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The Perfect Crime ? 

!  Creating a good forgery is easy 
today, yet most forgers may not 
know what they are leaving behind: 
!  JPEG compression artifacts 
!  Camera-related artifacts 
!  Physical/Geometrical inconsistencies 
!  Suspicious Metadata 

!  Creating the “perfect forgery” may 
not be so easy 

!  A smart analyst will make use of many  
complementary detectors, properly  
interpreting their answers (multi-clue analysis) 

Image 
Forensic 
Tools 

The world is full of obvious things 
which nobody by any change 
ever observes. 
 

THE HOUND OF THE BASKERVILLES  
A. Conan Doyle 



Anti-Forensics & Counter-Anti-F. 

!  New threat: development of Anti-Forensic (AF) tools 
!  Process the image so to remove a certain trace. 

!  In doing so, they are likely to leave new artifacts in turn 

!  Counter-Anti-Forensic (CAF) tools search for these second-
round artifacts so to expose the presence of AF 

!  Some noticeable examples: 
  

Anti-Forensics Counter-Anti-Forensics 

Stamm’s approach  
for JPEG compression 

Valenzise approach based on 
Total Variation analysis 

Median filtering Various Tools for MF detection 



Our Contribution 

!  We recently investigated the benefits of multi-clue 
analysis in Image Forensics (AMULET project) 
!  Proposed a framework based on Dempster-Shafer Theory for IF 

!  Now the question is: can multi-clue analysis help against 
counter-forensics? 
!  By leveraging on the complementary nature of tools 
!  By including CAF tools in the analyst’s arsenal 



Dempster-Shafer Theory 

!  Alternative to classical Bayesian theory 
!  Good for modeling missing information 

!  No need for prior probabilities 

!  Information is represented through belief assignments 

!  Dempster’s Combination Rule: fuse information from multiple 
sources 

!  See the paper for more  
details and references 



!  We start from our multi-clue framework: 

Interpretation of 
Tools Output 

(mapping to BBA) 

Combine BBAs 
from different 

tools 

Account for traces 
compatibility 

DST framework in a nutshell 1/2 



DST framework in a nutshell 2/2 

!  Modeling tool outputs 
 

 
!  Merging multiple tools 

 
 
!  Introducing traces relationships 

IF Tool A Mapping 
to BBA 

Backgr. 
info 

3.1 Adopted Framework

A DST-based framework for combining the evidence stemming from several tools has been proposed.? The
framework performs fusion at the so-called “score-level”, meaning that it combines the scalar output produced
by each IF tool, without considering its internal features. Being based on DST, the framework can be used to
merge together tools that are based on di↵erent analysis algorithms, due to the independence assumption behind
Dempster’s combination rule. One of the most important features of the framework is that it allows to explicitly
write (when they are available) the compatibility relationships between di↵erent image forensic traces: this part
is crucial to our goal of integrating IF and CAF tools, and it will be described later in more detail. The basic
idea underlying the framework is to model each IF tool as a source of evidence about the presence or absence
of a specific forensic trace within the analysed image or region. This is done by defining a di↵erent set for each
trace containing two elements: “the trace is present” and “the trace is not present”, and by mapping the tool
output to a BBA assignment over the frame of discernment generated by that set. For example, if we have a
tool A searching for a trace called ↵, the frame of discernment will be the power set of ⇥↵ = {t↵, n↵}, where t↵
means that the trace is present and n↵ means the opposite. Information provided by the tool is then modeled
with the following belief assignment:

m⇥↵
A (X) =

8
><

>:

AT for X = {(t↵)}
AN for X = {(n↵)}
ATN for X = {(t↵) [ (n↵)}

, (5)

m⇥↵
A (X) =

8
><

>:

0.7 for X = {(t↵)}
0.2 for X = {(n↵)}
0.1 for X = {(t↵) [ (n↵)}

, (6)

where AT , AN and ATN are functions mapping the scalar output of the tool to a mass value. In the original
version of the framework, these functions were statically defined by the user;? recently it has been shown that
they can be learned automatically so to account also for auxiliary information, like characteristics of the analysed
image of region, that may a↵ect the behavior of the tool.? In this work we choose the latter approach, which
is preferable because it adapts the interpretation of tool output by the light of the general characteristics of the
content; details about the chosen characteristics are given in Section ??, because they depend on the specific IF
tools that are considered.

Equation (??) shows how to model the information stemming from one tool. When the information gathered
by another tool B must also be considered by the system two cases are possible: tool B may either be searching
for the same trace ↵ or for a di↵erent trace, say �. In the former case, a BBA m⇥↵

B like the one in (??) is

obtained, while in the latter case a BBA m
⇥�

B enters the system, which has the same meaning described above
but concerning the trace �. These two cases must be addressed di↵erently when we turn to the next step of the
framework, which consists in merging the information obtained by various tools. As long as the same trace is
concerned, Dempster’s rule (??) can be used directly to summarize the information provided by di↵erent tools
about that trace. On the other hand, if two tools looking for di↵erent traces ↵ and � are to be fused, their BBA
must be first extended on a common frame, that is the power set of ⇥↵⇥⇥� , and then merged together. Details
about this procedure are provided in the original work,? and will not be exposed here.

3.1.1 Information About Relationships Between Forensic Traces

It is important to notice that, up to this point, information has been combined together without introducing
knowledge about traces relationships. Since image forensic footprints are usually well defined and based on a
specific phenomenon, the forensic analyst should be able, in most cases, to determine which combination of traces
can be present at the same time and which can not. Going back to the previous example, it may be that traces
↵ and � cannot be present at the same time, due to the way they are defined. The framework allows the analyst
to include such information by writing a BBA like the following one:

mcomp(X) =

(
1 for X = {(t↵, n�) [ (n↵, t�) [ (n↵, n�)}
0 for X = {(t↵, t�)} , (7)

3.1 Adopted Framework

A DST-based framework for combining the evidence stemming from several tools has been proposed.2 The
framework performs fusion at the so-called “score-level”, meaning that it combines the scalar output produced
by each IF tool, without considering its internal features. Being based on DST, the framework can be used to
merge together tools that are based on di↵erent analysis algorithms, due to the independence assumption behind
Dempster’s combination rule. One of the most important features of the framework is that it allows to explicitly
write (when they are available) the compatibility relationships between di↵erent image forensic traces: this part
is crucial to our goal of integrating IF and CAF tools, and it will be described later in more detail. The basic
idea underlying the framework is to model each IF tool as a source of evidence about the presence or absence
of a specific forensic trace within the analysed image or region. This is done by defining a di↵erent set for each
trace containing two elements: “the trace is present” and “the trace is not present”, and by mapping the tool
output to a BBA assignment over the frame of discernment generated by that set. For example, if we have a
tool A searching for a trace called ↵, the frame of discernment will be the power set of ⇥↵ = {t↵, n↵}, where t↵
means that the trace is present and n↵ means the opposite. Information provided by the tool is then modeled
with the following belief assignment:

m⇥↵
A (X) =

8
><

>:

AT for X = {(t↵)}
AN for X = {(n↵)}
ATN for X = {(t↵) [ (n↵)}

, (5)

m⇥↵
B (X) =

8
><

>:

0.8 for X = {(t↵)}
0.2 for X = {(n↵)}
0 for X = {(t↵) [ (n↵)}

, (6)

where AT , AN and ATN are functions mapping the scalar output of the tool to a mass value. In the original
version of the framework, these functions were statically defined by the user;2 recently it has been shown that
they can be learned automatically so to account also for auxiliary information, like characteristics of the analysed
image of region, that may a↵ect the behavior of the tool.8 In this work we choose the latter approach, which is
preferable because it adapts the interpretation of tool output by the light of the general characteristics of the
content; details about the chosen characteristics are given in Section 4, because they depend on the specific IF
tools that are considered.

Equation (6) shows how to model the information stemming from one tool. When the information gathered
by another tool B must also be considered by the system two cases are possible: tool B may either be searching
for the same trace ↵ or for a di↵erent trace, say �. In the former case, a BBA m⇥↵

B like the one in (6) is

obtained, while in the latter case a BBA m
⇥�

B enters the system, which has the same meaning described above
but concerning the trace �. These two cases must be addressed di↵erently when we turn to the next step of the
framework, which consists in merging the information obtained by various tools. As long as the same trace is
concerned, Dempster’s rule (4) can be used directly to summarize the information provided by di↵erent tools
about that trace. On the other hand, if two tools looking for di↵erent traces ↵ and � are to be fused, their BBA
must be first extended on a common frame, that is the power set of ⇥↵⇥⇥� , and then merged together. Details
about this procedure are provided in the original work,2 and will not be exposed here.

3.1.1 Information About Relationships Between Forensic Traces

It is important to notice that, up to this point, information has been combined together without introducing
knowledge about traces relationships. Since image forensic footprints are usually well defined and based on a
specific phenomenon, the forensic analyst should be able, in most cases, to determine which combination of traces
can be present at the same time and which can not. Going back to the previous example, it may be that traces
↵ and � cannot be present at the same time, due to the way they are defined. The framework allows the analyst
to include such information by writing a BBA like the following one:

mcomp(X) =

(
1 for X = {(t↵, n�) [ (n↵, t�) [ (n↵, n�)}
0 for X = {(t↵, t�)} , (7)

Dempster’s 
Rule 

3.1 Adopted Framework

A DST-based framework for combining the evidence stemming from several tools has been proposed.2 The
framework performs fusion at the so-called “score-level”, meaning that it combines the scalar output produced
by each IF tool, without considering its internal features. Being based on DST, the framework can be used to
merge together tools that are based on di↵erent analysis algorithms, due to the independence assumption behind
Dempster’s combination rule. One of the most important features of the framework is that it allows to explicitly
write (when they are available) the compatibility relationships between di↵erent image forensic traces: this part
is crucial to our goal of integrating IF and CAF tools, and it will be described later in more detail. The basic
idea underlying the framework is to model each IF tool as a source of evidence about the presence or absence
of a specific forensic trace within the analysed image or region. This is done by defining a di↵erent set for each
trace containing two elements: “the trace is present” and “the trace is not present”, and by mapping the tool
output to a BBA assignment over the frame of discernment generated by that set. For example, if we have a
tool A searching for a trace called ↵, the frame of discernment will be the power set of ⇥↵ = {t↵, n↵}, where t↵
means that the trace is present and n↵ means the opposite. Information provided by the tool is then modeled
with the following belief assignment:

m⇥↵
A (X) =

8
><

>:

AT for X = {(t↵)}
AN for X = {(n↵)}
ATN for X = {(t↵) [ (n↵)}

, (5)

m⇥↵
AB(X) =

8
><

>:

0.8 for X = {(t↵)}
0.06 for X = {(n↵)}
0.14 for X = {(t↵) [ (n↵)}

, (6)

where AT , AN and ATN are functions mapping the scalar output of the tool to a mass value. In the original
version of the framework, these functions were statically defined by the user;2 recently it has been shown that
they can be learned automatically so to account also for auxiliary information, like characteristics of the analysed
image of region, that may a↵ect the behavior of the tool.8 In this work we choose the latter approach, which is
preferable because it adapts the interpretation of tool output by the light of the general characteristics of the
content; details about the chosen characteristics are given in Section 4, because they depend on the specific IF
tools that are considered.

Equation (6) shows how to model the information stemming from one tool. When the information gathered
by another tool B must also be considered by the system two cases are possible: tool B may either be searching
for the same trace ↵ or for a di↵erent trace, say �. In the former case, a BBA m⇥↵

B like the one in (6) is

obtained, while in the latter case a BBA m
⇥�

B enters the system, which has the same meaning described above
but concerning the trace �. These two cases must be addressed di↵erently when we turn to the next step of the
framework, which consists in merging the information obtained by various tools. As long as the same trace is
concerned, Dempster’s rule (4) can be used directly to summarize the information provided by di↵erent tools
about that trace. On the other hand, if two tools looking for di↵erent traces ↵ and � are to be fused, their BBA
must be first extended on a common frame, that is the power set of ⇥↵⇥⇥� , and then merged together. Details
about this procedure are provided in the original work,2 and will not be exposed here.

3.1.1 Information About Relationships Between Forensic Traces

It is important to notice that, up to this point, information has been combined together without introducing
knowledge about traces relationships. Since image forensic footprints are usually well defined and based on a
specific phenomenon, the forensic analyst should be able, in most cases, to determine which combination of traces
can be present at the same time and which can not. Going back to the previous example, it may be that traces
↵ and � cannot be present at the same time, due to the way they are defined. The framework allows the analyst
to include such information by writing a BBA like the following one:

mcomp(X) =

(
1 for X = {(t↵, n�) [ (n↵, t�) [ (n↵, n�)}
0 for X = {(t↵, t�)} , (7)
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2) Introduction of a Tool Looking for a New Trace: If
searches for a novel kind of trace, say , we have

to introduce it into the framework defining a new frame
, where the propositions have the same

meaning as in Section III-B. The response of will be
used to assign masses to the variable , and application of dis-
counting will lead us to . Since and are defined over
different frames, and cannot be fused directly.
We first need to define a common frame , so that we
can (vacuously) extend both and to it and finally
fuse them, yielding the equation at the bottom of the page.
Notice that we are not considering whether traces and are
compatible or not: we will take this information into account
only later on, exploiting the associativity and commutativity of
Dempster’s rule. Consequently, as confirmed by the fact that

in the above formula, there is no reason why the two
tools should be conflicting, since by now we are looking for
“unrelated” traces.
The Procedures in Sections III-C1 and III-C2 can be repeated

when another tool becomes available. The associativity
of Dempster’s rule, defined in (4), allows to combine directly
the BBA of the new tool with the one currently available
(that takes into account all the tools in the framework), so we
will always need to extend the frame of, at most, two BBAs:
this is a considerably smaller effort with respect to extending
the BBA and computing the combination rule for all the tools.
We stress that, compared to [2], using traces as basic entities

(instead of tools responses) strongly improves the extendability
of the framework: as a matter of fact, while new tools are being
released quite often, many of them search for an already known
trace; if this is the case, introducing a new tool is very simple
since only its BBA has to be extended.

D. Compatibility Among Traces
So far we have considered traces as if they were unrelated

from each other. However, as we noted in Section III-A, this is
not always the case in real applications. Suppose, for instance,
that we have two traces and and suppose that, ideally, only
some of their combinations are possible. For example, it may
be that the presence of implies the absence of , so, at least
ideally, two tools searching for these traces should never detect
tampering simultaneously.
This information induces a compatibility relation between

frames and , meaning that some of the elements of the

cartesian product are impossible (and hence should be
removed from the frame of discernment, because by definition it
contains only possible values of the variables, see Section II-A).
However, since we do not know in advance which traces will
be introduced in our framework, we need a way to include this
knowledge only in the late stage of fusion. Fortunately, in DST
we can easily model this information by using a standard be-
lief assignment: we define a BBA on the domain , that
has only one focal set, containing the union of all propositions
(i.e., combination of traces) that are considered possible, while
all others have a null mass. For example the following BBA:

for
for

(9)

models the incompatibility between traces and . Thanks to
the commutative property of Dempster’s combination rule, this
BBA can be combinedwith those coming from traces in the final
stage of fusion. In such a way, information about tools relation-
ships are exploited only at the very end and hence do not hinder
model extendability.
Notice that the given formulation encompasses also the case

where the relationship between two traces is not known: it is suf-
ficient to put those propositions where the two traces are present
in both the focal set and the impossible set of , and this
will automatically result in a void contribution for that combi-
nation of traces during fusion.
The last step of our decision fusion process consists in fusing

the compatibility BBA defined above with the BBA obtained
combining evidences from all the available tools, yielding a
global BBA . Notice that in this last application of Demp-
ster’s rule all the conflict that may arise is due to incompatibil-
ities between traces. Although this conflict is normalized away
by Dempster’s rule, the value of can be recorded and used to
evaluate how “unexpected” the output of tools were. Very high
values of conflict may indicate that the image under analysis
does not respect the working assumptions of one or more tools.
The overall decision fusion approach described so far is sum-
marized in Fig. 2 for the case of two tools.
It is worth noting that, we did not need to introduce a priori

probabilities about an image being original or forged, or prior
probabilities of presence of traces: in a Bayesian framework,
this would have been difficult to obtain.

a

a

February 1, 2014

Id α β Interpr.

1 0 0 Non-Tampered

2 0 1 Tampered

3 1 0 Tampered

4 1 1 -

1



Introducing CAF tools… 

!  CAF tools can be modeled as standard IF tools… 
!  Still, some questions are in order: 
!  Where should we introduce them within the framework? 

!  Cascaded architecture; 
!  Mixed architecture. 

!  Traces of AF may have an ambiguous valence. 

!  How can we easily allow fusion of subsets of tools? 



Where to introduce: Cascade Architecture 

9 

IF tool A 

IF tool B 

IF tool C 

Fusion Rule 

IF Traces 
relationships  

Fusion Rule 

CAF tool 1 CAF tool 2 

CAF-IF Traces 
relationships  

IF stage! CAF stage!

S
i
m
p
l
i
f
y 

Analyst"
Interpr.!

" Pro: more efficient. 
# Con: over-simplification. 
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IF tool A 

IF tool B 

IF tool C Fusion Rule 

CAF tool 1 

CAF tool 2 

CAF-IF Traces 
relationships  

Analyst"
Interpretation!

" Pro: allows better modeling of traces 
 relationships. 

# Con: complexity grows exponentially in the 
number of traces. 

Where to introduce: Mixed Architecture 



Ambiguous AF Traces 

!  It has been shown that some filtering operators can act as 
a good AF tool (e.g., median filtering operator). 

!  These operators has an ambiguous forensic valence: 
!  they may have been used “benignly” (noise removal); 
!  they may be acting as an AF attack. 

 

!  Possible approach: model inconsistencies in the presence 
of AF traces 
!  Full frame filtering $ ok 
!  Filter not applied to the whole image $ suspect 



Disabling Tools 

!  It may happen that a tool cannot be used on an image 
(e.g., due to image format, size etc.) 

!  Can the analyst adapt the framework “on-the-fly”? 
!  With DS Theory, yes! 

!  Just exploiting the neutral element of Combination Rule: 

!  Notice: doing the same with machine-learning techniques 
would not be so easy. 

a

a

February 3, 2014

mΘα

U
(X) =

⎧

⎨

⎩

0 for X = {(tα)}
0 for X = {(nα)}
1 for X = {(tα) ∪ (nα)}

, (1)

Id α β Interpr.

1 0 0 Non-Tampered
2 0 1 Tampered
3 1 0 Tampered
4 1 1 -

1



Case Studies 

!  We consider the forgery detection image forensic task: 
!  given an image and a suspect region, determine whether it has 

been pasted or not. 

!  We choose a reference IF forensic scenario:  
!  a set of possible tampering procedures; 
!  a set of IF tools searching for different traces. 

!  Then, we consider two different  
case studies: 
!  AF based on median filtering; 
!  AF based on JPEG concealment. 

Reference IF scenario 

Median 
Filtering 

AF 

JPEG 
Conceal. 

AF 

JPEG 
Conceal. 

AF 



Case Studies: reference scenario 

!  Let us focus on the following forgery scenario: 
!  Different forensic traces  

are introduced: 
!  Aligned Double  

Quantization (JPDQ); 
!  Not-Aligned Double  

Quantization (JPNA); 
!  JPEG Ghosts (JPGH). 
 

Host image
(JPEG or Unc)

Source image 
(JPEG or Unc)

Tampered 
file

JPEG
compression



!  Not all the combinations of traces are plausible: 

!  We provide the analyst five IF tools: 

JPDQ JPNA JPGH 

Lin et al. Luo et al. Farid 

Bianchi et al. Bianchi et al. 

Case Studies: reference scenario (c.) 
• the tool by Bianchi et al.11 and the tool by Luo et al.12 searching for traces of not-aligned double JPEG

compression (JPNA);

• the tool by Bianchi et al.13 and the tool by Lin et al.14 searching for traces of aligned double JPEG
compression (this trace will be called JPDQ from now on);

• the tool by Farid15 searching for traces of the so-called “JPEG-ghost” (JPGH).

The compatibility relationship between these traces is reported in Table 1.2

Comb. num JPNA JPDQ JPGH Interpr.
1 0 0 0 Non-tampered
2 0 0 1 Tampered
3 0 1 0 -
4 0 1 1 Tampered
5 1 0 0 Tampered
6 1 0 1 -
7 1 1 0 -
8 1 1 1 Tampered

Table 1. Trace relationship table: each row forms a combination of presence (1) and absence (0) of traces. In the rightmost
column we see the interpretation of each combination, where impossible combinations are denoted by a dash. Notice that
only 5 out of 8 combinations are possible.

Switching to the adversary’s point of view, regardless of counter-forensic strategies, four di↵erent cut-&-
paste procedures are considered to create a splicing starting from two images (at least one of which is in JPEG
format), that are described in Table 2. As the reader can see from the table, di↵erent procedures introduce
di↵erent combinations of IF traces.

Class Procedure Traces in
inner region

Traces in
outer region

Class 1 Region is cut from a JPEG image and pasted,
breaking the 8x8 grid, into an uncompressed
one; the result is saved as JPEG.

JPNA -

Class 2 Region is taken from an uncompressed image
and pasted into a JPEG one; the result is
saved as JPEG.

- JPDQ
JPGH

Class 3 Region is cut from a JPEG image and pasted
into an uncompressed one in a position mul-
tiple of the 8x8 grid; result is saved as JPEG.

JPGH -

Class 4 Region is cut from a JPEG image and pasted
(without respecting the original 8x8 grid)
into a JPEG image; the result is saved as
JPEG

JPNA JPDQ
JPGH

Table 2. Procedure for the creation of di↵erent classes of tampering in the training dataset.

Starting from this background, we upgrade both the forger’s skills by introducing counter-forensic methods,
and the analyst’s skills by providing proper CAF tools. The two considered case studies di↵er in that, in the
first one, the forger wants to obtain a spliced JPEG image where traces of double encoding are concealed, while
in the second (more complex) case the product of the splicing must show no traces of compression at all (thus
erasing all traces that may be used by JPEG-based IF tools).

Not plausible 

Not plausible 
Not plausible 



Case Study: JPEG concealment 

!  The attacker now produces uncompressed images 

!  Two approaches considered: 

Host image
(JPEG or Unc)

Source image 
(JPEG or Unc)

Tampered 
file

JPEG
compression

"JPEG-concealed" 
image

Tampered file 
(uncompressed)

JPEG 
concealment*

JPEG 
concealment*

Host image
(JPEG or Unc)

Source image 
(JPEG or Unc)



Case Study: analyst’s countermeasures 

!  We provide the analyst with the tool from Valenzise et al. 
for JPEG coding detection based on Total Variation. 

!  Uncompressed images are JPEG  coded and analyzed 

• the tool by Bianchi et al.11 and the tool by Luo et al.12 searching for traces of not-aligned double JPEG
compression (JPNA);

• the tool by Bianchi et al.13 and the tool by Lin et al.14 searching for traces of aligned double JPEG
compression (this trace will be called JPDQ from now on);

• the tool by Farid15 searching for traces of the so-called “JPEG-ghost” (JPGH).

The compatibility relationship between these traces is reported in Table 1.2

Comb. num JPNA JPDQ JPGH Interpr.
1 0 0 0 Non-tampered
2 0 0 1 Tampered
3 0 1 0 -
4 0 1 1 Tampered
5 1 0 0 Tampered
6 1 0 1 -
7 1 1 0 -
8 1 1 1 Tampered

Table 1. Trace relationship table: each row forms a combination of presence (1) and absence (0) of traces. In the rightmost
column we see the interpretation of each combination, where impossible combinations are denoted by a dash. Notice that
only 5 out of 8 combinations are possible.

Switching to the adversary’s point of view, regardless of counter-forensic strategies, four di↵erent cut-&-
paste procedures are considered to create a splicing starting from two images (at least one of which is in JPEG
format), that are described in Table 2. As the reader can see from the table, di↵erent procedures introduce
di↵erent combinations of IF traces.

Class Procedure Traces in
inner region

Traces in
outer region

Class 1 Region is cut from a JPEG image and pasted,
breaking the 8x8 grid, into an uncompressed
one; the result is saved as JPEG.

JPNA -

Class 2 Region is taken from an uncompressed image
and pasted into a JPEG one; the result is
saved as JPEG.

- JPDQ
JPGH

Class 3 Region is cut from a JPEG image and pasted
into an uncompressed one in a position mul-
tiple of the 8x8 grid; result is saved as JPEG.

JPGH -

Class 4 Region is cut from a JPEG image and pasted
(without respecting the original 8x8 grid)
into a JPEG image; the result is saved as
JPEG

JPNA JPDQ
JPGH

Table 2. Procedure for the creation of di↵erent classes of tampering in the training dataset.

Starting from this background, we upgrade both the forger’s skills by introducing counter-forensic methods,
and the analyst’s skills by providing proper CAF tools. The two considered case studies di↵er in that, in the
first one, the forger wants to obtain a spliced JPEG image where traces of double encoding are concealed, while
in the second (more complex) case the product of the splicing must show no traces of compression at all (thus
erasing all traces that may be used by JPEG-based IF tools).

Not plausible 

Not plausible 
Not plausible 



Case study: experimental results 

!  Generated a dataset of: 
!  2000 untouched JPEG images 
!  500x4 tampered JPEG images (no AF) 
!  500x4 tampered images without final compression 
!  500x4 tampered images with AF 

!  Run all tools on every image. 
!  Merged outputs using: 

!  DST-based fusion 
!  Logical disjunction (“OR”) rule 



Case study: experimental results 
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Luo et al. (JPNA)
Lin et al. (JPDQ)
Farid (JPGH)
Bianchi et al. (JPNA)
Bianchi et al. (JPDQ)
Valenzise et al. (CAF)
DST multi−clue AUC: 0.974
Logical disjunction AUC:0.942

1.  JPGH resists 
well to AF 

2.  Simple decision 
fusion doesn’t 
help 

3.  DST-based 
fusion helps 



Concluding Remarks 

!  Multi-clue analysis helps in presence of AF techniques, because: 
!  the adversary may conceal only some IF traces; 
! AF tool for trace X may improve the detectability of Y; 
!  the analyst can include CAF tools in the framework. 

!  Future work: 
!  Explore wider variety of traces; 
! Compare with more complex fusion rules. 
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