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Abstract—We study a new variant of the source identification game
with training data in which part of the training data is corrupted by an
adversary. In such a scenario, the defender wants to decide whether a
test sequence xn has been drawn from the same source which generated
a training sequence tN , part of which has been corrupted by the
adversary. By adopting a game theoretical formulation, we derive the
unique rationalizable equilibrium of the game in the asymptotic setup.
Moreover, by mimicking Stein’s lemma, we derive the best achievable
performance for the defender, permitting us to analyze the ultimate
distinguishability of the two sources. We conclude the paper by comparing
the performance of the test with corrupted training to the simpler case
in which the adversary can not modify the training sequence, and by
deriving the percentage of samples that the adversary needs to modify
to make source identification impossible.

I. INTRODUCTION

Adversarial Signal Processing (AdvSP) is an emerging discipline
aiming at modeling the interplay between a defender wishing to
carry out a certain processing task, and an attacker aiming at
impeding it. Binary decision in an adversarial setup is one of the
most recurrent problems in AdvSP, due to its importance in many
application scenarios [1]. Among binary decision problems, source
identification is one of the most studied subjects, since it lies at
the heart of several security-oriented disciplines, like Multimedia
forensics, anomaly detection, steganalysis and so on.

In [2] the source identification game is introduced to model the
interplay between the defender and the attacker by resorting to
concepts drawn from game and information theory. According to the
model put forward in [2], the defender and the attacker have a perfect
knowledge of the sources. In [3] the analysis is pushed a step forward,
considering a scenario in which the to-be-distinguished sources are
known only through the observation of a training sequence. Finally,
[4] introduces the security margin concept, a powerful parameter
characterizing the ultimate distinguishability of two sources under
adversarial conditions.

In this paper, we move the analysis even further, by considering
a situation in which the attacker may interfere with the learning
phase by corrupting part of the training sequence. As a matter of
fact, adversarial learning is a rather novel concept, which has been
studied for some years from a machine learning perspective [5], [6].
Due to the natural vulnerability of machine learning systems, in fact,
the attacker may take an important advantage if no countermeasures
are adopted by the defender. The use of a training sequence to gather
information about the statistics of the to-be-distinguished sources can
be seen as a very simple learning mechanism, and the analysis of
the impact that an attack, carried out in such a phase, has on the
performance of a decision system, may help shedding new light
on this important problem. To be specific, we extend the game-
theoretic framework introduced in [3] and [4] to model a situation
in which the attacker is given the possibility of corrupting part of
the training sequence. We then derive the optimal strategy for the
defender and the optimal corruption strategy for the attacker. Given
such optimum strategies, expressed in the form of game equilibrium

point, we analyze the best achievable performance in an asymptotic
set up, that is when the length of the training and test sequences tend
to infinity and the error probabilities of the decision tend to zero
exponentially fast. Specifically, we study the distinguishability of the
sources in function of the percentage α of training samples corrupted
by the attacker and when the test sequence can be modified up to a
certain distortion level. The results of the analysis are summarized
in terms of blinding percentage αb, defined as the percentage of
corrupted samples making a reliable distinction between the two
sources impossible, and security margin, defined as the maximum
distortion level for which a reliable distinction is possible (see [4]
and [7]).

The rest of the paper is organized as follows. In Section II we
describe the scenario analyzed in the paper and give a rigorous
definition of the Source Identification game with corrupted training.
In Section III, we derive the equilibrium point of the game and
compute the payoff at the equilibrium. In Section IV, we study
the best achievable performance of the game when the defender
requires only that the error probabilities of the two kinds tend to
zero exponentially fast, regardless of the error exponent. We do so
by introducing two summarizing parameters, namely the security
margin under corrupted samples, and the blind corruption percentage.
Finally, in Section V we draw some conclusions and highlight
directions for future work. For lack of space, throughout the paper,
we focus on the main flow of ideas without providing a complete
proof of the theorems.

II. SOURCE IDENTIFICATION GAME WITH CORRUPTED TRAINING

In the following we give a rigorous game-theoretic formulation
of the scenario addressed in this paper. Given two discrete and
memoryless sources X ∼ PX and Y ∼ PY and a test sequence
xn, the goal of the defender (D) is to decide whether xn has been
drawn from X or not. On the other side, the goal of the attacker (A)
is to take a sequence yn drawn from Y and modify it in such a way
that D decides that the modified sequence zn has been generated by
X. As in previous works, A must respect a distortion constraint. In
the scenario considered in this paper, A and D know the statistics
of X through a training sequence, however the training sequence
available to D has been partly corrupted by A. More specifically,
the attacker has access to a sequence τm1 drawn from X . Then
he/she corrupts τm1 by adding a sequence of fake samples τm2 ,
then he/she reorders the sequence in a random way so to hide the
position of the fake samples. Note that reordering does not alter the
statistics of the training sequence since the sequence is supposed to
be generated from a memoryless source. We assume that D knows
that a certain percentage of samples in the training sequence may
be corrupted, but he has no clue about the position of corrupted
samples. According to the classification given in [6], the above
scenario can be referred to as a causative attack with control over
training data. In the following, we will denote by N the final length
of the training sequence (N = m1 +m2), by α the portion of fake
samples (m2 = αN ) and by 1 − α the portion of original samples
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(m1 = (1 − α)N ). The training sequence made available to D will
be indicated by tN . Finally, we hypothesize a linear relationship
between the length of the test and the corrupted training sequence, i.e.
N = cn. By adopting a Neyman-Pearson perspective, D is interested
in accepting or rejecting the hypothesis H0 that the sequence has
been generated by X , ensuring that the false positive error probability
(Pfp) of rejecting H0 when H0 holds (type I error) is lower than a
given threshold. On the other side, the attacker aims at inducing a
type II error, i.e. at making the system accept a sequence generated
by Y (alternative hypothesis H1) as if it were drawn from X . By
referring again to the taxonomy introduced in [6], this is a typical
integrity attack to the source identification system. Similarly to the
previous versions of the game studied in [2] and [3], we assume that
D relies only on the first order statistics of xn and tN to make a
decision. For mathematical tractability, likewise the earlier versions
(e.g. [2]), we study the asymptotic version of the game when n→∞,
by requiring that Pfp decays exponentially fast with error exponent
at least equal to λ.

We start by observing that source identification with training data
is equivalent to deciding whether the training and test sequences
have been generated by the same, unknown, source. The additional
difficulty we have to face with in the case of a corrupted training is
that the defender must take into account the fact that only part of
the training sequence has been generated by the correct source. Let,
then, I denote a subset of (1− α)N indexes taken in {1, 2, ..., N},
and let Ī be the indexes in {1, 2, ..., N} which are not contained
in I. We indicate by t

(1−α)N
I the subsequence of tN obtained by

removing the elements indexed by Ī (or, equivalently, keeping only
those indexed by I). Since D does not know PX and he/she can not
make any assumptions on the position of corrupted samples in tN ,
in order to guarantee that the false positive error probability is lower
than 2−nλ, he/she needs to impose that:

max
I

max
PX

PX{(xn, t(1−α)N
I ) /∈ Λn} ≤ 2−nλ, (1)

where Λn is the acceptance region of the test, i.e. the set with the
pairs of sequences for which D accepts the hypothesis (H0) that xn

and tN have been generated by the same source. The assumption
behind (1) is that, since D does not have any information about the
way the fake samples have been generated by A, the only reasonable
choice for him is to ignore such samples.

With regard to A, the attack now consists of two parts. Given a se-
quence yn drawn according to PY , and the original training sequence
τ (1−α)N , the attacker generates the sequence of fake samples ταN ,
which are randomly mixed up with those in τ (1−α)N , and transforms
yn into zn, trying to generate a pair (tN , zn)1 belonging to Λn. In
doing so, he has to ensure that d(yn, zn) ≤ nL for some proper
distortion function d.

With the above ideas in mind, we define the source identification
game with corrupted training as follows.

Definition 1. The SIc-tr (SD,SA, u) is a zero-sum, strategic, game
played by D and A, defined by the following strategies and payoff.
• The strategies available to D are all the acceptance regions for

which the false positive error probability is guaranteed to tend
to zero exponentially fast:

SD =

{
Λn : max

I,PX
PX{(xn, t(1−α)N

I ) /∈ Λn} ≤ 2−nλ
}
, (2)

1While reordering is essential to hide the position of fake samples to D,
it does not have any impact on the position of (tN , zn) with respect to Λn,
since we assumed that the defender bases its decision only on the first order
statistic of the observed sequences.

A

X

Y
yn

xn

τ (1−α)N zn = f(yn, τ (1−α)N )

tN = σ(τ (1−α)N ||ταN )

zn = f(yn, τ (1−α)N )
D

H0/H1

Fig. 1. Block diagram of the adversarial setup considered in the paper.
Symbol || denotes the concatenation between sequences and σ() a possible
reordering of the samples.

where we exploited the independence, under H0, of xn (test)
and tN (corrupted training).

• The set of strategies of A consists of all the possible ways he
can choose two functions, g and f . Function g(·) rules the
generation of the fake training samples, while f(·) is a mapping
function, which maps a sequence yn generated by Y into a new
sequence zn subject to a distortion constraint. In formulas:

SA =

{
g : ταN = g(τ (1−α)N , yn) (3)

f : d(yn, f(yn, τ (1−α)N )) ≤ nL
}
,

where L denotes the maximum allowed average per-letter dis-
tortion.

• The payoff function is defined in terms of the false negative error
probability, namely:

u(Λn, (g, f)) = −Pfn, (4)

where Pfn is the false negative probability (that is the proba-
bility of accepting H0 when H1 holds).

A critical observation to be made regards the dependence of g(·)
on yn. This means that the fake samples used to corrupt the training
sequence may depend on the sequence that the attacker wants to pass
off as generated by X . This might seem too strong an assumption,
since it is not reasonable that the attacker generates a new corrupted
training set for each new sequence generated by Y . As we will see
later on, however, due to the asymptotic nature of our analysis, the
dependence on yn will be transformed into a dependence on PY ,
which is a much more reasonable assumption.

III. PAYOFF AT THE EQUILIBRIUM

Having defined the SIc-tr game, we must study the existence of
an equilibrium point. The analysis goes along the same lines followed
in [3] for the source identification game with non-corrupted training.
For this reason, and for lack of space, we limit ourselves to stating
the main results without proving them.

A. Equilibrium point

To start with, we observe that since the defender bases its analysis
on the first order statistics of tN and xn, the acceptance region
Λn can be expressed as a union of pairs of types or type classes2.
Then we need to define the generalized log-likelihood ratio function
h(Pxn , PtN ) (see [10], [11], [3]):

h(Pxn , PtN ) = D(Pxn ||Prn+N ) +D(PtN ||Prn+N ), (5)

where D indicates the Kullback-Leibler distance (or divergence
function) [8] and Prn+N denotes the empirical probability mass

2The type (Pxn ) of a sequence xn is the empirical probability distribution
induced by the sequence. A type class is defined as the set of all the sequences
having the same type [8], [9]. Throughout the paper we indicate by Pn the
set of types induced by sequences of length n.
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function (pmf) of the sequence rn+N , obtained by concatenating xn

and tN , i.e. rn+N = xn‖tN . The optimum strategy for the defender
stems from the following lemma.

Lemma 1. Λn,∗ being defined as follows:

Λn,∗=
{

(Pxn , PtN ): min
I
h(Pxn , Pt(1−α)N

I
)≤λ−δn,c

}
(6)

with
δn,c = |X | log(n+ 1)(nc+ 1)

n
, (7)

where |X | is the cardinality of the source alphabet and where
P
τ
(1−α)N
I

denotes the type of the subsequence of τN obtained by

removing the samples indexed by Ī. Then:
1) maxI maxPX PX{(x

n, t
(1−α)N
I ) /∈ Λn,∗} ≤ 2−n(λ−νn), with

νn → 0, for n→∞,
2) ∀Λn ∈ SD , we have Λ̄n ⊆ Λ̄n,∗.

Proof: The lemma follows immediately from Lemma 2 in [3].

The above lemma shows that strategy Λn,∗ is admissible (point 1.)
and optimal (point 2.) for D, regardless of the attack. From a game-
theoretic perspective, this means that such a strategy is a dominant
strategy for D and implies that the game is dominance solvable [12].
In such a situation, the defender and the attacker will end up playing,
respectively, the dominant strategy and the strategy which results
from the resolution of the decision problem (i.e. the problem obtained
by assuming that D plays the dominant strategy). Then, given the
original training sequence τ (1−α)N , the optimum attacking strategy
is given by the following double minimization:

(g∗(τ (1−α)N ,yn), f∗(yn, τ (1−α)N )) = (8)

arg min
(ταN ,zn):
d(zn,yn)≤nL

min
I
h(Pyn , Pt(1−α)N

I
),

Given the optimum strategies for both players, it is immediate to state
the following:

Theorem 1. The SIc-tr game is a dominance solvable game,
whose only rationalizable equilibrium corresponds to profile
(Λn,∗, (g∗, f∗)).

Proof: the theorem is a direct consequence of the fact that Λn,∗

is a dominant strategy for D.
It is worth observing that the concept of rationalizable equilibrium

is much stronger than the usual notion of Nash equilibrium, since
the strategies corresponding to such an equilibrium are the only ones
that two rational players may adopt [12].

Before going on with the analysis of the game at the equilibrium,
we observe that, from (8), it is possible to reformulate the optimum
strategy for A entirely as a function of types, instead of sequences.
Indeed, by adopting an optimal transport perspective [13] (likewise
in [4]), we can rewrite the distortion constraint between yn and zn

in terms of admissibility of the transportation map which moves the
distribution Pyn into the attacked distribution Pzn . Formally, let SnPQ
be a transportation map moving the pmf P into Q (when present,
the superscript n indicates that the map is applied to empirical pmf’s
in Pn)3. Given a map and a distortion function d(i, j) measuring
the cost of moving symbol i into j, the average per-letter distortion
associated to the map can be written as

∑
i,j S

n
PQ(i, j)d(i, j). For

a certain source pmf P and a maximum distortion L, we define

3Throughout the paper we will adopt the lighter notation Snyz when we
refer to a map which moves the empirical pmf of a sequence yn (i.e. Pyn )
into the empirical pmf of another sequence zn (i.e. Pzn ).

An(L,P ) as the set of admissible maps that can be applied to P
and introduce an average per-letter distortion lower than L.

We also observe that type of the corrupted training sequence tN

has the following general form:

PtN = (1− α)Pτ(1−α)N + αC′, for some C′ ∈ PαN , (9)

which implies that, given an attacked test sequence zn (for the
moment we do not care how zn is obtained), the optimum strategy
for corrupting the training set is equivalent to find a C∗ s.t.

C∗ = arg min
C′∈PαN

min
I
h(Pzn , Pt(1−α)N

I
), (10)

where PtN is written as in (9). Consequently, the optimum strategy
of A in (8) can be rewritten as:

arg min
(P
tN
,Pzn ):

P
tN

=(1−α)P
τ(1−α)N +αC′,C′∈PαN,

Snyz∈A(L,Pyn )

min
I
h(Pzn , Pt(1−α)N

I
). (11)

With the attacking strategy rewritten as in (11), it is straightforward
to define the set of the pairs (Pyn , Pτ(1−α)N ) for which, because of
A’s action, D is forced to accept H0:

Γn(λ, α, L) = {(Pyn ,Pτ(1−α)N ) : ∃(Pzn , PtN ) ∈ Λn,∗ s.t. (12)

PtN = (1− α)Pτ(1−α)N + αC′,

for some C′ ∈ PαN , and Snyz ∈ A(L,Pyn)},

which, by fixing the type of the original training sequence (Pτ(1−α)N )
becomes:

Γn(Pτ(1−α)N ,λ, α, L) = (13){
Pyn ∈ Pn :

∃Pzn ∈ Λn,∗((1− α)Pτ(1−α)N + αC′),

for some C′ ∈ PαN , and s.t. Snyz ∈ A(L,Pyn)
}
,

where, similarly, we referred to the acceptance region for a fixed
training type in PN . It is interesting to notice that, since in the current
setting A has two degrees of freedom (he/she can both modify the
test sequence and include fake samples in the training sequence), the
attack has a double effect: the sequence yn is modified in order to
bring it inside the acceptance region Λn,∗(PtN ) and the acceptance
region itself Λn,∗(PtN ) is modified so to make the former action
easier.

B. Payoff of the game at the equilibrium

In this section we study the payoff of the game at the equilibrium,
thus trying to understand who and under which conditions is going
to win game. To do so, we first reformulate the set in (13) in a more
convenient way. First, we rewrite the region Γn(Pτ(1−α)N , λ, α, L)
as follows:

Γn(Pτ(1−α)N , λ, α, L) = {Pyn ∈ Pn : ∃Snyz ∈ A(L,Pyn) (14)

s.t. Pzn ∈ Γn0 (Pτ(1−α)N , λ, α)},

where

Γn0 (Pτ(1−α)N , λ, α) =
{
P ∈ Pn : ∃C′ ∈ PαN s.t. (15)

P ∈ Λn,∗((1− α)Pτ(1−α)N + αC′)
}
.

is the set containing all the test sequences (or, equivalently, test types)
for which it is possible to corrupt the training set in such a way that
they fall within the acceptance region. As the notation suggests, this
set corresponds to the set in (14) when A cannot modify the sequence
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drawn from Y (i.e. L = 0) and then tries to hamper the decision by
corrupting the training sequence only.

To go on, we need to find a more explicit expression for
Γn0 (Pτ(1−α)N , λ, α). To this purpose, we reformulate the acceptance
region, defined in (6), in an easier-to-handle manner. Let us observe
that in order for P ∈ P(1−α)N to be the type of a sequence t(1−α)N

I ,
obtained from tN by removing the αN samples indexed by Ī, the
sequence tN should have at least (1 − α)N · P (i) symbols i for
each i. Equivalently, any type P ∈ P(1−α)N must be such that
PtN = (1 − α)P + αC for some C ∈ PαN . More explicitly,
P = (PtN − αC)/(1 − α) for some C ∈ PαN . Accordingly, by
varying C in PαN we span all the possible types of the sequence
t
(1−α)N
I . The acceptance region in (6) can then be rewritten as

follows:

Λn,∗ = {(Pxn , PtN ) : ∃C ∈ PαN

s.t. h
(
Pxn ,

PtN − αC
(1− α)

)
≤ λ− δn,c

}
, (16)

which for a fixed corrupted training sequence corresponds to:

Λn,∗(PtN ) = {Pxn : ∃C ∈ PαN (17)

s.t. h
(
Pxn ,

PtN − αC
(1− α)

)
≤ λ− δn,c

}
.

Accordingly, the set Γn0 (Pτ(1−α)N , λ, α) takes the form:

Γn0 (Pτ(1−α)N , λ, α) = (18){
P ∈ Pn : ∃C′, C ∈ PαN s.t.

h

(
P, Pτ(1−α)N +

α

(1− α)
(C′ − C)

)
≤ λ− δn,c

}
,

where the second argument of h denotes the generic type in P(1−α)N

obtained from the original training sequence τ (1−α)N by first adding
αN samples and later removing (in a possibly different way) the
same number of samples. Note that in this formulation C′ accounts
for the fake samples introduced by the attacker and C for the part of
the samples removed by the defender.

We are now ready to derive the asymptotic payoff of the game
by following the same path used in [2], [3]. Such a path con-
sists in the following steps: i) the sets Γn(Pτ(1−α)N , λ, α) and
Γn0 (Pτ(1−α)N , λ, α) are generalized so that they can be applied to
a generic pmf Q ∈ P (that is, without requiring that the pmf is
induced by a sequence of length n); ii) the asymptotic counterparts
of Γn and Γn0 are obtained by letting n tend to infinity. Point i) passes
through the generalization of the h function so that it can be applied
to two generic pmf’s. Specifically we define:

hc(P,Q) = D(P ||U) + cD(Q||U); (19)

U =
1

1 + c
P +

c

1 + c
Q.

Then we redefine the sets Γn and Γn0 for a generic pmf Q:

Γn(Q,λ, α, L) = (20)

{P ∈ Pn : ∃SPR ∈ A(L,P ) s.t. R ∈ Γn0 (Q,λ, α)},

Γn0 (Q,λ, α) =
{
P ∈ Pn : ∃C′ ∈ PαN s.t. (21)

P ∈ Λn,∗((1− α)Q+ αC′)
}

={P ∈ Pn : ∃C′, C ∈ PαN s.t.

hc

(
P,Q+

α

(1− α)
(C′ − C)

)
≤ λ− δn,c}.

where the set Λn,∗(Q) is generalized in the same way. Finally, the
asymptotic extensions of Γn(Q,λ, α, L), Γn0 (Q,λ, α) and Λn,∗(Q)
are obtained by letting n → ∞ and removing the constraint that P
belong to Pn (that is the element of P no longer need to be rational
number with denominator n). In the following we will refer to such
sets as Γ(Q,λ, α, L), Γ0(Q,λ, α) and Λ∗(Q). We now have all the
necessary tools to state the following theorem.

Theorem 2 (Asymptotic payoff of the SIc-tr game). For the SIc-tr
game, the false negative error exponent at the equilibrium is given
by

ε = min
Q

[D(Q||PX) + min
P∈Γ(Q,λ,α,L)

D(P ||PY )]. (22)

Accordingly,

1) PY ∈ Γ(PX , λ, α, L) then ε = 0;
2) PY /∈ Γ(PX , λ, α, L) then ε > 0.

Proof: The proof can be seen as a particular application of
Sanov’s theorem [8] which exploits the density of rational numbers in
the real line to show that Γn(PX , λ, α, L) approaches Γ(PX , λ, α, L)
when n→∞. Being the proof very similar to that of Theorem 4 in
[3], we omitt it for sake of brevity.

We observe that the expression of the error exponent given in (22)
has the same form of the error exponent of the SItr game studied
in [3], the only difference being the shape of the region over which
the inner minimization is performed. As an immediate consequence
of Theorem 2, the set Γ(PX , λ, α, L) defines the indistinguishability
region of the test, that is the set of all the sources for which A,
by directly modifying the sequences emitted by the source and by
properly corrupting the training set, is able to induce D to decide in
favor of H0.

We conclude this section by observing that the asymptotic version
of the optimum attacker’s strategy does not depend anymore on the
to-be-attacked sequence yn. In fact, the attacker needs only to find
a C′ which modifies the acceptance region in such a way that it is
possible to find an admissible transportation map moving PY within
it. Then, the optimum corruption strategy depends on PY rather than
Pyn . In hindsight, the reason for such a result is that, due to the law
of large numbers, the type of the sequences generated by Y will tend
to PY in probability hence making it possible to the attacker to rely
only on the knowledge of PY .

IV. SECURITY MARGIN AND BLINDING CORRUPTION LEVEL (αb)

As a final step, we are interested in studying the behavior of the
game for λ → 0 in order to derive the best achievable performance
for D. Stated in another way, our goal is to study the limit of the
indistinguishability region when λ→ 0. This limit, in fact, provides
all the pmf’s PY that can not be distinguished from PX ensuring
that the two types of error probabilities tend to zero exponentially
fast (with vanishingly small, yet positive, error exponents). Such an
analysis corresponds to extend the Stein lemma to the adversarial
setup considered here, in a way that resembles [4]. First of all,
we observe that optimal transport theory permits us to rewrite the
indistinguishability region Γ(PX , λ, α, L) as:

Γ(PX , λ, α, L) ={P : ∃R ∈ Γ0(PX , λ, α) s.t. EMD(P,R) ≤ L},
(23)

where EMD (Earth Mover Distance) is the term used in signal and
image processing applications to denote the minimum cost of the
transportation [14], [15], that is

EMD(P,R) = min
SPR:SP=P,SR=R

∑
i,j

SPR(i, j)d(i, j). (24)
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To get a more insightful interpretation of the set (23), we investigate
the behavior of the game when no distortion is allowed to the attacker
(i.e. L = 0), in which case the indistinguishability region of the test is
given by Γ0(PX , λ, α). By observing that hc(P,Q) = 0 if and only
if P = Q, when λ tends to 0, the defender asymptotically accepts
H0 only if PY ∈ Γ0(PX , α), with Γ0(PX , α) defined as:

Γ0(PX , α) = {P : ∃C,C′ ∈ P s.t. P = PX +
α

(1− α)
(C′ − C)}.

(25)
It is possible to rewrite the set (25) in a way which avoids the
reference to the auxiliary pmf’s C and C′. To do so, we observe
that C′(i) must be larger than C(i) for all the bins i for which
P (i) > PX(i) (and viceversa). Since C′ and C must be valid pmf’s,
we argue that

∑
i[C
′(i)−C(i)]+ =

∑
i[C(i)−C′(i)]+ ≤ 1 (where

[a]+ = a if a ≥ 0 and zero otherwise). Then, it is easy to see that
(25) is equivalent to the following definition:

Γ0(PX , α) =

{
P :

∑
i

[P (i)− PX(i)]+ ≤ α

(1− α)

}
(26)

=

{
P : dL1(P, PX) ≤ 2α

(1− α)

}
,

where dL1 denotes the L1 distance. With Γ0(PX , α) defined as in
(26), we can prove the following theorem.

Theorem 3. Given two sources X ∼ PX and Y ∼ PY , a maximum
allowed average per-letter distortion L and a fraction α of training
samples provided by the attacker, the maximum achievable false
negative error exponent ε for the SIc-tr game is:

lim
λ→0

lim
n→∞

− 1

n
logPfn = min

Q
[D(Q||PX)+ min

P∈Γ(PX ,α,L)
D(P ||PY )],

(27)
where,

Γ(PX , α, L) = {P : ∃R ∈ Γ0(PX , α) s.t. EMD(R,P ) ≤ L}

=

{
P : min

R:EMD(P,R)≤L

∑
i

[R(i)–PX(i)]+ ≤ α

(1− α)

}
.

(28)

Proof: The proof goes along the same steps used in the sketched-
proof of Theorem 3 in [4] and is skipped for lack of space.

According to Theorem 3, Γ(PX , α, L) provides the ultimate in-
distinguishability region of the test, that is the set of all the pmf for
which D will be defeated. Before going on, it is interesting to clarify
the geometrical meaning of set Γ0(PX , α) in (25), by rewriting it as
follows

Γ0(PX , α) = {P : ∃C′ ∈ P s.t. P ∈ Λ∗λ→0((1− α)PX + αC′)},
(29)

where Λ∗λ→0(P ) plays the role of the ultimate acceptance region of
the test and derives from Λ∗(P ) by letting λ go to 0:

Λ∗λ→0(P ) =

{
P ′ : ∃C ∈ P s.t. P ′ =

P − αC
(1− α)

}
. (30)

With reference to Figure 2, left, we can geometrically interpret
Λ∗λ→0(P ) as the set of the points P ′ such that P is convex
combination (with coefficient α) of P ′ with a point C of the proba-
bility simplex. Then, according to (29), Γ0(PX , α) is geometrically
obtained as the union of the acceptance regions built over the points
which are convex combination of PX with some point C′ in the
simplex; this corresponds to an hexagonal space around PX which,
in the probability simplex, is equivalent to the set of the points whose
L1 distance from PX is constrained to 2α/(1 − α) (as stated in

Λ∗λ→0(P )

(1− α)PX + αC ′

C ′

PXP

C

Γ0(PX , α)

P ′ PX

Γ0(PX , α)

P

R

EMD(P,R) < L

Γ(PX , α, L)

Fig. 2. Geometrical construction of Γ0(PX , α) (left) and geometrical
interpretation of Theorem 3 (right).

(26)). Obviously, only the points of this space which lie inside the
simplex are valid pmf’s and then must be accounted for. A pictorial
representation of set Γ(PX , α, L) is given in Figure 2, right, for a
smaller value of α.

By a closer inspection of the ultimate indistinguishability region
Γ(PX , α, L), we can derive some interesting parameters characteriz-
ing the distinguishability of two sources in adversarial setting (both
with or without corrupted training, the latter case corresponding to
α = 0.). Let X ∼ PX and Y ∼ PY be two sources. Let us focus first
on the case in which the attacker can not modify the test sequence
(L = 0). In this situation, the ultimate indistinguishability region
boils down to Γ0(PX , α). We conclude that D can tell the two sources
apart if dL1(PY , PX) > 2α

(1−α)
. On the contrary, if dL1(PY , PX) ≤

2α
(1−α)

, A is able to make the sources indistinguishable by corrupting
the training sequence. As expected, the larger the α the easier is for A
to win the game. By adopting a different perspective, we can defined
the blinding corruption level αb, for which two sources can not be
distinguished. Specifically, we have:

αb(PX , PY ) =

∑
i [PY (i)− PX(i)]+

1 +
∑
i [PY (i)− PX(i)]+

=
dL1(PY , PX)

2 + dL1(PY , PX)
.

(31)

From (31) it is easy to see that αb is always lower that 1/2. indeed, for
α ≥ 1/2, there is always a choice of the set I for which no original
sample remains in the training subsequence analyzed by D, hence
making a reliable decision impossible. The limit situation αb = 1/2
corresponds to a case in which the PX and PY have completely
disjoint supports.

Let us now consider the more general case in which L 6= 0. For a
given α < αb, we look for the maximum attacking distortion allowing
D to reliably distinguish between the two sources. From equation
(28), it is easy to argue that the defender is able to distinguish X and
Y despite the attack if minR:EMD(PY ,R)≤L dL1(R,PX) > 2α

(1−α)
.

This leads to the following definition, which extends the concept
of security margin, introduced in [4], to the more general setup
considered in his paper.

Definition 2 (Security Margin in the SIc-tr setup). Let X ∼ PX
and Y ∼ PY be two discrete memoryless sources. The maximum
distortion for which the two sources can be reliably distinguished in
the SIc-tr setup is called Security Margin and is given by

SMα(PX , PY ) = L∗α, (32)

where L∗α = 0 if PY ∈ Γ0(PX , α), whereas, if PY /∈ Γ0(PX , α),
L∗α is the quantity which satisfies

min
R:EMD(PY ,R)≤L∗α

dL1(R,PX) =
2α

(1− α)
. (33)
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1

Γ0(q, α) = {v : |v − q| ≤ α
1−α}

0 p qr∗

SMα = (r∗ − p)

Fig. 3. Geometrical interpretation of the security margin between X and Y .
When α = 0, Γ0(q, α) boils down to point p and SM = (q − p) (see [4]).

0.4

0.3

0.2

0.1

SM
α
(p
,q
)

α

αb

0.1 0.2 0.3 0.4 0.50

Fig. 4. Security margin as a function of α for Bernoulli sources with
parameters p = 0.3 and q = 0.7 (αb = 0.286).

By focusing on the case PY /∈ Γ0(PX , α), since the left-hand side
of (33) is a monotonic non increasing function of Lα, the security
margin SMα(PX , PY ) can be expressed in explicit form as

arg min
Lα

min
R:EMD(PY ,R)≤Lα

∣∣∣∣dL1(R,PX)− 2α

(1− α)

∣∣∣∣ . (34)

When L > SMα(PX , PY ), it is not possible for D to distinguish
between the two sources with positive error exponents of the two
kinds. By looking at the behavior of the security margin as a function
of α, we see that SMαb(PX , PY ) = 0, meaning that the sources
can not be distinguished even if the attacker can not introduce any
distortion. On the contrary, setting α = 0 corresponds to study the
distinguishability of the sources with uncorrupted training, in which
case we have SM0 = EMD(PX , PY ) (in agreement with the results
derived in [4]). Moreover, for any α > 0, value security margin in
(32) is less than EMD(PX , PY ). This is also an expected behavior
since the general setting considered in this paper is more favorable
to the attacker, with respect to the setting in [4].

A. Bernoulli sources

In order to get some insights about the practical meaning of the
analysis carried out in the previous sections and the parameters αb
and SMα, we consider the simple case of two Bernoulli sources with
parameter q = PX(1) and p = PY (1). Assuming that no distortion
is allowed to the attacker, the (minimum) percentage of samples that
A has to modify for inducing a decision error is, according to (31),
αb = |p−q|

1+|p−q| . As suggested by intuition, when |p − q| = 1, in
order for A to win the game, the number of fake samples should be
equal to the number of samples of the correct training sequence (i.e.
α = 0.5). When some distortion is allowed (L 6= 0), we have

SMα(p, q) =

{
|q − p| − α

1−α α < αb
0 α ≥ αb

. (35)

The geometrical meaning of (35) is illustrated in Figure 3 for two
generic Bernoulli sources with p > q (w.l.o.g.). Figure 4 depicts the
behavior of the SMα(p, q) as a function of α when p = 0.3 and
q = 0.7.

V. CONCLUSIONS

In this paper we analyzed the distinguishability of two sources in
an adversarial setting when the sources are known through training
data, part of which can be corrupted by the attacker. We did so by

introducing the Source Identification game with corrupted training,
then we derived the equilibrium point of the game and analyzed
the (asymptotic) payoff at the equilibrium. To summarize all our
findings in a compact way, we introduced two parameters, namely
the Security Margin under corruption (extending the analysis in [4]),
and the blinding corruption percentage αb, defined as the portion of
fake training samples the attacker must introduce to make source
distinction impossible. All together, the results we got provide a
general framework to cast the source identification problem with
training data in, and derive the ultimate performance achievable by
the defender for different settings. The goal of our future work will
be to extend the analysis so to cover different corrupting scenarios,
e.g. a case in which the attacker can also remove some of the correct
training samples before making the system available to D. It would
also be interesting to further investigate the link between our analysis
and secure machine learning as outlined in [6].
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