Electronic Imaging 2014 Countering Anti-Forensics by Means of Data Fusion

<u>Marco Fontani[#], Alessandro Bonchi^{*}, Alessandro Piva^{*}, Mauro Barni[°]</u>

* University of Florence (IT)

[#] CNIT, University of Siena (IT)

° University of Siena (IT)

The Perfect Crime ?

- Creating a good forgery is easy today, yet most forgers may not know what they are leaving behind:
 - JPEG compression artifacts
 - Camera-related artifacts
 - Physical/Geometrical inconsistencies
 - Suspicious Metadata

S<u>A</u>ME

- Creating the "perfect forgery" may not be so easy
- A smart analyst will make use of many complementary detectors, properly interpreting their answers (multi-clue analysis)

The world is full of obvious things which nobody by any change ever observes.

Anti-Forensics & Counter-Anti-F.

- □ New threat: development of **Anti-Forensic** (AF) tools
 - Process the image so to remove a certain trace.
- □ In doing so, they are likely to leave new artifacts in turn
- Counter-Anti-Forensic (CAF) tools search for these secondround artifacts so to expose the presence of AF
- □ Some noticeable examples:

Anti-Forensics	Counter-Anti-Forensics		
Stamm's approach for JPEG compression	Valenzise approach based on Total Variation analysis		
Median filtering	Various Tools for MF detection		

Our Contribution

- We recently investigated the benefits of multi-clue analysis in Image Forensics (AMULET project)
 Proposed a framework based on Dempster-Shafer Theory for IF
- Now the question is: can multi-clue analysis help against counter-forensics?
 - By leveraging on the complementary nature of tools
 - By including CAF tools in the analyst's arsenal

Dempster-Shafer Theory

- Alternative to classical Bayesian theory
 - Good for modeling missing information
 - No need for prior probabilities
- Information is represented through belief assignments
- Dempster's Combination Rule: fuse information from multiple sources
- See the paper for more details and references

DST framework in a nutshell 1/2

We start from our multi-clue framework:

DST framework in a nutshell 2/2

Introducing traces relationships

S[⊥]ME

	Id	α	β	Interpr.	
ſ	1	0	0	Non-Tampered	$\int 1 \text{for } X = \{(t\alpha, n\beta) \cup (n\alpha, t\beta) \cup (n\alpha, n\beta)\}$
	2	0	1	Tampered	$m_{comp}(X) = \begin{cases} 0 & \text{for } X = \{(t\alpha, t\beta)\} \end{cases}$
	3	1	0	Tampered	
	4	1	1	-	

Introducing CAF tools...

- CAF tools can be modeled as standard IF tools...
- □ Still, some questions are in order:
- □ Where should we introduce them within the framework?
 - Cascaded architecture;
 - Mixed architecture.
- Traces of AF may have an ambiguous valence.
- How can we easily allow fusion of subsets of tools?

Where to introduce: Cascade Architecture

Where to introduce: Mixed Architecture

S^{*L*}**M**_E

Ambiguous AF Traces

- It has been shown that some filtering operators can act as a good AF tool (e.g., median filtering operator).
- These operators has an ambiguous forensic valence:
 they may have been used "benignly" (noise removal);
 they may be acting as an AF attack.
- Possible approach: model inconsistencies in the presence of AF traces
 - □ Full frame filtering → ok
 - **\square** Filter not applied to the whole image \rightarrow suspect

Disabling Tools

- It may happen that a tool cannot be used on an image (e.g., due to image format, size etc.)
- Can the analyst adapt the framework "on-the-fly"?
- With DS Theory, yes!
- Just exploiting the neutral element of Combination Rule:

$$m_U^{\Theta_\alpha}(X) = \begin{cases} 0 & \text{for } X = \{(t\alpha)\} \\ 0 & \text{for } X = \{(n\alpha)\} \\ 1 & \text{for } X = \{(t\alpha) \cup (n\alpha)\} \end{cases}$$

Notice: doing the same with machine-learning techniques would not be so easy.

Case Studies

- □ We consider the **forgery detection** image forensic task:
 - given an image and a suspect region, determine whether it has been pasted or not.
- □ We choose a reference IF forensic scenario:
 - a set of possible tampering procedures;
 - a set of IF tools searching for different traces.
- Then, we consider two different case studies:
 - AF based on median filtering;
 - AF based on JPEG concealment.

Case Studies: reference scenario

Let us focus on the following forgery scenario:

Case Studies: reference scenario (c.)

□ Not all the combinations of traces are plausible:

Comb. num	JPNA	JPDQ	JPGH	Interpr.
1	0	0	0	Non-tampered
2	0	0	1	Tampered
3	0	1	0	Not plausible
4	0	1	1	Tampered
5	1	0	0	Tampered
6	1	0	1	Not plausible
7	1	1	0	Not plausible
8	1	1	1	Tampered

□ We provide the analyst five IF tools:

JPDQ	JPNA	JPGH
Lin et al.	Luo et al.	Farid
Bianchi et al.	Bianchi et al.	

Case Study: JPEG concealment

- The attacker now produces uncompressed images
- Two approaches considered:

Case Study: analyst's countermeasures

We provide the analyst with the ' 'from for JPEG coding '

JPNA JPGH Comb. num JPDQ Interpr. Uncompressed Non-tampered Tampered Ω $\mathbf{0}$ Not plausible Comb. nu Tampered \cap Tampered Not plausible $\overline{7}$ Not plausible Tampered nperea *c*ampered Tampered Tampered Tampered Tampered Tampered Tampered

Case study: experimental results

Generated a dataset of:

- 2000 untouched JPEG images
- 500x4 tampered JPEG images (no AF)
- 500x4 tampered images without final compression
- 500x4 tampered images with AF
- Run all tools on every image.
- Merged outputs using:
 - DST-based fusion
 - Logical disjunction ("OR") rule

Case study: experimental results

- JPGH resists well to AF
- Simple decision fusion doesn't help
- 3. DST-based fusion helps

Concluding Remarks

Multi-clue analysis helps in presence of AF techniques, because:

- the adversary may conceal only some IF traces;
- AF tool for trace X may improve the detectability of Y;
- the analyst can include CAF tools in the framework.
- Future work:

S_A

- Explore wider variety of traces;
- Compare with more complex fusion rules.

AMULET REWIND

Thanks for your attention! Questions?

Countering Anti-Forensics by Means of Data Fusion Marco Fontani, Alessandro Bonchi, Alessandro Piva, Mauro Barni