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Abstract. 
 Biometric signals are often used in access control systems because of their immutable and highly 
discriminative characteristics. While the deployment of biometric access control systems allows user 
identification without the risk of password leakage or theft, at the same time it raises serious concerns 
about the leakage of individuals’ privacy. 
A number of privacy preserving protocols have been proposed to guarantee users’ privacy against a 
centralized database owner. Until now, mainly interactive protocols based on Garbled Circuits (GC) 
and additively Homomorphic Encryption (HE) have been presented.  
In this paper we describe a non-interactive protocol for privacy preserving biometric matching, whose 
complexity is totally moved to the server side. Only input encryption and output decryption are 
performed by the client. 
This is made possible by relying on a Somewhat Homomorphic Encryption (SHE) scheme, properly 
modified to handle integer values.  
Due to the characteristic of the chosen cryptosystem, it can be applied to many different biometrics, 
such as iris images and fingerprints. Comparison within vectors is done by using Hamming or 
Euclidean distance, depending on the biometric used. 
Since, in the encrypted domain, multiplication is expensive in terms of computation and time 
complexity, we have devised a solution that reduces the amount of multiplications. Moreover, several  
distances are evaluated  in parallel to decrease the time complexity of the system. Furthermore, our 
solution has the advantage of moving all computation to the server side, eliminating the necessity for 
interaction with the private key owner.  
 
In identification scenarios, client biometric features must be compared with a whole database, owned 
by the server. This would lead to the necessity of storing the whole database encrypted with a user’s 
public key. We also devise a solution to avoid this necessity. 
The new SHE-based protocol proposed has been implemented and tested. Results show that, even if 
the protocol is not as efficient as the interactive protocols based on GC or additively HE, a non-
interactive solution based on SHE is feasible.  
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1.Introduction 
Because of their unique and immutable characteristics, biometric signals such as faces, iris, and 
fingerprints, are more and more used by access control systems to authorize users’ membership. 
Biometric access control systems allow user identification without risk of password leakage or theft. 
Yet it brings with it the necessity of protecting an individual’s privacy (Campisi, 2013). Security against 
eavesdroppers is usually guaranteed by traditional encryption schemes. But in a distributed biometric 
system with a high level of privacy compliance, privacy protection between the server and the client 
must also be guaranteed to avoid tracking user's routine. To reduce concerns over privacy loss, it is 
necessary to process biometric data in a privacy preserving way. In order that the client does not 
learn anything about the biometric templates stored in the database, (except for the resulting 
matching process). In the same way, the biometric server should not be able to extrapolate any 
information about the query itself or its result.  
One approach to protect the privacy of both the client probe and biometric database is to implement 
the matching process by using Secure Multi-Party Computation (SMPC) protocols (Prabhakaran & 
Sahai, 2013)(Bringer et al. 2013). 
 
Many previously proposed protocols based on fingerprints (Barni, et al., 2010)(Blanton et al., 2011), 
irises (Luo, et al., 2012)(Blanton et al., 2011), face recognition (Erkin, et al., 2009)(Sadeghi et al. 
2010)(Bringer et al. 2014), etc. mainly rely on Garbled Circuits (GC) (Yao, 1986), Oblivious Transfer 
(OT) (Rabin, 1981) and additive  Homomorphic Encryption (HE) (Fontaine & Galand, 2007). 
Unfortunately, GC, OT and HE protocols are interactive; hence they require data exchange between 
the parties’ involved throughout all protocol phases. It is our goal to develop non interactive protocols, 



 
 

wherein all the computation is performed on the server side. This is possible thanks to Fully 
Homomorphic (FHE) encryption schemes, capable of performing implicit plain-text addition and 
multiplication by manipulating only the ciphertexts. This was the most important challenge of modern 
cryptography. The first construction of a Fully Homomorphic scheme is credited to Gentry (Gentry, 
2009) who proposed a scheme based on the use of lattices and additional noise. In subsequent 
years, a number of variants improving Gentry's original idea were devised. These included: 
algorithmic optimizations (Gentry & Halevi, 2011); Van Dijk et al. variant working over the integers ring 
(Van Dijk, et al., 2010) followed by its improvement with shorter public keys  (Coron, et al., 2011) and 
batch version (Cheon, et al., 2013); schemes based on Learning With Error (LWE)  (Brakerski & 
Vaikuntanathan, 2014) and Ring Learning With Error (RLWE)  (Brakerski & Vaikuntanathan, 2011); 
plus many others. All the FHE schemes are based on a Somewhat Homomorphic Scheme (SHE), a 
cryptographic scheme that undertakes a limited number of multiplications and additions in the 
encrypted domain. FHE goes beyond this barrier, at the expense of huge communication and 
computation conplexity. 
 
The implementation shown in this paper is an example of non interactive identification protocol based 
on SHE. The reason for resorting to SHE instead of FHE, is that due to the limited number of 
operations performed on encrypted data, a solution based on SHE is not only feasible, but also by far 
more efficient. In this way all the computation is moved on to the sever side, leaving only input 
encryption and output decryption to the client. Given that the client does not take part in the 
computation, the server could also change its tools without providing any information to the client. Our 
protocol relies on the application of the SHE scheme proposed by Pisa et al. (Pisa, et al., 2012) to the 
biometrics identification problem. This allows the identification of the presence of a user biometric in a 
database of templates, without disclosing the plain biometric of the user, and of the database, to each 
other. As a further contribution, the protocol is applied to iris (Daugman, 2004)(Luo et al.2012) and 
fingerprint recognition (Jain et al., 2000)(Barni, et al., 2010). Moreover, we propose a way to extend 
the use of Pisa’s et al. scheme to negative numbers. 
 
Concerning the biometrics protocols, we devised a solution allowing computation of Hamming and 
Euclidean distances with the lowest possible amount of multiplications in the encrypted domain. At the 
same time, this reduces the overheads of expensive encryptions on the server side without the need 
of keeping the whole database encrypted with the public key of each user. 
 
 Moreover, computation of distances is highly parallelized in such a way to decrease the time 
complexity of the system. To the best of our knowledge, before this paper, a SHE solution has been 
applied to biometric recognition in (Troncoso-Pastoriza, et al., 2013) and in (Yasuda, et al., 2013). In 
both papers the authors use extended or modified versions of the Gentry scheme described in 
(Gentry & Halevi, 2011). Their aim is to verify if the query submitted is close enough to another 
encrypted biometry previously enrolled by the user. In the first paper they extended the Gentry 
scheme to work with positive integer values and apply it to facial recognition. In the second paper they 
use a variant of Gentry’s scheme to pack data and implement a generic biometric recognition 
protocol. 
 
The paper is organized as follows. In Section 2, we describe the extension of Pisa et al. In Section 3, 
we outline the working principles of biometric-based authentication systems and we describe a new 
protocol putting in practice the theoretical principles underlying the proposed extension. In Section 4 
we validate the protocol experimentally. Finally, in Section 5, we draw some conclusions and present 
some possible future works. 
 
2. Primitives. 
In this section, we present details of the Somewhat Homomorphic scheme (SHE) that is used to 
implement our biometric privacy preserving authentication. Pisa’s scheme (Pisa, et al., 2012) is an 
extension of the one presented by Van Dijk et al. usually called DGHV (Van Dijk, et al., 2010). The 
new scheme works on integer numbers instead of bits. In the following, given two integer numbers  
and , we indicate with  or  the reduction of  modulo . We consider two different 
modulus operators: the first one , indicates the remainder in the interval , the second one, 

, refers to the integer in the interval  i.e.  when 
 

 
In the original DGHV scheme (Van Dijk, et al., 2010), only messages of one bit can be encrypted. 



 
 

Thus the scheme is not suitable for those applications requiring operations on integers. The main 
improvement, in Pisa’s scheme, is that it can encrypt every integer number greater than or equal to 
zero and less than a certain integer , called base. Recently, public-key setup has been attacked in 
(Cohn & Heninge, 2011) so we rely on the more recent protocol described by (Pisa, et al., 2012). 
As in the original scheme, Pisa et al. hide the message  in the noise of a near multiple of an integer 

 i.e.  where the integer  must not be divisible by . It is worth noting that the above 
scheme can be extended and used to encode negative numbers, allowing the encryption of integers 
in the interval . Obviously, in the case of negative numbers, the base should be twice the 
maximum integer that needs to be computed.  
We now define the scheme presented in  (Pisa, et al., 2012). 
The secret key of the encryption scheme is an integer , not divisible by the base and belonging to 
the interval .  The public key is a set of  integers obtained as , where all and 

 are randomly chosen. The first element, called , must be greater than all the others, odd and its 
noise must be even.  
Given an integer message  in the right interval, the encryption function is computed as 

 

 
 

To decrypt the ciphertext, it is sufficient to compute two times the modulus operation, the first by the 
secret key (sk) and the second by the base i.e. . The scheme is homomorphic, so 
additions and multiplications on integer values are evaluated by adding or multiplying the 
corresponding ciphertexts modulus . 
 
Table 1: Parameters. 
 

Cryptosystem parameters 

 Cryptosystem’s base 
 Security parameter. 
 Bit length of the secret key. 

 Bit-length of the noise  in the public key and in the ciphertext encryption. 
 Number of elements of the public key. 

 
 
In order to preserve the semantic security of the reduction to approximate-GCD problem, the 
Parameters of our SHE protocols, showed in Table 1, are define according to (Pisa, et al., 2012) as: 

, respectively for the noise of each element of public key and ciphertext;  for 
the length of the private key;  to define the length of the ciphertext; finally . 
Where  is big  notation. In its basic form, the scheme described above is somewhat 
homomorphic, meaning only a limited number of operations can be performed on encrypted data, 
before the noise increase makes decryption impossible. In fact this number depends on the 
magnitude of the noise after every operation. In order to decrypt the correct message, the total noise 
should not grow more than . While after a multiplication we have a significant noise increase, the 
addition is less problematic because it produces only a slight increase. Estimating the maximum 
number of possible multiplications is possible by finding the largest µ that satisfies , where 

 is the maximum allowed noise. 
 
 
Similarly we can obtain the limit for the maximum number of additions allowed by the scheme. The 
number of multiplications depends mainly on the security parameter  while they are quite 
independent from the base. Only few multiplications can be evaluated before a decryption error 
occurs, while the maximum number of additions is quite high. For the security basis of the scheme we 
refer to (Pisa, et al., 2012). As is possible to see from the parameters settings, Table 2, public key is 
very expensive in terms of memory storage. To provide sufficient security, we need large 's but this 
implies big public keys and memory problems. This had led to problems during implementation. 
 
 



 
 

 
Table 2: Ciphertext, and keys size. 
 

Size of the ciphertext, secret and public key 

 Base Secret Key Public Key Cipher text 
 2 10Byte 130 KB 0,1 KB 

10 210 101 Byte 1,3 MB 1 KB 
 250 506 Byte 7 MB 6 KB 
 2 25 Byte 7 MB 7 KB 

15 210 245 Byte 70 MB 72 KB 
 250 1 KB 350 MB 360 KB 
 2 45 Byte 216 MB 0,1 MB 

20 210 451 Byte 2 GB 0,6 MB 
 250 2  KB 10 GB 3 MB 

 
 
3.Protocol 
This section shows how privacy preserving biometric authentication protocols can benefit from the 
SHE cryptosystem working on integers. We consider that the server has a database containing the 
biometric templates of N members, each represented as an array of features.  
The protocol is divided into three parts (Figure 1):  

• Part 1 (input encryption): The client encrypts its biometric template with his/her public key (pk) 
and sends it to the server. We assume that the server already has client's pk. 

• Part 2 (protocol execution): The server loads the biometric database and encrypts the values 
necessary for the computation. For each biometry in the database, it evaluates the distance 
from the probe, in a privacy preserving way as described in Section 3.1, and subtracts the 
acceptance threshold from each result. Distance computation can be parallelized to improve 
the runtime. We used 4 threads, according to our system characteristics. Then the vector 
containing all the matching results is randomly permuted, before finally being sent back to the 
client. This is done to prevent the user obtaining the position of the biometry in the database. 

• Part 3 (output decryption): The client decrypts all the elements of the vector with his secret key. 
If one of the obtained values is a negative integer its biometry matches with an element of the 
database. 
 

 
Figure 1: Three parts of the protocol. 
 
3.1 Distance and thresholding implementation. 
In this section we present our solution to evaluate distances in encrypted domain. 
Each feature is a vector of  elements, with  we indicate the client probe and with 



 
 

 the -th biometry in the database. Furthermore ⊕ identifies the XOR  and the 
norm of the binary vector. 
If the features are binary values, the Hamming distance is evaluated as ; 
otherwise the squared Euclidean distance  is computed. 
To calculate the Hamming distance, we would need to evaluate the XOR between ciphertexts. 
However we can perform additions modulus ,   so   XOR can be evaluated as 

 The server has access to the bits of the current biometry and it is 
possible to avoid computing the multiplication. Hence given the encrypted bits of the probe, server 
can calculate the XOR as 
 

 
where  denotes the encryption with the user's public key. We again point out that the 
representation of negative numbers is also possible, as described in Section 2.1.   
Given the XOR implementation, the server computes the encrypted Hamming distance as the 
encrypted sum of all the XORs. Similarly, to compute the Euclidean distance the server performs 

. This solution allows us to store only two encrypted numbers for iris (1 and -1) 
and  values for Euclidean distance, avoiding keeping all database encrypted with client public 
key.  
Now the distance can be compared with the threshold. The comparison operation is not allowed in 
encrypted domain so instead the server computes the difference between each distance and . Two 
biometrics match if the result is negative. Finally the server randomly permutes the vector and then 
sends results back to client. 

 
Figure 2: Part 2, server computation. 
 
 
3.2 Computational complexity. 
The advantage of our chosen cryptosystem is having the possibility to directly evaluate the Hamming 
or Euclidean distance on the server, working on encrypted integers.  
Indeed the protocol could be computed by using the DGHV scheme with base 2, but while the XOR 
among the bits could be implemented without products, differences among features, square values 
and the sum of the feature differences require circuits composed by many AND gates. In the case of 
the Hamming distance, by using a reverse tree structure to compute the sums, we can observe that 
the tree is composed by  layers, wherein the -th layer is composed by  adders of -bit long 
inputs (each one needing  AND gates). Hence for each biometry in the database,  
products are needed for the sum and, being the depth of the tree , it is important that at least 

 multiplications are allowed before the SHE incurs a decryption error. More AND gates are 
needed for the Euclidean distance. On the contrary, since our solution works directly on integer 
values it requires, on average, only  products to compute the XOR between  and  (products 



 
 

can be computed in parallel). With the Euclidean distance,  products are evaluated in parallel to 
compute the square of . As a result, we only require that the SHE can cope with the noise 
amplification due to one multiplication. As said before, it is important to note that for distance 
computation the server does not need to encrypt the entire database, but only few numbers. In 
particular - for the case of a Euclidean distance - by assuming that each feature is represented with  
bits, it can be more convenient to encrypt the  values that the features can assume (encryption 
of 0 is avoided), at the beginning of the protocol, and select the correct cipher text given the real value 
of the feature, rather than encrypting all the single features for every database entries, if 

    
 
4. Experimental validation. 
In this section we discuss the results of a practical implementation of the proposed cryptosystem 
when applied to iris and fingerprint matching. 
First of all we are going to analyze the communication complexity of the cryptosystem. According to 
Section 2, the secret key is in the range , with , hence, is represented with  
bits. Similarly we obtain that the secret key and each element composing the public key are 
represented by up to  bits.  
The computational complexity of the scheme has been evaluated in terms of protocol runtime. More 
specifically, we have measured the average runtimes required by single encryption, decryption, key 
generation and multiplication, by using a Java implementation of the SHE scheme.  
We ran 150 tests on a desktop equipped with a Quad-Core CPU (Intel i7 at 3,40GHz) and 16 GB 
RAM, mounting a 64-bit Windows OS. The averaged results are shown in Table 3. Addition and 
secret key generation runtimes are not shown, since they are negligible. The runtime is not 
significantly affected by the different values assigned to the base, hence our solution of working on 
integers is preferable to a SHE-based protocol working on bits, thanks to the reduced number of 
multiplications. 
 
Table 3: Cryptosystem execution times. 
 

Crypto system execution times 

 Base Generation 
public key 

Encryption 
 

Decryption 
 

Multiplication 
 

 2 0,01 s 0,20 ms 0,00 ms 0,00 ms 
10 210 0,04 s 0,17 ms 0,03 ms 0,00 ms 

 250 0,58 s 0,27 ms 1,00 s 3,00 ms 
 2 0,18 s 0,60 ms 0,20 ms 4,67 ms 

15 210 3,30 s 2,90 ms 0,01 s 0,10 s 
 250 3 min 0,02 s 0,19 s 1,11 s 

 
For iris matching, we considered the algorithm proposed in (Daugman, 2004), where an iris is 
represented through a vector of 2048 binary features. Hence the Hamming distance is used and only 
the encryption of values 1 and -1 is performed on the server side, avoiding the problem of encrypting 
and storing many features. The maximum value the distance can assume is 2048 and it is 
represented by 11 bits. For this reason, and to allow for negative numbers, we chose as 
base . High values of  should be used, to guarantee a sufficient security level. However, in 
considering our requirement for a large base, with  we already have a public key of 2 GB, 
hence for our tests we considered  equals to 10 and 15, for which public key is about 1,5 MB and 77 
MB. 
We performed the tests on randomly chosen bit vector to simulate a possible iris database. The test 
has been repeated 50 times. We expected a long time for execution due to the lengthy time required 
for each multiplication (as in Table 3). 
 
Table 4: Protocol execution times. 
 

Iris protocol execution times 
 Part 1: Client Part 2: Server Part 3: Client 

10 0,33 s 0,12 s 0,00 s 
15 7,10 s 54 s 0,01 s 

 



 
 

 We measured the average execution time in seconds of each part of the protocol with respect to a 
database of a single element. Hence the total time has to be multiplied by a factor N. As can be seen 
in Table 4, for  the most expensive part in terms of execution time is server computation, which 
takes almost a minute, while the initial client encryption of the 2048 elements vector takes some 
seconds (and the last part is negligible). On the other side, for  the execution of the whole 
protocol takes less than a second, but is less secure. 
The 2048 ciphertexts are transmitted from the client to the server and another one for each biometric 
match from the server to the client, resulting in the total transmission of 6MB and 346MB for  
and 15 respectively. 
 
For fingerprint matching, we implemented the system described in (Barni, et al., 2010). The authors 
demonstrate that the representation of a fingercode through a vector of 96 features, each represented 
with 2 bits, increases the equal error rate from 6.7% of the original plain implementation to only 7.6%. 
Considering that the maximum value the distance can assume is 864, which can be represented with 
10 bits, the configuration results are appealing for a privacy preserving SHE implementation. We also 
underline that to evaluate the Euclidean distance, only the encryptions of -1, -2 and -3 are needed on 
the server side, again avoiding the problem of encrypting and storing many features. Tests have been 
run, again to allow negative numbers representation, with base  and security parameters 
10,15 (Table 5). With this set of parameters, public key is respectively 1,4 MB and 84 MB. 
 As before, for  the protocol takes less than a second, while for the bigger security parameter 
the most expensive part is the server’s computation, which takes about 4 seconds. In this case 96 
ciphertexts are transmitted from client to server and one for each biometric in the database from 
server to client, with a bandwidth of about 264KB ( ) and 15 MB ( ). 
 
Table 5: Fingerprint protocol execution times. 
 

Fingerprint protocol execution times 
 Part 1: Client Part 2: Server Part 3: Client 

10 0,02 s 0,01 s 0,00 s 
15 0,34 s 3,76 s 0,01 s 

 
For  the time required by our implementation of the privacy preserving iris and fingerprint 
matching protocol has similar performances based on GC (Luo, et al., 2012) or Paillier HE (Barni, et 
al., 2010) implementation. On the contrary, as expected for , the time needed by the SHE 
implementation is by far larger than the execution time of protocols based on Paillier HE (Paillier, 
1999) or GC (Yao, 1986). The full-GC implementation of the iris matching in (Luo, et al., 2012) needs 
less than 1 second, but both circuit garbling and circuit transmission are pre-computed.  
Nonetheless, all computation in our protocol is moved to the server side and no interaction is needed, 
making the protocol appealing for an offline database search. Moreover, running times can be 
lowered by using powerful servers that allow for parallelization across a greater number of threads. 
Also, the N matching protocols can be evaluated in parallel. 
We also underline that our Java implementation of SHE-based private iris and especially fingerprint 
recognition are faster than the C++ implementation of face recognition of (Troncoso-Pastoriza, et al., 
2013) that runs in 12.3 seconds. But iris recognition is working with 2048 binary features and 
fingerprint is working with 96 features, while face recognition is using 4000 features, each represented 
with 3 bits. This difference in performance depends on the language used for implementation as well 
as on the different SHE setup. On the contrary, our implementation is slower than Yasuda’s (Yasuda, 
et al., 2013), but they have implemented a packing method and consider only bit values. 
 
5.Conclusions. 
We extended and implemented a recently proposed SHE scheme (Pisa, et al., 2012) working on 
integer values and tested its performance. We used it to build a privacy preserving biometric matching 
protocol whose complexity is lower than that of SHE solutions working only on binary values. Even if 
the protocol is not as efficient as others based on SMPC techniques, such as Garbled Circuits and 
Homomorphic Encryption, our solution has the advantage of moving all the computation onto the 
server side, eliminated the necessity of interaction together with the private key owner. We also 
avoided encrypting the whole database. This was achieved by encrypting only the values that the 
features can assume, so there is no necessity to encrypt (and store) the entire database with the 
user's public key before the protocol starts. 



 
 

We observed from our tests that runtimes of single operations and bitsize of ciphertext and keys are 
slightly affected by the base, while they greatly increase when increasing the security parameter. We 
then tested the iris and fingerprint recognition protocol observing that a single match requires some 
seconds. 
In the future, we are interested to improve the protocol by using some of the innovative solutions on 
SHE schemes that are proposed everyday. Also, we are keen to verify if a change of the base during 
the protocol would make it possible to switch from base  to base 2 and implement a comparison with 
the threshold through a binary circuit composed by AND and XOR gates. 
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