding the origin or the authenticity of the analyzed document. It is
the task of the fusion center to take a final decision by considering the
output of all the tools. In principle we would like to derive the optimal
decision strategies at the nodes and the optimal fusion strategy. This
is a complex task, so we make the simplifying assumption that D
adopts an AND fusion strategy, that is H0 is accepted only if all the
nodes accept it. Assuming an AND-based decision rule is equivalent
to imposing that the the overall acceptance region is the Cartesian
product of the acceptance regions adopted by the nodes, i.e., Λ0 =
Λ0,1 × Λ0,2 . . .Λ0,k. As in the previous sections, we assume that
the nodes can rely only on the first order statistics of the observed
sequences.

According to the above scenario, the space of strategies of the
defender consists of all k-uple of local acceptance regions, that is:

SD = {(Λ0,1 . . .Λ0,k) : Λ0,i ∈ 2Pn and Pfp ≤ 2−λn}. (8)

The payoff function is again the false negative error probability. We
now prove the following theorem.

Theorem 3. The strategy

Λ∗0,i =

{
Pi ∈ Pn : D(Pi||PXi) < λ− |X | log(n+ 1)

n

}
∀i (9)

is a dominant strategy for D.

Proof: The proof consists of two steps. First, we prove that the
acceptance region Λ∗0 resulting from the local decision rules defined

in (9) is an asymptotically admissible choice for D (i.e. it satisfies the
constraint on type I error probability). Then we show that, under the
assumption that D adopts an AND fusion rule, the local acceptance
regions in (9) minimize the overall type II error probability. Let Λ∗,c0,i

be the rejection region of H0 at node i. We have:

Pfp = PX(xn ∈ Λ∗,c0 ) (10)

= PX(xn1 ∈ Λ∗,c0,1 OR xn2 ∈ Λ∗,c0,2 OR . . . OR xnk ∈ Λ∗,c0,k)

≤
k∑
i=1

PXi(x
n
i ∈ Λ∗,c0,i ).

Due to the first-order assumption, the acceptance region at each node
is a union of type classes (or equivalently a union of types with
denominator n), hence we can write:

Pfp ≤
k∑
i=1

∑
P∈Λ

∗,c
0,i

PXi(T (P )) (11)

a

≤
k∑
i=1

(n+ 1)|X| max
P∈Λ

∗,c
0,i

PXi(T (P ))

b

≤
k∑
i=1

(n+ 1)|X|2
−nmin

P∈Λ
∗,c
0,i
D(P ||PXi

)

c

≤ k(n+ 1)|X|2
−n

(
λ−|X| log(n+1)

n

)

where a and b derive from known upper bound on the number of types
with denominator n and on the probability of a type class under a
probability measure PXi [12], and c is a consequence of (9). We
have thus shown that Pfp ≤ 2−n(λ−δn) with δn → 0 for n → ∞,
and hence Λ∗0 asymptotically satisfies the constraint on Pfp.

We now pass to the second part of the proof to show that the
strategy in (9) is indeed optimal. Let Λ0 be an AND-based acceptance
region resulting from any other set of local regions Λ0,i satisfying the
constraint on false positive error probability. Finally, let xn,∗ belong
to Λc0. This means that xn,∗i ∈ Λc0,i for at least one i, say j. We
have:

2−nλ ≥ PX(xni ∈ Λc0,i, for some i) (12)
a

≥ PXj (xnj ∈ Λc0,j)

=
∑

P∈Λc
0,j

PXj (T (P ))

b

≥ PXj (T (Pxn,∗
j

))
c

≥ 1

(n+ 1)|X|
2
−nD(P

x
n,∗
j
||PXj

)
,

where a is obtained by observing that the probability of a union
of events is always larger than the probability of one such event, b
holds since we have assumed that Λc0,j contains at least xn,∗j (and the
corresponding type class), and c derives from a known lower bound
on the probability of a type class [12]. By considering the first and
the last term in (12), we see that xn,∗ ∈ Λ∗,c0 and hence Λ∗0 ⊆ Λ0.
This shows that any other acceptance region Λ0 satisfying the false
positive constraint results in a higher false negative probability, thus
proving the optimality of Λ∗0.

In practice, according to Theorem 3, H0 is accepted only if the
empirical marginals of the sequences observed by the nodes are in
accordance with the system model under H0. Moreover, somewhat
expectedly, D does not exploit the knowledge of the joint pmf PX,
the optimum decision rule depending only on PXi .

A unifying, and very important, characteristic of all the scenarios
considered in this section, is that the requirement that Pfp tends to
zero exponentially fast with decay exponent λ and the adoption of a
decision rule based on first order statistics already define the optimum



defender’s strategy regardless of the strategy chosen by attacker, thus
resulting in the existence of a dominant strategy for D. Moreover,
the dominant strategy does not depend on PY , that is the statistical
characterization of the system when H0 does not hold, making such
a knowledge un-necessary.

IV. OPTIMAL ATTACKER’S STRATEGIES

Having derived the optimal strategies for the defender, we now
adopt the perspective of the attacker (hereafter referred to as A). The
existence of a dominant strategy for D makes it possible to study
the optimal attacker’s strategy by knowing that the acceptance region
adopted by D is equal to Λ∗0. Together with Λ∗0, A’s optimum strategy
defines the equilibrium point of the game, which, being a dominant
equilibrium, is also the only rationalizable equilibrium of the game.

A. Strategy space of the attacker

As a first step, we must define the space of strategies A can choose
from and the information he has access to. As detailed in Section II,
A acts only when H0 does not hold with the aim of inducing a
type II error. In order to do so, he corrupts either the observation
sequences (MO-HT with corrupted observations), or the summaries
sent by the nodes to the fusion center (MO-HT with corrupted nodes).
In the former case, A must satisfy a distortion constraint specifying
to which extent the sequences xn1 . . . xnk can be modified. In both
cases, A may be allowed to attack all the sequences or only h of
them. In the following, we indicate with ynl the observed sequences
when H1 holds and with vml the corresponding feature sequences.
The action of the attacker corresponds to applying a function g(·)
either to ynl or vml to produce k attacked sequences znl (wml in the
case of corrupted nodes).

1) SA for MO-HT with corrupted observations: The set of strate-
gies available to A for the MO-HT game with corrupted observations
is given by:

SA = {g(·) : d(zn,yn) ≤ nDmax}, (13)

where Dmax is the maximum allowed average per letter distortion.
Alternatively, we can impose independent constraints on the distortion
introduced in each of the observed sequences:

SA = {g(·) : d(zni , y
n
i ) ≤ nDi,max ∀i}. (14)

Similar definitions hold when A can corrupt up to h sequences.
2) SA for MO-HT with corrupted nodes: In the case of corrupted

nodes the attacker has much more freedom, since in this case he
can work directly on the feature sequences vml . All the more that,
due to the absence of the distortion constraint, he can replace the
feature sequences of the attacked nodes at will. The only applicable
constraint is that he can substitute up to h sequences. In the case
of chosen corrupted nodes, the space of strategies includes also the
choice of the to-be attacked nodes.

Having defined SA, we must specify the information available to
A. To do so, we adopt a worse case assumption and consider an
omniscient attacker, who knows the system status (this is implicit
in the Neaman-Pearson setup) and can observe all observation and
feature sequences, even those that he is not allowed to modify.

B. Optimum attack for MO-HT with full knowledge

Let us consider the case of corrupted observations first. Given
the optimal defender’s strategy in (3), it is easy to realize that the
optimum strategy for A is to modify the observed sequences so that
the divergence between their empirical joint pmf and PX is as small
as possible while satisfying the distortion constraint, that is:

g∗(yn) = arg min
zn:d(zn,yn)≤nDmax

D(Pzn ||PX). (15)

This result is analogous to Theorem 1 in [3] (see equation (16)
therein), the only difference being that vector sources are involved
instead of scalar ones. We point out that, in principle, A could reach
the same goal by using a lower D, stopping as soon as the pmf
gets inside the acceptance region. Given our definition of the game,
however, such a situation would not result in a higher payoff. This
is the way to save as much distortion as possible which however, in
our case, is unnecessary. A similar result holds when the distortion
constraint applies to each observed sequence separately. Note that,
even if theoretically simple, solving the minimization in (15) may be
computationally very expensive, as already pointed out in [3] for the
scalar case.

In the case of MO-HT with corrupted nodes, the situation is by far
more favorable to the attacker, since he has to solve the minimization
problem without any constraint. It is obvious, then, that A can pass to
the fusion center completely fake sequences for which the divergence
between the empirical joint pmf and PX is arbitrarily small. Such
sequences will pass the test in (3), thus always resulting in a false
negative error.

The situation is different when A can attack only h out of k nodes.
Even in the most favorable case of corrupted nodes, A can not control
the empirical marginals of the non-attacked nodes and the joint pmf
between them. If such marginals, or joint pmf, under H1 are different
from those under H0, it may still be possible for the defender to
reliably distinguish between the two hypothesis (though with a higher
Pfn). It is also evident that, in the case of chosen corrupted nodes, A
will attack the nodes for which the pmf’s of the observations under
H0 and H1 differ most in terms of divergence.

C. Optimum attack for Marginal-based MO-HT

Even in this case the optimal attacking strategy follows directly
from the knowledge of D’s dominant strategy. In fact, for the case
of corrupted observations, from equation (6), it follows that:

g∗(yn) = arg min
zn:d(zn,yn)≤nDmax

min
P∈An(Pzn1

...Pzn
k

)
D(P ||PX).

(16)
A similar result holds when equation (7) applies instead of (6). The
situation is more favorable when the attacker can corrupt the output
of the nodes, since in this case he can choose directly the pmf’s
P1 . . . Pk that minimize minP∈An(P1...Pk)D(P ||PX). In fact, by
letting w|X|,∗i = Pi = PXi for all i, we have a perfect attack, since
in this case minP∈An(P1...Pk)D(P ||PX) is equal to 0. Of course,
this is not possible when the attacker controls only h nodes, in which
case the optimum attack boils down to the following minimization
(w.l.o.g. we assume that A attacks the first h nodes):

P ∗ = arg min
P∈An(...,Pyn

h+i
...Pyn

k
)
D(P ||PX), (17)

where An(. . . , Pyn
h+i

. . . Pyn
k

) denotes the set with all joint pmf’s
with only the last n − h marginals fixed. Once the minimization is
solved, A sets w|X|,∗i = P ∗i , ∀i = 1...h.

Finally, when the attacker chooses which nodes to attack, a further
minimization is required to minimize (17) over all possible subsets
of attacked nodes.

D. Optimum attack for MO-HT based on local decisions

Once again the optimum attacker’s strategy follows directly from
the knowledge of the dominant strategy of the defender. By consider-
ing Theorem 3, in fact, is easy to conclude that the optimum strategy
for A in the case of corrupted observations is:

g∗(yn) = arg min
zn:d(zn,yn)≤nDmax

max
i
D(Pzni ||PXi). (18)



As before the derivation of the optimum attack may be computation-
ally expensive due to the presence of the distance constraint. If the
squared Euclidean distance is adopted, a kind of waterfilling approach
can be applied. The attacker, in fact, can operate as follows: choose
i such that D(Pyni ||PXi) is maximum, and compute zni such that
D(Pzni ||PXi) = λ−|X | log(n+ 1)/n− ε (with ε arbitrarily small),
and the squared Euclidean distance between zni and yni is minimum.
If the distortion is lower than nDmax, go on with the next i such
that D(Pyni ||PXi) is maximum, and iterate the above procedure until
all D(Pyni ||PXi) are lower than the decision threshold or when the
maximum distortion is reached.

A considerably simpler situation is obtained when separate distor-
tion constraints apply to the different sequences. In this case in fact,
the attacker has to solve at most k independent scalar minimizations.

To conclude, we consider the case of corrupted nodes. In this case
the optimum attack is trivial, since the attacker needs only to set the
output of all the nodes under his control to 0, namely w1,∗

i = 0, ∀i =
1 . . . h. Note however that, if A does not control all the nodes, this
may not be enough to make the final decision fail, since the fusion
center accepts H0 only if all the nodes accept it.

In the case of chosen attacked nodes, A will attack the nodes for
which the marginals under H1 differ most (in terms of divergence)
from those under H0.

We point out that this scenario is somewhat different from the
usual case of decision fusion in the presence of Byzantines [9]. In
that case, in fact, the byzantine nodes do not have a full knowledge of
system status (which they know only through the observation of xn)
and flip the output of the local decisions with a certain probability. In
addition they usually act both when H0 holds and when it doesn’t.

V. DISCUSSION AND CONCLUSIONS

Having derived the equilibrium point of several versions of the
MO-HT game, we are ready to derive some conclusions and sum-
marize the main lessons that we learnt from our analysis. At a first
sight, in fact, our analysis may look rather theoretical making difficult
distilling some practical conclusions.

To start with, we observe that the theoretical framework with
the taxonomy of several kinds of scenarios referring to different
practical applications, is by itself a fundamental step towards the
comprehension of the addressed problems and the development of
practical strategies for both the attacker and the defender.

With regard to the specific results we have proven, the most
interesting result regards the existence of a dominant strategy for
the defender. What Theorems 1 through 3 say, in fact, is that the
defender may choose its strategy without caring about the attacker.
For instance, he would get no advantage from the knowledge of the
attacked nodes, let alone from any attempt to discover them. This
marks an important difference with respect to previous works in
which the defender tries to distinguish between honest and malicious
nodes (for some examples of such an approach see [14], [15]). In
hindsight, the reason for such an apparently strange behavior, is the
adoption of a Neyman-Pearson setup wherein the attacker acts only
when H0 does not hold, while the defender is asked to satisfy a
requirement on Pfp, i.e., by assuming that H0 holds. Coupled with
the adoption of an asymptotic setup, this results in the existence of a
dominant strategy for D that does not need to know whether a node
(or an observation) is controlled by the adversary or not. It goes
without saying that is some applications the assumptions we made
may not be reasonable, thus opening the way to different formulations
of the MO-HT game.

Having determined the equilibrium point of the various games, the
next step would require that the payoff at the equilibrium is evaluated
so to know who is going to win the game. In other words, given the
pmf’s under H0 and H1 (res. PX and PY), and a distortion constraint
Dmax (in the corrupted observations setup), we would like to know
whether the probability of a type II error ultimately tends to 0 or 1
when n→∞. Doing so for λ→ 0 would finally permit us to decide
whether the two hypothesis H0 and H1 are ultimately distinguishable
or not, when the attacker is allowed to attack h observation sequences
(or nodes) with a maximum per letter distortion Dmax (see [16] for
a preliminary analysis in this sense for a single-observation test).
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