
Attacking image classification based on

Bag-of-Visual-Words

A. Melloni #1, P. Bestagini #2, A. Costanzo ∗†3, M. Barni ∗†4, M. Tagliasacchi #5, S. Tubaro #6

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano

Piazza Leonardo da Vinci 32, 20133 Milano, Italy

{1 amelloni/2
bestagini/

5
tagliasa/

6
tubaro}@elet.polimi.it

∗ Department of Information Engineering and Mathematical Sciences,

Università degli Studi di Siena, Via Roma 56, 53100 Siena, Italy
3
andreacos82@gmail.com,

4
barni@dii.unisi.it

† National Inter-University Consortium for Telecommunications, Via di Santa Marta 3, 50139 Firenze, Italy

Abstract—Nowadays, with the widespread diffusion of online
image databases, the possibility of easily searching, browsing
and filtering image content is more than an urge. Typically,
this operation is made possible thanks to the use of tags, i.e.,
textual representations of semantic concepts associated to the
images. The tagging process is either performed by users, who
manually label the images, or by automatic image classifiers, so
as to reach a broader coverage. Typically, these methods rely
on the extraction of local descriptors (e.g., SIFT, SURF, HOG,
etc.), the construction of a suitable feature-based representation
(e.g., bag-of-visual words), and the use of supervised classifiers
(e.g., SVM). In this paper, we show that such a classification
procedure can be attacked by a malicious user, who might be
interested in altering the tags automatically suggested by the
classifier. This might be used, for example, by an attacker who
is willing to avoid the automatic detection of improper material
in a parental control system. More specifically, we show that it
is possible to modify an image in order to have it associated to
the wrong class, without perceptually affecting the image visual
quality. The proposed method is validated against a well known
image dataset, and results prove to be promising, highlighting
the need to jointly study the problem from the standpoint of
both the analyst and the attacker.

I. INTRODUCTION

The widespread diffusion of multimedia content has de-

termined the urgent need of easy and user-friendly search,

browsing and filtering systems. To this end, image databases

exploit the availability of tagged pictures to enable concept-

based image retrieval. This means that sets of tags (i.e., textual

representations of semantic concepts) are associated to each

picture to describe its content. However, manual tagging is not

a feasible solution as the database size increases. To address

this issue, content-based image classification methods can be

used instead.

Indeed, computer vision methods can automatically asso-

ciate one or more tags to an image in order to describe its

semantic content. For example, one might want to discriminate

WIFS‘2013, November 18-21, 2013, Guangzhou, China.

ISBN 978-1-4673-5593-3 c©2013 IEEE.

between adults-only pictures and family-safe pictures in order

to filter downloadable content from different websites. This

sort of classification is easily performed by humans, since

we are trained to recognize objects/scenes in the real world.

However, the automation of this procedure is not a trivial task,

since it is not easy to train a classifier that is able to generalize

and produce reliable results in challenging situations (e.g.,

complex illumination, severe perspective distortion, etc.).

Nowadays, state-of-the-art methods for image-based scene

classification rely on the Bag of Visual Words (BoVW)

representation [1]. That is, the image content is described by

means of a set of visual descriptors (e.g., SIFT [2], SURF [3],

HOG [4], etc.) extracted from the pixel-domain representation.

These descriptors are then compared to those stored in a

dictionary (previously trained) and assigned to one (or more,

in the case of soft-assignment [5]) visual words, so as to

map each image to a fixed-dimensional feature vector. Finally,

a classifier is designed by means of supervised learning to

identify the region of the vector space corresponding to images

to be labelled with each tag of interest.

Such classification schemes are often considered as black-

boxes, and little is known about which parts of an image ac-

tually contribute to the outcome of the classifier. Interestingly,

it was recently shown that is it possible to reverse engineer

the internal mechanisms of these classifiers [6], revealing the

so-called support regions, i.e., sets of contiguous pixels that

determine the outcome of the classifier. Inspired by this work,

in this paper we show how to effectively attack a picture

in order to fool a (binary) image classifier, yet introducing

little distortion. On the one hand, this attack can be pursued

by a malicious user, who wants to conceal the semantic

content of some images, e.g., to avoid being detected by safe-

search schemes. On the other hand, from the perspective of

the forensic analyst, it provides interesting insights on the

design of future attacker-aware image classification schemes,

which are meant to guarantee security when facing this sort

of attacks.

More specifically, we show that by knowing the scheme

used by the classifier, it is possible for an attacker to tamper

with an image in such a way that the classifier associates it

to the wrong class. The key tenet is to alter the image in the

pixel-domain so as to modify the BoVW representation used

as input to the classifier. We consider two kinds of attack,

depending on how local features are extracted from an image.

In the case of dense sampling, local features are obtained

by analyzing image patches regularly arranged according to a

fixed grid. Therefore, we perform our attack by modifying the

image locally, so that the descriptor corresponding to a given

patch is modified accordingly. Instead, in the case of sparse

sampling, local features are obtained by processing the image

with a feature detector, which identifies salient keypoints

(e.g., corner-like or blob-like structures), and descriptors are

extracted from patches around these keypoints. Therefore, we

attack the detector, following a strategy previously proposed

in [7], [8] to fool copy-move detectors [9], by removing them

in a convenient way to pilot the classification outcome.

Although the problem of attacking image classification

systems based on local features was previously presented in the

image forensic literature [10][11], to the best of the authors’

knowledge this is the first time that is applied to a classifier

relying on a BoVW representation.

The rest of the paper is structured as follows. Section II

presents the typical scheme of an image classifier that relies on

a BoVW representation. Section III shows the rationale behind

the proposed attack, in the case of both dense and sparse

feature sampling. Section IV reports the results obtained using

our algorithm on a wide image dataset. Finally, in Section V

we draw some conclusive remarks, and present possible future

works.

II. IMAGE CLASSIFICATION

The BoVW representation has been successfully adopted to

enable fast indexing and retrieval of large image collections [1]

as well as content-based image classification [12]. In this

paper we focus on the latter use, which has been pursued

in the literature according to different implementations. In

this section we present the typical scheme used for image

classification based on BoVWs. This is not meant to be a

comprehensive survey of content-based classification methods,

but serves as background to introduce the problem we deal

with, and to define the classifier targeted by our attack.

Although other, more complex, methods have been developed

in the literature, we decided to focus on a simple scheme for

the sake of clarity. Indeed, since more complex classification

schemes are usually derived from this one, it is straightforward

to adapt the attack proposed in this paper to other classifiers.

The classification procedure consists of three steps: i) build

the dictionary of visual words (VWs); ii) define a code (i.e.,

a fixed-dimensional feature vector) that describes each image

in terms of visual words; iii) train a classifier by means of

supervised learning. In the following we briefly illustrate these

steps.

Image Keypoints Descriptors Dictionary

.....
.....

.....
Clustering

Fig. 1: Steps performed to build the dictionary of visual words.

A. Dictionary of VWs

The first step requires the computation of the dictionary of

VWs, as illustrated in Figure 1. A training set of I images

belonging to different classes is analyzed. For each image,

a set of local descriptors (e.g., SIFT, SURF, HOG, etc.) is

computed obtaining K-dimensional column-vectors xn
i , where

i = 1, . . . , I , is the image index, and n = 1, . . . , Ni, is

the descriptor index within the i-th image. In our work, we

consider two commonly adopted sampling strategies. In the

case of dense sampling, local descriptors are computed from

(possibly overlapping) blocks equally spaced on a predefined

grid. Alternatively, in the case of sparse sampling, the image

is analyzed by means of a detector, which identifies a set

of content-dependent salient keypoints corresponding, e.g., to

corner-like or blob-like structures, possibly at different scales.

Then, local descriptors are computed from image patches

centered around these keypoints.

Regardless of the adopted feature sampling strategy, the

descriptors are then clustered, e.g., using hierarchical k-means,

into W clusters. The number of clusters W is equal to

the number of visual words. The cluster centers x
w, w =

1 . . . ,W , define the dictionary of VWs. Each visual word is

therefore defined by the average descriptor of each cluster.

B. Code construction

Once the dictionary is trained, we need a way to describe

each image according to the VWs of the dictionary. This step

is performed building for each image a code vector di ∈ R
W

whose elements define the degree of similarity between the

image and each visual word.

Let X = [x1,x2, ...,xW] ∈ R
K×W denote the matrix

composed by the visual words in the dictionary. In the simplest

BoVW representation, each descriptor x
n
i is assigned to the

closest visual word, and the corresponding entry in the vector

di is increased by one. Therefore, di represents a histogram,

which counts the number of descriptors assigned to each visual

word. In the literature, it was shown that soft-assignment of

descriptors to visual words is often preferable [5] to hard-

assignment. In this paper, we consider the soft-assignment

method proposed in [13], which is also known as Locality-

constrained Linear Coding (LLC). More specifically, for each

image we compute the matrix Ci = [c1i , c
2
i , ..., c

Ni

i] ∈
R

W×Ni , in which each column vector cni ∈ R
W is the code

associated to the n-th descriptor of the i-th image. The matrix

Ci is obtained by solving the following constrained least

squares problem:

Ci = argmin
[c1,c2,...,cNi]

Ni∑

n=1

‖xn
i −Xc

n‖

s.t. 1⊤
c
n = 1, n = 1, . . . , Ni.

(1)

Therefore, the W elements of c
n
i represent the degree of

similarity between the descriptor xn
i and each visual word.

However, the size of Ci depends on the number of descrip-

tors in the i-th image. For this reason, an additional operation

is applied to obtain a code whose size is not image-dependent.

To this end, one of the most used operations is max-pooling,

which consists in building a fixed-dimensional column vector

di = [d1i , d
2
i , . . . , d

W
i]T as follows

di = max(Ci), (2)

where the max(·) operator is applied row-wise, so that the

w-th element of di is the maximum value of the w-th row of

Ci. Then, the vector di is normalized to have unit ℓ2-norm.

C. Classifier

Support Vector Machines (SVM) have been successfully

employed in content-based image classification. In the litera-

ture, it was shown that using a non-linear code (such as the one

presented above) with a linear classifier provides better results

than using a linear code with a non-linear classifier [13]. In

this paper we consider a binary classifier, which is trained to

distinguish images that belong to class A from the others (i.e.,

class A). A binary linear-SVM takes as input the set of training

pairs 〈di, yi〉, where di ∈ R
W is the BoVW representation of

the i-th image, and yi ∈ {A,A} is the class the image belongs

to. During training, the hyperplane in R
W that maximizes the

margin between the two classes is sought. Such hyperplane

can be defined by means of its normal versor u ∈ R
W and a

bias term b that measures the signed-distance of the hyperplane

from the origin.

The hyperplane serves as decision boundary between the

two classes, splitting the W -dimensional space in two parts

(see Figure 2). That is, during the classification step, points

lying on one side of the hyperplane are associated to class A,

whereas points lying on the other side are associated to class

A. Equivalently, the classification decision is taken based on

the sign of the following value

δi = di · u− b, (3)

which represents the signed-distance between di and the

hyperplane. If δi > 0 the i-th image is associated to class

A, otherwise it is associated to class A.

III. CLASSIFICATION ATTACK

The goal of this work is to demonstrate that is possible to

attack a classifier based on the scheme presented in Section II.

We consider an attack that aims at reverting the classification

label determined by the classifier. That is, when an image

di

d1
d̃
n1

1 d2

b

u

d̃
n2

1

Fig. 2: Representation of a W -dimensional feature space, when W =

2 for illustration purposes. Red points are assigned to class A, green
points to class A. The dashed line described by the versor u and the
bias b represents the decision boundary that separates the two classes.
By attacking the image in the pixel domain, it is possible to move
the BoVW representation from one side of the decision boundary to
the other.

belongs to class A, it is attacked so that the outcome of the

classifier is class A.

Since the classifier receives as input the BoVW representa-

tion di, the attacker modifies the image in order to associate a

different feature vector d̃i to it. Thus, to modify di into d̃i, the

attacker operates on those blocks from which descriptors are

computed. In the following we consider two different attacks,

depending on the specific feature sampling strategy adopted:

dense or sparse.

A. Attack to classifiers based on dense feature sampling

When a classification scheme based on dense feature sam-

pling is considered, the attacker operates on blocks defined on

a regular grid. The attack consists in substituting a number of

selected blocks with visually similar patches. To this end, we

need to determine: i) which blocks need to be modified, and;

ii) how to modify the selected blocks.

In order to identify the most promising blocks to modify, for

every block used in the sampling grid, the attacker substitutes

its pixel values with a constant, so that the corresponding

visual descriptor is null. Then, the attacker computes:

• d̃
n
i : the BoVW feature vector computed with max-

pooling after replacing the patch with a constant. This

is equivalent to removing the n-th column of Ci, and

then re-applying max-pooling.

• δ̃ni = d̃
n
i ·u− b: the signed-distance between d̃

n
i and the

SVM hyperplane. If positive, the image is associated to

class A, otherwise to class A.

Therefore, removing those blocks for which δ̃ni < 0, the image

changes class, as illustrated in the example in Figure 2.

When selecting the blocks to modify, the attacker considers

them in increasing value of δ̃ni . Indeed, a large negative value

of δ̃ni indicates that the feature vector corresponding to the

modified image is moved to the decision region associated to

class A, and it is far from the decision boundary. For example,

Figure 3 shows an image and the corresponding heat-map,

Fig. 3: Example image and corresponding heat-map. The darker the
block, the largest the impact on the outcome of the classifier. Dark
blocks are the most promising blocks to be substituted by the attacker.

which indicates the value of δ̃ni for each block in the image.

Then, for a selected block, the attacker searches for a patch in

a large dictionary of candidate patches. The block is replaced

with a new patch satisfying the following conditions:

• Classification Condition: The new patch, when used to

replace the n-th block, leads to the same BoVW feature

vector d̃n
i as the one obtained when setting the block to

a constant value. To this end, the vector c̃ni associated to

the new patch (i.e., the column of C̃i associated to the

new image) needs to have all the elements smaller than

those of d̃
n
i . This ensures that the new patch does not

affect the output of max-pooling.

• Visual Quality: Among those patches satisfying the con-

dition above, we are interested in selecting those that are

visually similar to the original block. Visual similarity

can be measured in terms of objective quality metrics,

e.g., Peak Signal to Noise Ratio (PSNR) or Structural

SIMilarity (SSIM) index [14] between the two blocks.

In some cases, the attacker needs to replace more than one

block to change the class assigned to an image. In this case, the

procedure above is iterated in a greedy fashion considering the

blocks in increasing order of δ̃ni . For example, Figure 2 shows

that it is necessary to replace three blocks to successfully

attack image I2. We will refer to this strategy as substitution

attack.

An alternative strategy for the attacker consists in re-

synthesizing the texture of each candidate block interpolating

the values of neighbouring pixels. In order to achieve a result

which is visually pleasing, an inpainting algorithm is employed

(for example, in our experiments we used [15]). The attacker

proceeds iteratively replacing each block with its inpainted

version, computes the corresponding BoVW representation

d̃
n
i , and the signed distance δ̃ni from the decision boundary. If

there is at least a block for which δ̃ni < 0 (i.e., the image is

misclassified) the attack is completed. Otherwise, the attacker

selects the block that leads to the smallest value of δ̃ni , and

re-iterates the attack selecting the second block to modify. We

will refer to this strategy as inpainting attack.

B. Attack to classifiers based on sparse feature sampling

In the case of sparse feature sampling, the descriptors are

computed only for local patches centered around the detected

keypoints. First, the attacker determines, for each keypoint,

the impact of removing the keypoint and the corresponding

descriptor on the outcome of the classifier. More specifically,

the values δ̃ni are computed as illustrated before, where in this

case n is the index of the detected keypoint. Then, the removal

attack proposed in [8] is applied, incrementally removing the

keypoints in increasing value of δ̃ni , until the outcome of

the classifier is changed. In a nutshell, the algorithm in [8]

identifies different types of keypoint and uses an ad-hoc attack

for each type. By doing so, performance is maximized both

in terms of removal effectiveness and perceptual quality of

the forgery. The type of keypoint is determined based on

the analysis of the histogram of grey-levels computed on a

squared neighborhood around every keypoint. On the basis

of the histogram shape, three different types are defined:

unimodal, bimodal and multimodal. For each of them, the

most suitable attack is selected (Gaussian Smoothing, Removal

with Minimum Distortion [10] or Collage). The procedure

is iterated until all the targeted keypoints are removed or a

maximum iteration limit is reached. The iterative approach

is required for two reasons: i) manipulations can accidentally

introduce new keypoints, which are eliminated in the subse-

quent iterations; and ii) some keypoints may survive to an

iteration, thus requiring less forgiving parameter assignments.

Notice that the scheme of [8] cannot be employed to attack a

classifier based on dense feature sampling, since the detector

is bypassed.

IV. RESULTS

In order to test our algorithm, we used the dataset pre-

sented in [16], which includes natural images with slightly

different sizes in the range of 256×256 pixels1. Images are

tagged according to 15 different categories (e.g., coast, forest,

highway, etc.), each of which composed by more than 200

images. For each category, we selected 50 images to build the

dictionary, 50 images to train the SVM, and 100 images for

testing. The linear SVM follows the implementation in [17].

Although the proposed approach is general, in our experiments

we adopted SIFT visual features, which are computed either

on non-overlapping patches (dense sampling) and by resort-

ing to the canonical DoG (Difference-of-Gaussian) detector

(sparse). The edge and peak thresholds of the DoG detector

were set respectively to 10 and 4, to obtain descriptors that

are as close as possible to the original implementation by

Lowe [2]. Descriptors were computed using the VLFeat SIFT

implementation [18].

With this setup, class A represents one of the 15 categories,

and class A includes images randomly selected from all other

categories. Table I summarizes the classification accuracy

obtained for all the image categories, when using either one

of the two feature sampling schemes. Notice that, in the case

of dense sampling, the classifier accuracy varies depending on

the class and the block size used.

In the case of attacks to image classifiers based on dense fea-

ture sampling, we considered non-overlapping square patches

1The dataset is freely available for download at http://www-cvr.ai.uiuc.edu/
ponce grp/data/

TABLE I: Image classification accuracy for each of the 15 image
categories. First four rows: dense feature sampling, when using
different block sizes; fifth row: sparse feature sampling.

Size C1 C2 C3 C4 C5 C6 C7

16 0.60 0.84 0.74 0.74 0.67 0.65 0.74

20 0.70 0.86 0.93 0.80 0.82 0.76 0.84

26 0.73 0.89 0.95 0.77 0.82 0.84 0.84

Sparse 0.85 0.72 0.92 0.87 0.76 0.79 0.74

Size C8 C9 C10 C11 C12 C13 C14 C15

16 0.72 0.67 0.67 0.67 0.61 0.71 0.61 0.61

20 0.66 0.82 0.83 0.73 0.55 0.71 0.71 0.69

26 0.58 0.81 0.85 0.70 0.59 0.75 0.71 0.70

Sparse 0.73 0.71 0.73 0.72 0.61 0.70 0.79 0.79

with side equal to 16, 20, and 26 pixels, centered on a dense

grid. Figure 4 (b) - (c) shows an example of attacked images,

together with the original version (Figure 4 (a)). Figure 5

shows, for two exemplary image categories (C1 and C5),

the percentage of images that are successfully attacked as a

function of the number of pixels that need to be changed. In the

case of classifiers based on dense feature sampling, we show

the impact of changing the patch size and the attack strategy

(substitution vs. inpainting). As an example, the inpainting

attack needs to modify less than 5% of the pixels of each

image in order to misclassify 80% of the images belonging to

class C1, when using 20×20 blocks.

Table II reports comprehensive results for a larger number

of image categories, when setting the patch size to 16×16 and

constraining the attacker to change at most 15% of the pixels

within each image. For each class, only the images correctly

classified before the manipulation were considered. Notice that

the attack to the classifier based on dense sampling leads

almost always to 100% of misclassified images. Even though

the local PSNR and SSIM (i.e., the quality metrics calculated

on modified blocks only) might be low, the corresponding

values computed on the overall image are very high, denoting

that the attacked image is visually similar to the original one.

(a) Authentic image (b) Substitution (dense)

(c) Inpainting (dense) (d) Keypoint removal (sparse)

Fig. 4: Examples of attacked images. Red squares indicate the blocks
affected in order to change the image class.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

% of pixels for class change

%
 o

f
im

a
g
e
s
 c

h
a
n
g
in

g
 c

la
s
s

16x16 Substitution

16x16 Inpainting

20x20 Substitution

20x20 Inpainting

26x26 Substitution

26x26 Inpainting

12x12 Sparse

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

% of pixels for class change

%
 o

f
im

a
g
e
s
 c

h
a
n
g
in

g
 c

la
s
s

16x16 Substitution

16x16 Inpainting

20x20 Substitution

20x20 Inpainting

26x26 Substitution

26x26 Inpainting

12x12 Sparse

Fig. 5: Percentage of pixels changed in each image to change class.
Left: image category C1 (suburb). Right: image category C5 (inside
city).

In the case of attacks to image classifiers based on sparse

feature sampling, the parameter values of the attack were set

as suggested in [8], with the exception of the attack support

size, increased to 12. An example of counterfeited image

is provided in Figure 4 (d). Figure 5 shows the fraction

of successfully attacked images for categories C1 and C5,

whereas Table III summarizes the results for a wider set of

classes, for which the highest performance was achieved.

The attack was generally successful in hindering the correct

classification and such an effectiveness did not come at the

expense of the perceptual quality of the altered image. Indeed,

local PSNR and SSIM, averaged on all the 12×12 attacked

patches, range from 30 dB to 37 dB and from 0.71 to 0.98,

respectively.

To better highlight the effect of the attack, in Figure 6 we

plot the distance from the separation hyperplane for authentic

(blue circle marker) and attacked (red square marker) images.

More specifically, we provided two examples: one for the best

performing class, i.e. C1, and one for C3, not summarized in

Table III above (63.4% misclassification, local PSNR 31.7 dB,

local SSIM 0.978).

1 10 20 30 40 50 60 70 80 90
−1.5

−1

−0.5

0

0.5

1

1.5

Image index

D
is

ta
n

c
e

 f
ro

m
 h

y
p

e
rp

la
n

e

Attacked

Authentic

1 10 20 30 40 50 60 70 80
−1.5

−1

−0.5

0

0.5

1

1.5

Image index

D
is

ta
n

c
e

 f
ro

m
 h

y
p

e
rp

la
n

e

Attacked

Authentic

Fig. 6: Distance from the separation hyperplane for authentic and
attacked images: class C1 (top) and class C3 (bottom).

In the former case, all examples are clearly separated while

in the latter they are more mixed up (although the percentage

of misclassification remains satisfactory). The reason behind

TABLE II: Results for attacks to classifiers based on dense feature
sampling: true positives (TP) preceding and following the attacks;
percentage of misclassification; local and full-frame quality. Top:
16×16 Substitution; bottom: 16×16 Inpainting. Local metrics are
computed only on modified blocks, total ones on the overall image.

Class
TP

before

TP

after

Mis-

classified

Local

PSNR

Local

SSIM

Total

PSNR

Total

SSIM

C1 70 0 100 % 22.4 0.646 40.2 0.987

C2 88 11 87.5 % 26.0 0.728 39.0 0.975

C4 70 2 97.1 % 28.8 0.808 45.4 0.992

C5 76 0 100 % 20.1 0.578 36.8 0.986

C9 84 7 91.7 % 21.5 0.592 35.5 0.968

C10 84 0 100 % 26.4 0.754 45.5 0.994

C11 66 0 100 % 25.2 0.706 43.3 0.990

C12 69 0 100 % 20.6 0.529 39.2 0.991

C13 82 0 100 % 22.4 0.633 39.3 0.986

C14 79 0 100 % 22.3 0.632 39.4 0.987

Class
TP

before

TP

after

Mis-

classified

Local

PSNR

Local

SSIM

Total

PSNR

Total

SSIM

C1 70 0 100 % 24.0 0.629 42.8 0.995

C2 88 4 95.5 % 24.9 0.729 38.9 0.982

C4 70 0 100 % 29.0 0.801 46.9 0.995

C5 76 0 100 % 22.3 0.609 40.2 0.994

C9 84 4 95.2 % 22.9 0.640 37.5 0.985

C10 84 0 100 % 28.2 0.780 47.5 0.997

C11 66 0 100 % 28.8 0.765 47.5 0.996

C12 69 0 100 % 28.5 0.665 48.7 0.997

C13 82 0 100 % 26.2 0.702 44.2 0.995

C14 79 0 100 % 26.3 0.711 44.2 0.995

TABLE III: Results for attacks to classifiers based on sparse feature
sampling: true positives (TP) preceding and following the attack;
percentage of misclassification; local and full-frame quality.

Class
TP

before

TP

after

Mis-

classified

Local

PSNR

Local

SSIM

Total

PSNR

Total

SSIM

C1 92 0 100 % 35.1 0.985 44.5 0.997

C2 44 0 100 % 29.7 0.717 51.1 0.998

C4 78 23 70.5 % 30.4 0.692 50.8 0.999

C5 76 1 98.6 % 35.5 0.981 45.4 0.999

C9 53 3 94.3 % 33.8 0.921 46.8 0.998

C10 75 2 97.3 % 38.5 0.963 51.7 0.999

C11 63 6 90.5 % 37.5 0.945 48.8 0.998

C12 57 4 93.0 % 33.4 0.976 46.7 0.998

C13 80 13 83.7 % 36.9 0.973 48.9 0.999

C14 77 13 83.1 % 36.9 0.982 48.1 0.998

such a behavior is related to the visual content of class C3,

depicting forests. Highly textured regions, in fact, generate

considerable amounts of sparse keypoints, which, combined to

the fact that the employed attack does not always allow total

removal (see [8]), have a detrimental effect on performance.

Given these results, we notice that the attack based on

dense SIFT representation often allows to change class to

a higher number of images. On the other hand, the attack

based on sparse SIFT representation generally introduces less

distortion.

V. CONCLUSIONS

In this paper we demonstrate that it is possible to attack

image classifiers based on BoVWs. To this end, we propose

a set of algorithms to deal with classification methods that

make use of either sparse or dense feature sampling. The

algorithms were validated on a common dataset showing high

attack success rate. This highlights the need for studying

countermeasures that prevent possible malicious attacks to

such classifiers. Future works will be devoted to the study

of anti-counterfeiting techniques.

ACKNOWLEDGMENT

The project REWIND acknowledges the financial support

of the Future and Emerging Technologies (FET) programme

within the Seventh Framework Programme for Research of

the European Commission, under FET-Open grant number:

268478.

REFERENCES

[1] J. Sivic and A. Zisserman, “Video google: a text retrieval approach to
object matching in videos,” in 2003 9th IEEE International Conference

on Computer Vision (ICCV), 2003, pp. 1470–1477 vol.2.
[2] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”

International Journal of Computer Vision, vol. 60, pp. 91–110, 2004.
[3] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust

features (surf),” Computer Vision and Image Understanding, vol. 110,
pp. 346–359, 2008.

[4] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in International Conference on Computer Vision & Pattern

Recognition, 2005.
[5] L. Lingqiao, W. Lei, and L. Xinwang, “In defense of soft-assignment

coding,” in Computer Vision (ICCV), 2011 IEEE International Confer-

ence on, 2011.
[6] L. Lingqiao and W. Lei, “What has my classifier learned? visualizing

the classification rules of bag-of-feature model by support region detec-
tion,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE

Conference on, 2012.
[7] R. Caldelli, I. Amerini, L. Ballan, G. Serra, M. Barni, and A. Costanzo,

“On the effectiveness of local warping against sift-based copy-move
detection,” in Communications Control and Signal Processing (ISCCSP),

2012 5th International Symposium on, 2012.
[8] I. Amerini, M. Barni, R. Caldelli, and A. Costanzo, “Counter-forensics

of SIFT-based copy-move detection by means of keypoint classification,”
EURASIP Journal on Image and Video Processing, vol. 2013, no. 1,
p. 18, 2013.

[9] I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo, and G. Serra,
“A SIFT-based forensic method for copy-move attack detection and
transformation recovery,” IEEE Trans. on Information Forensics and

Sec., vol. 6, pp. 1099–1110, 2011.
[10] T.-T. Do, E. Kijak, T. Furon, and L. Amsaleg, “Deluding image

recognition in SIFT-based CBIR systems,” in Proceedings of the 2nd

ACM workshop on Multimedia in forensics, security and intelligence,
ser. MiFor ’10. New York, NY, USA: ACM, 2010, pp. 7–12.

[11] A. Piva, “An overview on image forensics,” ISRN Signal Processing,
vol. 2013, p. 22, 2013.

[12] L. Yizhi, L. Shouxun, T. Sheng, and Z. Yongdong, “Adult image detec-
tion combining bovw based on region of interest and color moments,”
in Intelligent Information Processing V. Springer Berlin Heidelberg,
2010.

[13] W. Jinjun, Y. Jianchao, Y.and Kai, L. Fengjun, T. Huang, and G. Yihong,
“Locality-constrained linear coding for image classification,” in 2010

IEEE Conference on Computer Vision and Pattern Recognition, 2010.
[14] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image

quality assessment: From error visibility to structural similarity,” Image

Processing, IEEE Transactions on, vol. 13, no. 4, pp. 600–612, 2004.
[15] M. Burger, L. He, and C. Schonlieb, “Cahn-Hilliard inpainting and

a generalization for grayvalue images,” SIAM Journal on Imaging

Sciences, vol. 2, pp. 1129–1167, 2009.
[16] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial

pyramid matching for recognizing natural scene categories,” in 2006

IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 2006.
[17] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector

machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1–27:27, 2011.

[18] A. Vedaldi and B. Fulkerson, “VLFeat: an open and portable library
of computer vision algorithms,” in Proceedings of the international

conference on Multimedia. ACM, 2010, pp. 1469–1472.

