
Decision Fusion with Corrupted Reports in Multi-Sensor Networks:
a Game-Theoretic Approach

A. Abrardo, M. Barni, K. Kallas, B. Tondi
Department of Information Engineering and Mathematics, University of Siena

Via Roma 56, 53100 - Siena, ITALY

Abstract— Decision fusion in adversarial setting is receiving
increasing attention due to its relevance in several applications
including sensor networks, cognitive radio, social networks,
distributed network monitoring. In most cases, a fusion center
has to make a decision based on the reports provided by local
agents, e.g. the nodes of a multi-sensor network. In this paper,
we consider a setup in which the fusion center makes its decision
on the status of an observed system by relying on the decisions
made by a pool of local nodes and by taking into account the
possibility that some nodes maliciously corrupt their reports
to induce a decision error. We do so by casting the problem
into a game-theoretic framework and looking for the existence
of an equilibrium point defining the optimum strategies for
the fusion center and the malicious nodes. We analyze two
different strategies for the fusion center: a strategy recently
introduced by Varshney et al. in a cognitive radio setup and a
new approach based on soft identification of malicious nodes.
The superior performance of the new decision scheme are
demonstrated by resorting to the game-theoretic framework
introduced previously.

I. INTRODUCTION

We address a distributed decision problem in which a
fusion center is required to make a decision about the status
of an observed system by relying on the information provided
by the nodes of a multi-sensor network. Decision fusion must
be carried out in an adversarial setting, that is by taking into
account the possibility that some of the nodes malevolently
alter their reports to induce a decision error. This is a
recurrent problem in many situations wherein the nodes may
make a profit from a decision error. As an example, let us
consider a cognitive radio system in which users cooperate to
sense the frequency spectrum to decide whether the spectrum
is free thus allowing them to transmit their data. While
cooperation among users allows to make a better decision
on the status of the frequency spectrum, it is possible that
one or more users deliberately alter their measurements to
let the system think that the spectrum is busy, when in fact
it is not, and use the available spectrum themselves without
sharing such a possibility with the other users [1], [2]. Online
reputation systems offer another example. Here a fusion
center needs to come out with a final decision (or score)
about the reputation of an item like a good or a service by
relying on the feedback provided by users. Even in this case,
it is possible that malevolent users provide a fake feedback
to improve or decrease the reputation of the item under
inspection [3], [4]. Other examples come from the emerging
field of adversarial signal processing as exemplified in [5].

A graphical representation of the problem studied in this

Fig. 1. Decision fusion under adversarial conditions.

paper is given in Figure 1. The k nodes of a multi-sensor
network observe a system through the vectors x1,x2 . . .xk.
Based on such vectors, the nodes compute k reports, say
r1, r2 . . . rk and send them to a fusion center. The fusion
center gathers all the reports and makes a final decision
about the status of the observed system. Hereafter, we assume
that the system can be only in two states S0 and S1.
Additionally, we make the simplifying assumption that the
reports correspond to local decisions on the system status
made by the nodes, i.e. the reports are binary values and
ri ∈ {0, 1} for all i.

The figure depicts three adversarial versions of the above
problem. According to the first one, referred to as decision
fusion with corrupted observations, the adversary (or the
adversaries) corrupts the observations seen by the nodes.
An asymptotic version of this problem has been studied
in [6], however decision fusion with corrupted observations
does not fit the scenario addressed in this paper, and hence
will not be considered any further. In a second situation
(decision fusion with corrupted nodes), the fusion center has
to tackle with the presence of a number of malevolent nodes,
which deliberately alter their reports to induce a decision
error. According to a consolidated literature, such nodes are
referred to as byzantine nodes or simply Byzantines [7], [8].
Note that a byzantine node can decide to alter its report
by relying on its observations of the system, but usually it
does not have access to the observations made by the other
nodes and their reports1. The last case (decision fusion with
corrupted reports) corresponds to a situation in which the
adversary corrupts the reports without having access to the
observed sequences. This may correspond to a situation in

1When this is the case, we say that the Byzantines are omniscient or that
they cooperate among them. In the rest of this paper we will not consider
these situations.
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which the adversary does not control the nodes but only the
communication link between the nodes and the fusion center,
or to the case of byzantine nodes which, for some reasons,
can not observe the data at the input of the node, or decide
not exploit such a knowledge (as strange as it may seem, this
is a rather common assumption in the analysis of decision
fusion in the presence of byzantine nodes [8]).

In this paper we focus on decision fusion with corrupted
reports. We adhere to standard terminology in the literature
which refers to nodes with corrupted reports as Byzantines.
Despite being the simplest kind of attack, the case of cor-
rupted reports contains all the ingredients of more complex
situations, hence its analysis is very instructive and already
provides interesting insights into the achievable performance
of distributed decision fusion under adversarial conditions.

II. PRIOR WORK AND CONTRIBUTION

Data fusion in a distributed decision framework is a
classical subject that has received a steadily increasing at-
tention due to its potential use in a wide variety of wireless
sensor network applications [9]. Despite such an interest, the
adversarial version of the distributed decision problem has
been given a relatively limited attention. In [10], the problem
of distributed detection in the presence of Byzantines is
considered. The analyzed scheme roughly corresponds to the
case of decision fusion with corrupted reports depicted in
Figure 1. Both cases of scalar and vector reports are consid-
ered. Decision fusion is framed into a Neyman-Pearson setup
and the asymptotic performance of the system are analyzed
as a function of the percentage of corrupted reports. As a
result, the percentage of Byzantines making the decision
completely unreliable (blind) is determined. In addition to
its asymptotic nature, a noticeable difference between the
analysis carried out in [10] and the one presented here is that
in [10] the Byzantines are assumed to cooperate among them
to infer the exact status of the system under analysis. A more
general framework is considered in [6], where both the cases
of corrupted observations and corrupted nodes are analyzed.
Even in this case, the achievable performance are derived
under asymptotic conditions and the adversaries are supposed
to perfectly know the status of the observed system. A
peculiarity of the analysis carried out in [6] is that the system
is attacked only when one of the two hypotheses holds,
according to a typical Neyman-Pearson setting. Also, the
decision problem is framed into a game-theoretic framework
and the performance evaluated at the equilibrium point. As
opposed to [10], due to the particular characteristics of the
setup studied in [6], in some cases it is possible for the
decision fusion center to make reliable decisions even when
the number of Byzantines exceeds the number of honest
nodes. The works that most closely resemble the present
paper are [1], [11], which generalize the analysis carried
out in [10]. In these works the authors consider the case
of corrupted nodes, even if at the end the nodes act as in
the case of corrupted reports, since the Byzantines do not
take advantage of the knowledge of the observed sequences
xi. As in the present paper, the adversary does not know

the true state of the system and the analysis is not limited
to the asymptotic case. The Byzantines act by flipping the
local decisions made by the corrupted nodes with a certain
probability, while the fusion center first tries to understand
which are the byzantine nodes and then makes a decision by
discarding the suspect nodes. A game-theoretic formulation
is also introduced to devise the optimum strategies for the
Byzantines and the fusion center. Another paper in which the
decision fusion is casted into a game-theoretical framework
is [12]. In such paper, the attacker is supposed to know the
system status and choose which subset of reports to attack
and deliberately corrupt them.

Contribution. With the above ideas in mind, the contribu-
tion of this paper is twofold. First of all, we present a novel
soft identification strategy whereby the fusion center can
isolate the byzantine nodes from the honest ones. Then, we
introduce a game-theoretic formulation of the decision fusion
problem with corrupted nodes thus providing a rigorous
framework to evaluate the performance achievable by the
fusion center and the Byzantines, when both of them play
at the equilibrium. The game-theoretic approach is used to
compare the new fusion strategy with the one described
in [1]. Finally, we demonstrate the superior performance
of the soft identification scheme by means of numerical
simulations.

III. DECISION FUSION WITH ISOLATION OF
BYZANTINE NODES

A. Problem formulation

In the scenario outlined in the previous section a reason-
able strategy for the Fusion Center (FC) is to first try to
identify which are the corrupted nodes, discard them and
then decide about the state of the system by relying only on
the remaining reports [8]. In the following we give an exact
formulation of such an approach.

As we said, we are considering the case of binary reports.
Specifically, each node makes a local decision about the state
of the observed system and forwards its one-bit decision to
FC, which must decide between hypothesis H0 (system is
in state S0) and hypothesis H1 (system is in state S1). We
assume that a fraction α of the k nodes (or links, according
to the definitions given in Figure 1) is under the control
of byzantine attackers which, in order to make the fusion
process fail, corrupt the reports by flipping the one-bit local
decisions with probability Pmal (as in [1], [11], we assume
a symmetric attacking strategy). By referring to Figure 1,
the above attack corresponds to the insertion of a binary
symmetry channel with crossover probability Pmal in the
attacked links.

The strategy adopted by the fusion center consists in trying
to identify the corrupted nodes and remove the corresponding
reports from the fusion process. To do so, the FC observes
the decisions taken by the nodes over a time period T ,
and makes the final decision on the state of the system at
each instant t only at the end of T . To elaborate, for each
instant t, we indicate the reports received from the nodes
as rk(t) = (r1(t), r2(t), ..., rk(t)) where ri(t) ∈ {0, 1}. The
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fusion center applies an l-out-of-k fusion rule2 to rk(t) to
make an intermediate decision on the status of the system at
time t. Let us indicate such a decision as dint(t). In order
to distinguish the behavior of the honest nodes from that of
the corrupted ones, it is convenient to introduce the local
decisions ui(t) made at the node level. More specifically,
the local decisions made by the i-th node over the time
window T , are denoted as ui = (ui(1), ui(2), . . . , ui(T )).
The relationship between ui(t) and the status of the system
as time t is ruled by the following equations, which take into
account the probability of a decision error by the local node:

P (ui(t) = 1|H1) = Pdi (1)
P (ui(t) = 1|H0) = Pfai , (2)

where Pdi and Pfai are, respectively, the probability of
correct detection and false alarm for node i. Note that in
accordance to previous works, we adopted a terminology
typical of detection theory, even if the analysis presented
here focuses mainly on a scenario in which H0 and H1

plays a symmetric role. In the following, we assume that
the states assumed by the system over subsequent instants
are independent of each other. Errors at different nodes and
different times are also assumed to be independent.

By assuming that transmission takes place over error-free
channels, for honest nodes we have ri(t) = ui(t), while for
the corrupted links we have ri(t) 6= ui(t) with probability
Pmal. Then, for the corrupted reports we have:

P (ri(t) = 1|H1) = Pmal(1− Pdi) + (1− Pmal)Pdi , (3)
P (ri(t) = 1|H0) = Pmal(1− Pfai) + (1− Pmal)Pfai .

(4)

Given the observation vector rk(t) for each t (t = 1, .., T ),
in order to remove the fake reports from the data fusion
process, FC proceeds as follows: it associates to each link i
a reputation score Γi, based on the consistency of the reports
received from that node with the intermediate decisions
dint(t) over the entire time window T . Then, FC isolates
the nodes whose reputation is lower than a threshold η and
decides about the system state by fusing only the remaining
reports.

B. Byzantine Identification: hard reputation measure

A simple Byzantine isolation scheme has been proposed
by Rawat et al. in [1], in a scenario related to Collaborative
Spectrum Sensing for Cognitive Radio Networks. In such
a scenario, each node of the network decides about the
presence (S1) or absence (S0) of the primary transmitter;
on their side, the malicious nodes may send to the FC false
data by flipping their local decisions. In the identification
scheme proposed in [1], the FC computes for each node
i a reputation score by simply counting the number of
times that the reports received from that node are different
from the intermediate decisions dint(t) during the sensing
period T . The reputation score ΓH,i is hence defined as

2In other words, the fusion center decides in favor of H1 if l out k nodes
decided for such an hypothesis.

ΓH,i =
∑T
i=1 I(ri(t) = dint(t)) where I(x) (indicator

function) is equal to 1 when its argument its true and 0
otherwise. Accordingly, the nodes whose reputation is lower
than a threshold η are removed from the fusion process. For
each t, the final decision is taken by relying on an l′-out-
of-k′ rule, where l′ is the final decision threshold and k′ is
the number of nodes remaining after that the thought-to-be
byzantine nodes have been discarded.

In [1], the above scheme is shown to be able to mitigate
the effect of byzantine attacks when α < 0.5, a situation in
which the Byzantines are not able to blind the FC by attack-
ing the network independently (referred to as Independent
Malicious Byzantine Attacks (IMBA) in [1]), which is the
only case considered in this paper.

IV. DECISION FUSION WITH SOFT
IDENTIFICATION OF MALICIOUS NODES

In this section, we propose a different isolation strategy
which removes the Byzantines from the network according
to a soft 3 reliability measure. For any instant t and given
the vector rk(t) with the reports, the new isolation strategy
relies on the estimation of the following probabilities:

P
(
ui(t) = 1, rk(t)

)
, (5)

P
(
ui(t) = 0, rk(t)

)
.

For a honest node, in fact, such probabilities are very
different from each other, since the expression for which
ri(t) = ui(t) is close to 1, while the other is very close to 0.
On the contrary, for a byzantine node, the above probabilities
tend to be closer. For this reason, we propose to measure the
reputation score of a node as follows. For each t we first
compute:

Ri(t) =

∣∣∣∣∣log

[
P
(
ui(t) = 0, rk(t)

)
P (ui(t) = 1, rk(t))

]∣∣∣∣∣ , (6)

that is the absolute value of the log-ratios of the two
probabilities. Then we set:

ΓS,i =

T∑
i=1

Ri(t). (7)

To evaluate (6), we start rewriting the joint probabilities
within the log as follows (for notation simplicity, we omit
the index t):

P
(
ui, r

k
)

= P
(
rk|ui, H0

)
P (ui, H0)

+ P
(
rk|ui, H1

)
P (ui, H1) . (8)

To proceed, we make the simplifying assumptions that
the reports received by the FC from different nodes are
conditionally independent4. This is only approximately true
since in our scenario we operate under a fixed number of
Byzantines, and then the probability that a node is Byzantine
depends (weakly) on the state of the other nodes when their

3We point out that our method is soft for identification of the Byzantines,
but is not used in the final decision step.

4That is they are independent when conditioning to H0 or H1.
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number is large enough. Such dependence decreases when
the number of nodes increases and disappears asymptotically
by the law of large numbers.

Let us now consider the quantity P (rj |ui, H0). When i =
j, we can omit the conditioning to H0 since ri depends on the
system status only through ui. On the other side, when i 6= j,
we can omit the conditioning to ui, due to the conditional
independence of node reports. A similar observation holds
under H1. Then we can write:

P
(
ui, r

k
)

= P (ri|ui)
{
P (ui|H0)P (H0)

∏
j 6=i

P (rj |H0)

+ P (ui|H1)P (H1)
∏
j 6=i

P (rj |H1)

}
, (9)

where P (ri|ui) = (1 − αPmal) if ri = ui, and αPmal,
otherwise. Moreover, we have P (uj = 1|H1) = Pdj and
P (uj = 1|H0) = Pfaj . In addition:

P (rj |H0) = (1− αPmal)P (uj = rj |H0)

+ αPmalP (uj 6= rj |H0) (10)
P (rj |H1) = (1− αPmal)P (uj = rj |H1)

+ αPmalP (uj 6= rj |H1) . (11)

By inserting the above expressions in (8) and (6), we can
compute the soft reputation score ΓS,i. Then, the FC relies
on ΓS,i to distinguish honest nodes from Byzantine ones.
Specifically, the distinction is made by isolating those nodes
whose reputation score ΓS,i is lower than a threshold η
(hereafter, we will set Pfai = Pfa and Pdi = Pd ∀i).

We conclude this section by observing that, strictly speak-
ing, FC is required to know α and the flipping probability
Pmal. With regard to α, we assume that FC knows it. As
to Pmal, in the next sections, we will see that choosing
Pmal = 1 is always the optimum strategy for the attackers,
and hence FC can assume that Pmal = 1.

V. A GAME-THEORETICAL APPROACH TO THE
DECISION FUSION PROBLEM

In this section, we evaluate the performance achieved by
using the soft Byzantine isolation strategy defined in the
previous section and compare it with the hard identification
strategy described in [1]. To do so, we use a game-theoretic
approach in such a way to analyze the interplay between the
choices made by the attackers and the fusion center.

A. Game theory in a nutshell

A 2-player game is defined as a 4-uple G(S1,S2, v1, v2),
where S1 = {s1,1 . . . s1,n1} and S2 = {s2,1 . . . s2,n2} are
the set of strategies the first and the second player can
choose from, and vl(s1,i, s2,j), l = 1, 2, is the payoff of the
game for player l, when the first player chooses the strategy
s1,i and the second chooses s2,j . When v1(ss1,i, s2,j) =
−v2(s1,i, s2,j), the two players have opposite payoffs and
the game is said to be a zero-sum game. In this paper, we
consider a strategic game, meaning that the players choose
their strategies before starting the game without knowing the
strategy chosen by the other player.

Game theory aims at determining the existence of equilib-
rium points, i.e. pair of strategies that in some sense represent
a satisfactory choice for both players [13]. The most famous
equilibrium notion is due to Nash. Intuitively, a profile is a
Nash equilibrium if each player does not have any interest
in changing its choice assuming the other does not change
its strategy. A stronger equilibrium notion passes through
the definition of dominant strategy. A strategy is said to be
strictly dominant for one player if it is the best strategy for
the player, no matter how the other player decides to play. In
many cases dominant strategies do not exist, however when
one such strategy exists for one of the players, he will surely
adopt it. The other player, in turn, can choose his strategy
anticipating that the first player will play the dominant
strategy. In this way, when a dominant strategy exists, the
game is dominance solvable and the players have only one
rational choice called the only rationalizable equilibrium of
the game [14].

B. The Decision Fusion Game: definition

A first attempt to cast the decision fusion process under
byzantine attacks into a game-theoretic framework can be
found in [11]. In that paper, the FC is given the possibility
of setting the local sensor threshold for the hypothesis
testing problem at the nodes and the fusion rule, while the
Byzantines can choose the flipping probability Pmal.

With respect to [11], we study a more general version of
the decision fusion game which includes the isolation scheme
described in Section III. To this purpose, the FC is endowed
with the possibility of setting the isolation threshold η, as
well as the final fusion rule after removal of byzantine nodes.
Finally, the performance are evaluated in terms of overall
error probability after the removal step. We suppose that
FC does not act strategically on the local sensor threshold;
then Pd and Pfa are fixed and known to FC. With regard
to the Byzantines (B), they are free to decide the flipping
probability Pmal.

With the above ideas in mind, we define the general
decision fusion game as follows:

Definition 1: The DF (SFC ,SB , u) game is a zero-sum
strategic game, played by FC and B, defined by the following
strategies and payoff.
• The set of strategies available to FC is given by all the

possible isolation thresholds η, and the values of l and
l′ in the l-out-of-k intermediate and final decision rules:

SFC = {(l, η, l′); l, l′ = 1, .., k, ηmin ≤ η ≤ ηmax},
(12)

where ηmin and ηmax depend on the adopted isolation
scheme.

• The set of strategies for B are all the possible flipping
probabilities for the corrupted nodes:

SB = {Pmal, 0 ≤ Pmal ≤ 1}. (13)

• The payoff is the final error probability after malicious
node removal, namely Pe,ar. Of course, FC wants to
minimize Pe,ar, while B tries to maximize it.
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Applying the above definition to the identification schemes
introduced so far, we see that for the case of hard reputation
measure (DFH game), the values of the isolation threshold
η range in the set of integers from 0 to T , while for the
scheme based on the soft removal of the malicious nodes
(DFS game) η may take all the continuous values between
ηmin = mini=1,..,k Ri(t) and ηmax = maxi=1,..,k Ri(t).

C. The Decision Fusion Game: equilibrium point

With regard to the optimum choice for the Byzantines,
previous works have either conjectured or demonstrated (in
particular cases) that Pmal = 1 is a dominant strategy
[1], [11]. Even in our case, the simulations we carried out,
some of which are described in the next section, confirms
that Pmal = 1 is indeed a dominant strategy for both the
hard and the soft identification schemes. This means that,
notwithstanding the introduction of an identification scheme
for discarding the reports of malicious nodes from the fusion
process, the optimum for the Byzantines is (still) always
flipping the local decisions before transmitting them to FC.
This means that for the Byzantines it is better to use all their
power (Pmal = 1) in order to make the intermediate decision
fail than to use a lower Pmal to avoid being identified.

As a consequence of the existence of a dominant strategy
for B, the optimum strategy for FC is the triple (l∗, η∗, l′∗)
which minimizes Pe,ar when Pmal = 1. By exploiting a
result derived in [9] for the classical decision fusion problem
and later adopted in [11] in presence of Byzantines, the
optimal value l∗ determining the intermediate fusion rule is
given by

l∗ =
ln
[
(P (H0)/P (H1)){(1− p10)/(1− p11)}k

]
ln [{p11(1− p10)}/{p10(1− p11)}]

, (14)

where P (H0) and P (H1) are the a-priori probabilities of H0

and H1, while p10 = p(r = 1|H0) and p11 = p(r = 1|H1),
evaluated for Pmal = 1. With regard to η and l′, we have:

(η∗, l′∗) = arg min
(η,l′)

Pe,ar((l
∗, η, l′), Pmal = 1). (15)

Depending on the adopted isolation scheme, we have a
different expression for Pe,ar and then different η∗’s and
l′∗’s as well. The minimization problem in (15) is solved
numerically for both hard and soft isolation in the next sec-
tion. According to the previous analysis, ((l∗, η∗, l′∗), P ∗mal)
is the only rationalizable equilibrium for the DF game, thus
ensuring that any rational player will surely choose these
strategies. The value of Pe,ar at the equilibrium represents
the achievable performance for FC and is used to compare
the effectiveness of data fusion based on soft and hard
Byzantine isolation.

VI. PERFORMANCE ANALYSIS

In this section, we evaluate the performances at the equi-
librium for the two games DFH and DFS , showing that the
soft strategy outperforms the one proposed in [1], in terms
of Pe,ar. We also give a comparison of the two schemes in
terms of isolation error probability.

In all our simulations, we consider a multi-sensor network
with k = 100 nodes. We assume that the probability of the
two states S0 and S1 are the same. We run the experiments
with the following settings: Pd = 1−Pfa takes values in the
set {0.8, 0.9} and α ∈ [0.4, 0.49], corresponding to a number
of honest nodes ranging from 51 to 60. The observation
window T is set to 4 (such a value determines the delay of the
decision at the FC and then reasonably it must be kept low
in practical applications). For each setting, the probability
of error Pe,ar of the two schemes is estimated over 50000
simulations.

Due to the symmetry of the experimental setup with
respect the two states, we have that p10 = p01 = 1 − p11.
Accordingly, from (14) we get that l∗ = k/2 and then the
majority rule is optimal for any Pmal (not only at the equilib-
rium). Besides, still as a consequence of the symmetric setup,
the optimality of the majority rule is experimentally proved
also for the final fusion rule, regardless of the values of η
and Pmal. Then, in order to ease the graphical representation
of the game in normal form, we fix l∗ = 50 and l′∗ = k′/2
and remove these parameters from the strategies available to
the FC.

Tables I and II show the payoff matrix for the DFH and
DFS games when α = 0.46 and Pd = 0.8 (very similar
results are obtained for different values of these parameters).
For the DFS game, the threshold values are obtained from
the reliability interval [ηS,min, ηS,max]. Since the reliability
measures take different values for different Pmal a large
number of thresholds have been considered, however for sake
of brevity, we show the results obtained with a rather coarse
quantization interval, especially far from the equilibrium
point. As to the strategy of the Byzantines, the simulation
results confirm the dominance of Pmal = 1 for both games.
Looking at the performance at the equilibrium, we see that
the DFS game is more favorable to the FC, with a Pe,ar at
the equilibrium equal to 0.1375 against 0.1982 for the DFH
game. In Figure 2, the two games are compared by plotting
the corresponding payoffs at the equilibrium for various
values of α in the interval [0.4, 0.49]. Upon inspection of
the figure, the superiority of the soft isolation scheme is
confirmed. Finally, we compared the two schemes in terms
of capability of isolation of the byzantine nodes. The ROC
curve with the probability of correct isolation (PBISO) versus
the erroneous isolation of honest nodes (PHISO), obtained
by varying η, is depicted in Figure 3 for both schemes.
The curves correspond to the case in which α = 0.46 and
Pd = 0.8. As we can see, soft isolation allows to obtain a
slight improvement of the isolation performance with respect
to isolation based on a hard reputation score.

VII. CONCLUSIONS

We presented a new scheme for decision fusion in the
presence of Byzantine nodes, relying on a soft reputation
measure for the identification of nodes. In order to evaluate
the performance of the new scheme and compare it against
prior art based on a hard reputation measure, we have
introduced a game theoretic framework which is particularly
suited to analyze the interplay between the fusion center and
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ηH / Pmal 0.6 0.7 0.8 0.9 1
4 0.0016 0.0087 0.0354 0.1109 0.2746
3 0.0015 0.0078 0.0262 0.06628 0.1982
2 0.0016 0.0080 0.0281 0.0726 0.1998
1 0.0016 0.0087 0.0354 0.1109 0.2746
0 0.0016 0.0087 0.0354 0.1109 0.2746

TABLE I
PAYOFF OF THE DFH GAME FOR α = 0.46 AND Pd = 80, Pfa = 0.2.

ηS / Pmal 0.6 0.7 0.8 0.9 1
ηS,min 0.0009 0.0035 0.0131 0.0596 0.2253

· 0.0009 0.0035 0.0131 0.0596 0.1889
· 0.0009 0.0035 0.0131 0.0596 0.1589
· 0.0009 0.0035 0.0131 0.0596 0.1401
· 0.0009 0.0035 0.0131 0.0596 0.1405
· 0.0009 0.0035 0.0131 0.0596 0.1375
· 0.0009 0.0035 0.0131 0.0596 0.1528
· 0.0009 0.0035 0.0131 0.0596 0.1801
· 0.0009 0.0035 0.0131 0.0596 0.2192
· 0.0009 0.0035 0.0131 0.0596 0.2742
· 0.0009 0.0035 0.0131 0.0361 0.2742
· 0.0009 0.0035 0.0131 0.0209 0.2742
· 0.0009 0.0035 0.0131 0.0586 0.2742
· 0.0009 0.0035 0.0131 0.1108 0.2742
· 0.0009 0.0035 0.0088 0.1108 0.2742
· 0.0009 0.0035 0.0054 0.1108 0.2742
· 0.0008 0.0021 0.0355 0.1108 0.2742

ηS,max 0.0006 0.0011 0.0355 0.1108 0.2742

TABLE II
PAYOFF OF THE DFS GAME FOR α = 0.46 AND Pd = 80, Pfa = 0.2.

the Byzantines. We evaluated the equilibrium point of the
game by means of simulations and used the payoff at the
equilibrium to assess the validity of the new soft reputation
metric.

Future work will focus on two research directions. On
one side we will try to derive a MAP fusion rule to further
improve the performance of the fusion center. On the other
side we will improve the performance of the Byzantines by
letting them exploit the knowledge of the observation vectors
(decision fusion with corrupted nodes).
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