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Abstract—We evaluate the performance of smart metadetection as a
way to combat oracle attacks in watermarking. In a recent work, we have
shown that few queries are sufficient for a simple metadetector (namely, a
metadetector based on the closeness of queries to the watermark detection
boundary) to detect an oracle attack. A limitation of our prior analysis
is the assumption that all the queries correspond to either honest users
or malicious ones. In this paper, we address a more realistic scenario
in which honest queries are interspersed with queries derived from an
oracle attack. By focusing on this more general situation, we evaluate
the performance of the metadetection and derive conditions under which
powerful testing is possible.

I. INTRODUCTION

Originally proposed in the 1990s by Cox and Linnartz for attacking
the correlation-based detector of Additive Spread Spectrum (Add-
SS) [1] (i.e., detection regions whose boundary is a hyperplane), the
so-called sensitivity attack is the first of a number of adversarial
strategies that try to exploit the information obtained by querying
the detector, and that receive the general name of oracle attacks. The
sophistication and power of those attacks have significantly improved
over time [2], [3], [4], until the inception of blind algorithms [5], [6]
where no a priori knowledge of the decision function is even needed.
Blind algorithms have successfully proven to succeed in removing the
watermark for a variety of watermarking algorithms, including those
used in the BOWS (Break Our Watermarking System) and BOWS-2
contests [7], [8].

The effectiveness of oracle attacks is not limited to watermarking,
as they can be used against any binary detector. In multimedia
security, for example, this includes forensic detectors, authentication
detectors, fingerprint detectors, etc. The effectiveness and generality
of oracle attacks call for the development of proper countermeasures.
A first step in that direction has been recently taken in [9], where the
authors propose a metadetector that works in parallel with a standard
watermark detector. While the operation of the latter is not modified,
the former is specifically devoted to detecting malicious queries. Once
an oracle attack has been successfully detected, effective counter-
measures, including banning, and randomized or delayed answers
to queries, can be enforced. In [9], two different metadetectors are
proposed; one of them exploits the fact that oracle attacks generally
produce a large number of queries close to the watermark detection
boundary, while the other targets the line searches typically performed
by those attacks. Both strategies have been theoretically analyzed and
successfully used for detecting oracle attacks with just few queries.

The analysis carried out in [9] assumes that the detector is
exclusively queried by either a malicious or a honest user. However,
in a practical scenario, several users may be querying the system
in a time window of N queries, potentially including both honest
and malicious users. Hence, the metadetector wishes to discover
if there is an adversary among the users querying the system. In
this paper, we address this more realistic case by generalizing the

analysis made in [9]. We quantify the effectiveness of the attack
by bounding the number of queries which are necessary to find a
point sufficiently close to the boundary (i.e., to get close enough
to the boundary). We also analyze the asymptotic performance of
the metatest in order to determine under which conditions it is
possible to get an asymptotically powerful test, that is, to detect
an oracle attack with asymptotically zero probability of error. We
also derive a critical percentage of attacking queries below which no
asymptotically powerful test is possible. Such critical value is directly
linked to the parameters of the watermark detector.

The paper is organized as follows: in Section II we briefly introduce
the simple metadetector proposed in [9] and recap the main results
proved therein; then, in Section III we analyze the performance of
the metadetector in the more general setup addressed in this paper.
An evaluation of the impact of the parameters of the metadetector
on the performance is provided in Section IV, where the asymptotic
limiting performance of the test are investigated. Experimental results
are reported in Section V, and conclusions provided in Section VI.

II. METADETECTORS IN WATERMARKING: A HIGHER-LEVEL OF

DETECTION.

Given a sequence under test y and the watermark sequence
w, a watermark detector has to decide whether the sequence y
contains the watermark w (hypothesis Hw,1) or not (hypothesis
Hw,0). Watermark decision splits the space of sequences into two
regions: Rw,0 = {y : l(y,w) ≤ T} and Rw,1 = Rw,0, where
l(y,w) is the watermark decision function and T is the decision
threshold. The false positive and false negative probabilities of the
watermark detection test are denoted by PF,w ad PM,w, respectively.
Given a vector with N queries yN , the metadetector defined in [9]
decides whether yN is a legitimate sequence of queries (Hq,0), i.e.,
a sequence made by honest users, or not (Hq,1), that is, yN is a
sequence of queries coming from a dishonest user. In this paper, we
consider the Closeness-To-the-Boundary (CTB) metadetector, which
is the first metadetector introduced in [9].

A. General definition of the CTB-based Metadetector

The CTB-based metadetector relies on the definition of a narrow
strip across the decision boundary δRw, namely, A = {y : T −∆ <
l(y,w) < T + ∆}, where ∆ determines the width of the strip. The
assumption behind the CTB metadetector is that a dishonest user will
query the detector with an unusually large number of vectors falling
within A. Given a vector with N queries yN , the metatest is based on
the number of yi that belong to A, namely nNy (A). More precisely,
the test is defined by the following decision function:

φq(y
N ) =

{
0 if nNy (A) < α ·N
1 if nNy (A) ≥ α ·N, (1)

where α is a fixed threshold occurrence rate. The acceptance region
for the metatest is Rq,0 = {yN : nNy (A) < α · N}, while its
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false alarm probability is given by PF,q = P (nNy (A) ≥ α ·N |Hq,0).
Similarly, PM,q = P (nNy (A) < α·N |Hq,1) defines the false negative
probability. For a fixed number of queries N , the metadetector sets
∆ and α in order to satisfy PF,q ≤ P ∗F,q , for a prescribed maximum
P ∗F,q .

In the following we derive the performance of the CTB detector by
focusing on a particularly simple, yet common, watermarking system.

B. CTB metadetector for correlation-based watermark detectors

We assume that an Add-SS watermarking scheme is used. More
specifically, we have xw = x + γw, where xw is the watermarked
signal, γ defines the watermark strength, and the watermark sequence
w ∈ {−1,+1}L. The ML detector for Add-SS and i.i.d. Gaussian
host relies on the correlation between the sequence under test y and
the watermark sequence w, that is, ρ = l(y,w) = 〈y,w〉. From
basic watermarking theory [10], we know that for the noiseless case
ρ ∼ N (µρ|i, σ

2
ρ), where the mean under Hw,0 is µρ|0 = 0, while

under Hw,1 we have µρ|1 = γL. The variance of ρ is σ2
ρ = Lσ2

X

under both hypotheses. In this case, δRw is a hyperplane, as in the
system considered by the original sensitivity attack [1], and then the
watermark detector is easy to characterize. We assume that the error
probability of the watermark detector tends to zero as L grows. For
this to be possible, the threshold T must satisfy the following con-
ditions: limL→∞ T/

√
L = ∞ and limL→∞(γL − T )/

√
L = ∞.1

With the above system, the CTB metadetector relies on the definition
of a strip of width ∆ across the hyperplane 〈y,w〉 = T , namely,
A = {y : T − ∆ < 〈y,w〉 < T + ∆}. In order to compute PF,q
we must define a proper model for honest queries.

Definition 1 (Model of honest queries): We consider that honest
users can send two kinds of queries, corresponding to water-
marked and non-watermarked signals. We model the former by
N (w, σ2

XIL×L), where the watermark w is known at the detector.
On the other hand, the non-watermarked signals are assumed to
follow a N (0, σ2

XIL×L). Query signals are assumed to be mutually
independent.

We also introduce the indicator s vector as

si ,

{
1, if yi is watermarked
0, otherwise

,

where i = 1, . . . N ; the components of the corresponding random
vector S are independent and identically distributed.

Let us now compute PF,q . To start with, we need to evaluate the
probability p∆ that a query Y made by a honest user falls inside A.
Specifically, we can write:

p∆ , P (Y ∈ A|Hq,0) = P (Y ∈ A|Hq,0, S = 0)pS(0)+

P (Y ∈ A|Hq,0, S = 1)pS(1), (2)

where pS(0) and pS(1) are the a priori probabilities of having a
watermarked or non-watermarked signal under the null hypothesis
(honest queries). The above probabilities can be redefined as a
function of the correlation ρ, since Y ∈ A iff |ρ − T | ≤ ∆.
Consequently, we have (see [9] for more details)2:

P (Y ∈ A|Hq,0, S = 0) = Q

(
T −∆

σρ

)
−Q

(
T + ∆

σρ

)
, (3)

1Whenever T grows with the same velocity as
√
L (i.e., T ∼

√
L), then

PF,w is fixed as L grows, whereas, whenever T satisfies the condition (γL−
T ) ∼

√
L, PM,w is fixed as L grows. Clearly, these choices do not lead to

an asymptotically zero error probability for the watermark test.
2Q denotes the Q-function: Q(x) = 1√

2π

∫∞
x e−

u2

2 du.

and similarly,

P (Y ∈ A|Hq,0, S = 1) =Q

(
γL− (T + ∆)

σρ

)
−

Q

(
γL− (T −∆)

σρ

)
. (4)

The probability of having K out of N queries in A can be
computed by resorting to the formula of repeated Bernoulli trials;
that is (we assume for simplicity that αN is an integer number):

PF,q =

N∑
K=αN

(
N

K

)
pK∆(1− p∆)N−K . (5)

For small N we can actually compute the value of (5), while, for
large N , we could derive upper and lower bounds for PF,q by using
Stirling’s approximation for the binomial coefficient. By imposing
PF,q ≤ P ∗F,q for a prescribed maximum P ∗F,q , we can set the
metadetection parameters. Clearly, there are many combinations of
parameters ∆ and α which lead to the same value of PF,q .

Whenever the attack model (i.e., the model under Hq,1) is known,
it can be exploited for choosing the pair (α,∆) by searching for the
couple which, among those satisfying the false positive constraint,
minimizes the false negative probability. Otherwise, in order to fully
define the test, we need to fix one of the two parameters, α or ∆,
and use the PF,q constraint to set the other.

In the next sections we evaluate the performance of the CTB
metadetection in the case of Add-SS watermarking.

III. PERFORMANCE OF THE CTB METADETECTOR IN THE

PRESENCE OF MIXED QUERIES

In this section, we evaluate the performance of the CTB-based
metadetector in a more general scenario with respect to the one
considered in [9]. Specifically, we assume that the oracle is shared
by many users which can be honest or not. Under Hq,0, all the users
are honest, and consequently, the query model does not change with
respect to the one considered in Section II (Def. 1). Under Hq,1
instead, there is (at least) one malicious user hidden among the
honest, so in the observation vector malicious queries are interleaved
with honest ones. Since the CTB metadetector depends only on the
null hypothesis, the metadetector defined in Section II is still the one
used in the current scenario, although one would expect that poorer
performance is achieved.

The motivation for such a generalized setting deserves a comment.
Since there are many real situations in which the detector knows the
origin of the queries (e.g. a server shared by multiple users), one may
argue that the detector could simply run the metatest in [9] for each
user separately, with no need to account for the generalized scenario.
Nevertheless, by observing that the origin of the queries can be easily
forged by a malicious user, it is clear that for the detector is better to
resort to higher-level attack countermeasures, which makes the study
of the generalized scenario relevant also in this case. On top of that,
the scenario studied in this paper provides a model also for a different
possible situation where the queries under Hq,1 are all made by a
malicious user who, in order to hide the attack, mixes the attacking
queries to honest ones.

In the following, we summarize the main steps for performance
computation when all the queries under the alternative hypothesis
are malicious (this analysis was originally derived in [9]). Then, in
Section III-B, we generalize that analysis to the case of mixed queries.

A. Metadetection performance with malicious queries only

We derive the performance of the CTB-based metadector in the
case in which all the N queries are made by the attacker. Although
the CTB-based metatest does not depend on the attacking strategies



(assuming that they result in an unnaturally high number of queries
close to the boundary), in order to evaluate the performance of the
CTB-based metadetector, we need to specify a model for the queries
under Hq,1. Due to its practical interest, we consider that the attacker
performs the queries according to a binary line search. Starting from
two sequences z1 and z2, the former belonging to Rw,0 and the
latter to Rw,1, the attacker applies a bisection algorithm on the line
identified by the two queries until he finds a point that is arbitrarily
close to the boundary. The number of queries which fall outside
A corresponds to the number of queries required, according to the
bisection method, to reach the interval size discrimination of 2∆,
which is (at most) dlog2(|ρ2−ρ1|/∆)e, where ρi = 〈zi,w〉 (we take
the starting pair of queries of the line search as part of the N -length
observation). For sake of simplicity, in the sequel, we neglect the
upper integer approximation. Then, under Hq,1, after N observations
(we assume N ≥ log2(|ρ2 − ρ1|/∆)), the number of queries in A
is larger than N − log2(|ρ2 − ρ1|/∆).

The CTB test yields a correct decision (i.e., in favor of Hq,1)
whenever:

log2 (|ρ2 − ρ1|/∆) ≤ (1− α)N, (6)

for some chosen α. For fixed N , according to equation (6), the test
succeeds if the distance between the initial queries along w is not
too large. In order to evaluate the probability of this event, we need
to determine the statistics of ρ2−ρ1, i.e., the difference between the
queries z1 and z2 in the projected domain. With regard to z1, the
attacker will query the detector with few non-watermarked sequences
until he finds one belonging to Rw,0 (the search will be extremely
fast, since the probability that a non-watermarked sequence belongs
toRw,0 is very high). As to z2, this is a watermarked sequence which
belongs to Rw,1 from which the attacker tries to estimate a point on
(very closed to) the boundary. Then, the statistics of ρ1 are obtained
by conditioning to Hw,0 and to the event that a non-watermarked
sequence belongs to Rw,0, that is fρ1(ρ1) = fρ(ρ|Hw,0, ρ ≤ T ). By
construction, the probability that ρ1 is smaller than T under Hw,0 is
very close to 1 (PF,w is small); hence we can bound the conditioning
event and assume that ρ1 ∼ N (0, σ2

ρ). By the same token, we can
state that ρ2 ∼ N (γL, σ2

ρ). Thanks to the independence of z1 and
z2, ρ2 − ρ1 is still a Gaussian random variable, with mean value
equal to γL and variance equal to 2σ2

ρ.
Given a pair (α,∆) set by the metadetector, for large values of L,

we can compute PM,q as follows:

PM,q = 1− P
(

(ρ2 − ρ1) ∈
[
−∆ · 2(1−α)N ,+∆ · 2(1−α)N

])
≈ Q

(
∆ · 2(1−α)N − γL√

2Lσ2
X

)
, (7)

where we exploited the fact that γL � σρ =
√
LσX . As expected,

doubling the width of the strip has the same effect on PM,q as
decreasing α by 1/N . From the metadetector side, equation (7)
enables to optimize the value of the pair (α,∆) among those ensuring
that PF,q ≤ P ∗F,q . Be aware, however, that while for the computation
of the false positive error probability we did not make any additional
assumption on the behavior of the attacker, the expression of the false
negative in (7), is valid only under the line search model.

It has been shown in [9] that, despite its generality (it is not tailored
to counter the line search attack), the CTB metadetector uncovers
oracle attacks by observing very few queries.

B. Metadetection performance with mixed queries

Let us consider the more general situation in which, under Hq,1,
the queries are made partly by attackers and partly by honest users,
and investigate how much the metadetection performance is reduced.

For simplicity, as a first step, we study the metadetection problem
by assuming that all the honest queries lie outside the metadetec-
tion region; then, we complicate the analysis by removing such
assumption and considering the distribution of honest queries. Let
N −D be the number of malicious queries in the N -length vector
of observations (equivalently, there are D honest queries).

1) Worst case scenario: We assume that the queries from honest
users never fall inside the metadetection region A. From the perspec-
tive of the metadetector, this corresponds to a worst case assumption.
Given an observation vector of length N with D queries coming from
honest users, the false negative error probability is simply3.

PM,q = P
(
nN−Dy (A) ≤ αN |Hq,1

)
. (8)

For the case of a binary line search attack, the metadetector yields a
correct decision, regardless of the honest queries, if

log2 (|ρ2 − ρ1|/∆) ≤ (N −D)− αN = (1− α)N −D, (9)

where, as before, ρ1 and ρ2 denote the correlation of the two starting
queries with the watermark. The missed detection probability then
becomes (for large L)

PM,q ∼= Q

(
∆ · 2(1−α)N−D − γL√

2Lσ2
X

)
. (10)

From (10), it is easy to argue the impact of the honest queries
on the missed detection probability. Due to the exponential inverse
dependence of the argument of Q with D, each honest query (in
place of a malicious query) has on PM,q the same effect of halving
the size of the strip ∆ or increasing α by 1/N .

Throughout the paper, we denote by β the fraction of honest
queries in the observation vector, i.e., β = D/N . Conversely,
(1−β) = (N−D)/N denotes the fraction of malicious queries. For
a given metadetector with parameters (α,∆), and a fixed maximum
missed detection probability P ∗M,q for the metatest, we derive the
minimum fraction of malicious queries which still guarantee the
prescribed P ∗M,q:

(1− β)∗ = α+
1

N
log2

((√
2σ2

ρQ
−1(P ∗M,q) + γL

)
/∆
)
. (11)

Notice that relation (11) corresponds to fixing a maximum dis-
tance between the starting pairs of queries for the attack, which is√

2σ2
ρQ
−1(P ∗M,q) + γL in the projected domain.

2) Real scenario: Generally, honest queries may fall inside the
metadetection region. Therefore, we relax the simplifying assumption
made in the previous section and find the exact expression of the false
negative probability PM,q . We also derive conditions under which it
is possible to approximate this expression with the one found above.
Let yN−DL denote the vector of the queries made by the attacker:
yN−DL = {yi}i∈S , where S is the set of the indexes of the malicious
queries in the observation vector, with cardinality N −D. Similarly,
let yDH = {yi}i∈S̄ be the vector with the honest queries. Notice that,
according to our model for honest queries, in order to compute PM,q ,
the fact that the queries are not consecutive in the observation vector

3We are assuming D ≤ (1−α)N . A larger number of honest queries will
always lead to PM,q = 1.



does not affect the computations. We can write:

PM,q =P
(
nNy (A) ≤ αN |Hq,1

)
=P

(
nN−DyL (A) ≤ αN

)
· P
(
nDyH (A) = 0

)
+

+ P
(
nN−DyL (A) ≤ αN − 1

)
· P
(
nDyH (A) = 1

)
+ ...

=

αN∑
i=0

P
(
nN−Dy (A) ≤ αN − i|Hq,1

)
·

P
(
nDy (A) = min{i,D}|Hq,0

)
, (12)

where nN−DyL (A) (nDyH (A)) denotes the number of queries inside A
among those in vector yN−DL (yDH ). In this case, given a target P ∗M,q ,
we are not able to derive β∗ in an explicit form.
Expression P

(
nDy (A) = i|Hq,0

)
can be computed by resorting to

the formula of the repeated Bernoulli trials with parameter p∆, while
P
(
nN−Dy (A) ≤ αN − i|Hq,1

)
depends on the specific attack. For

the binary line search case, it can be computed similarly to (8).
Let us inspect the difference between the value of PM,q in
(12) and that in (8). For the first term of the sum in (12)
we have P

(
nDy (A) = 0|Hq,0

)
= (1 − p∆)D , while for

the second term P
(
nDy (A) = 1|Hq,0

)
= Dp∆(1 − p∆)D−1,

P
(
nDy (A) = 2|Hq,0

)
= (D(D−1)/2)p2

∆(1−p∆)D−2 and so on4.
The two expressions (12) and (8) are very close to each other if it
holds that (1 − p∆)D ≈ 1 and then Dp∆(1 − p∆)D−1 + ... � 1.
The validity of the approximation depends on the relation between
p∆ and D. Roughly speaking, this occurs when (1 − p∆)D �
Dp∆(1− p∆)D−1, that is

p∆ �
1

D + 1

(
or D � (1− p∆)

p∆

)
. (13)

When such relation is satisfied, we can approximate (12) by (8).

IV. PARAMETER ANALYSIS AND ASYMPTOTIC PERFORMANCE

FOR THE CTB METADETECTOR

A question that arises when defining the metadetector is how to
choose the observation length N . Since the metadetector does not
know in principle whether it is queried by honest users or attackers,
choosing N is not an easy task: with a too large N we might risk
that an oracle attack takes place and ends up within the time interval
of N queries, thus failing to detect it; on the other hand, a too small
N might cause that only few attacking queries are made in the time
interval N , and that the attack is spread over several vectors of N
queries. To address this problem, it is interesting to investigate the
behavior of the metatest for increasing values of N . In order to do
that, it is useful to quantify the effectiveness of an oracle attack.

To keep things easy, we assume that the attacker is interested in
estimating only a point of (sufficiently close to) the boundary and
succeeds when such a point is found. The analysis can be extended
to the cases in which the goal of the attacker is more general (e.g.,
he wants to learn the decision boundary and hence he needs to find
at least L points of the boundary).

A. Quantifying the effectiveness of the attack

It is interesting to evaluate the performance of the attack in terms
of the distance between the point obtained at the end of the search
and the boundary of the watermarked region. Given a vector of N
malicious queries, the worst case accuracy with which the attacker

4We neglect the contribution of the subsequent terms (K ≥ 1) since it gets
smaller and smaller . . .

estimates a point on the boundary (with the line search attack) is
described by the random variable dε = |ρ1−ρ2|

2N−2 , which quantifies the
worst case distance of the final query to the boundary (we subtract
2 for the initial pair of queries). Since (ρ2 − ρ1) ∼ N (γL, 2σ2

ρ),
|ρ2−ρ1| follows a folded normal distribution, which for large L can
be approximated by the same Gaussian N (γL, 2σ2

ρ).
Then, for the case of N malicious queries, dε is distributed as

follows:

dε ∼ N
(

γL

2N−2
,

2σ2
ρ

22(N−2)

)
. (14)

We can evaluate the attack performance by relying on the measure
of quantiles. For a fixed probability q, the q-quantile is the mininum
value dqε which satisfies P (dε < dqε) ≥ q. For large q (close to 1),
it quantifies the accuracy of boundary estimation that the attacker
reaches with confidence q × 100%. From (14), we can compute dqε
by solving the following equation:

Q

(
2N−2dqε − γL√

2σ2
ρ

)
= 1− q, (15)

which yields

dqε =

√
2σ2

ρQ
−1(1− q) + γL

2N−2
. (16)

Similarly, for the case in which a certain fraction β of honest queries
are mixed with the malicious queries, the value of the q-quantile is
dqε,β = dqε2

βN .
From the point of view of the attacker, he might be interested in

fixing a target accuracy and determining the number of malicious
queries which are necessary to get close to the boundary with a
certain accuracy. Reasonably, such number depends on the initial
pair of queries. Let d∗ε,s be the target accuracy fixed by the attacker.
Since the attacker does not know the watermark parameters, he will
consider d∗ε,s = ‖z1−z2‖/2N−D−2, i.e. the accuracy in the original
(spatial) domain. Let d∗ε be the corresponding distance measured in
the projected domain. The attacker succeeds in inducing an incorrect
metadecision (i.e., a metadecision in favor of Hq,0) whenever

log2(∆/d∗ε) < αN − 2, (17)

(where log2
∆
d∗ε

+ 2 is the number of queries which must fall inside
the strip to get the accuracy dε), which implies

d∗ε > ∆/2αN−2. (18)

The quantity on the right-hand side of (18) is the minimum error
that the attacker has to admit (maximum accuracy that the attacker
can reach) in order not to be discovered. Since the attacker cannot
compute d∗ε , he does not know if its attack will be detected or
not. However, he can consider d∗,ubε =

√
Ld∗ε,s (which is always

larger than or equal to d∗ε). Whenever d∗,ubε does not satisfy (18), the
attacker can conclude that his attack will surely be detected.

B. Sufficient and necessary conditions for an asymptotically powerful
metatest

We now evaluate the performance as L and N increase (we assume
that N = N(L) and that N tends to infinity when L increases). This
allows us to find conditions under which asymptotically powerful
testing is possible, that is PF,q + PM,q → 0 as L→∞.

We observe that, with regard to the metadetection parameters, it
is reasonable to consider ∆ < min{T, γL − T} (otherwise, the
statistical mode of one of the two distributions (watermarked or
non-watermarked) falls inside A, which implies that a significant
part of the corresponding density falls inside the strip). Given the



metadetection parameters, (α(L),∆(L)) and N(L), expressed as a
function of L, we consider the sequence of metadetection tests as L
grows. We can state the following:

Theorem 1: A necessary condition for asymptotic powerful testing
is:

lim
L→∞

T · 2N−D

L
> γ. (19)

Proof: If equation (19) does not hold, it is easy to see that
PM,q 9 0 as L→∞. Indeed, from the argument of the Q function
in (10) we argue that:

∆ · 2(1−α−β)N

√
L

− γ
√
L <

T · 2(1−β)N

√
L

− γ
√
L→ −∞, (20)

yielding PM,q → 1 5.
We now focus on the sufficient condition. Let αN = K denote the

critical number of queries in A, where K(L)→ k, for any positive
k > 0, as L→∞ (then, α ≥ 1/N ).

Theorem 2: A sufficient condition for asymptotic powerful testing
is:

lim
L→∞

T · 2N−D−2K

L
> γ. (21)

Proof: We show that, if (21) holds, there exists a proper choice
for the metadetection parameters that asymptotically leads to zero
error probabilities. Let us take, for instance, ∆ = T/2αN = T/2K .
Let N be chosen in such a way that p∆ = o(1/N) (see the appendix).
In this way, it is easy to check that PF,q → 0. In fact, by exploiting
a known upper bound on the binomial terms [11], as L→∞:

PF,q ≤
αp∆

(α− p∆)2N
=

p∆

(1− p∆
α

)2αN
→ 0. (22)

where we exploited the fact that p∆ = o(α).
To show that the false negative probability also tends to zero, we

observe that ∆ · 2(1−α)N−D = T · 2N−D−2K . Then, by exploiting
(21), it is easy to argue that the argument of the Q function in (10)
tends to infinity and hence PF,q → 0.

Note that, in the above theorems, we considered the expression
for the false negative error probability given in (8), that holds when
no honest queries fall within the metadetection region (worst case
situation from the point of view of the metadetector). It is easy to
argue that nothing changes by considering the general expression for
the false negative probability provided in (12). Indeed, by looking at
the expression in (12), it is not possible to get a zero false negative
probability asymptotically if (20) holds (Theorem 1). Besides, for
the choice of the metadetection parameters made in the proof of
Theorem 2, we have that p∆ = o(1/N); then, constraint (13) is
trivially satisfied and the value for the false negative error probability
in (12) does not substantially differ from the one in (8).

As a consequence of Theorem 1, whenever 6

(N −D)L ≤
⌈

log2

(
γL

T

)⌉
, (23)

there is no choice of the parameters which leads to an asymptotically
powerful test. Then, from the point of view of the attacker, we can
interpret (23) as the maximum number of queries that the attacker
can make to the oracle, in place of a honest user, to avoid being
discovered. From Theorem 2, we argue that, whenever

(N −D)L >

⌈
log2

(
γL

T

)⌉
+ 2K, (24)

5In the limiting case in which (19) holds with the equality, the argument
of Q(·) is lower than or equal to zero, and then PM,q ≥ 1/2.

6We add the subscript L to explicit the dependence of (N −D) on L.

the metadetector asymptotically succeeds in detecting the oracle
attack (asymptotically powerful test). Interestingly, if we limit the
possible choices for the metadetection parameters and assume that
∆ = T/2K , relation (21) provides a sufficient and necessary
condition for having an asymptotically powerful metatest, and (24)
provides the critical value for the attacking number of queries. This
is reflected in our experiments in Section V.

From equation (24), we deduce that it is convenient for the
metadetector to keep the critical number of queries in A as small as
possible, and then choose K(L) = k, constant with L.7 Therefore,
from the perspective of the metadetector, relation (24) is an interesting
result, stating that the number of queries available to the attacker,
i.e., the number of queries that the attacker can make without being
discovered, increases (only) logarithmically with L. We point out that
equations (23) and (24) state a relationship between the performance
of the metadetector and the watermarking system.

As a final remark, we observe that⌈
log2

(
γL

T

)⌉
+ 2K ≥ log2

(
γL

T

)
+ 2K; (25)

if we divide the latter by log2(γL), we obtain

1− log2(T )

log2(γL)
+

2K

log2(γL)
, (26)

whose limit when L → ∞ is larger than or equal to 1, as (γL −
T )/
√
L → ∞. Consequently, if the attacker does not want to be

detected he must consider a (N − D)L verifying limL→∞(N −
D)/ log2(γL) ≤ 1. In that case, and considering a fixed q, 0 < q <
1, from (16) we have that

lim
L→∞

log2(dqε,β)

log2(γL)
= 1− lim

L→∞

(N −D)

log2(γL)
≥ 0, (27)

providing a bound on the target accuracy that the attacker should
adopt if he does not want to be detected.

V. EXPERIMENTAL RESULTS

By resorting to Montecarlo simulations, we measured the perfor-
mance of the CTB metadetector by considering a typical additive
spread spectrum watermarking system. Specifically, we considered
the following setup: L = 2 · 104, γ2 = 10−2σ2

X (Document-To-
Watermark Ratio DWR = 20dB) and T = 2.5σXL

3/5. For the
metadetector, we set: α = k/N , with k = 2, and ∆ = T/2αN ,
and various values of the observation length N . For each setting,
we performed 106 simulations. First, we simulated the querying
process with N honest queries and evaluated the false positive error
probability P̂F,q by counting the fraction of wrong decisions (more
than αN queries fall inside A). Then, we simulated the querying
process in the case where N − D queries are made by an attacker
according to the binary line search method, and evaluated the false
negative probability P̂M,q by counting the fraction of wrong decisions
(less then αN queries fall outside A).

Table I depicts the numerical results for various values of N −D,
with N = 1000. These results show that the critical value in this setup
is 6. Indeed, from the theoretical analysis the sufficient value for N−
D is dlog2

(
γL
T

)
e+4 = 6 (note that since ∆ = T/2αN , 6 is also the

theoretical critical necessary value). On the other hand, in Table II we
consider the impact of different values of N on system performance
(in all cases 6 attacking queries are used). The probability P̂M,q is
less than 10−6 for each N considered in the table (in line with (10)).
Accordingly, 6 attacking queries in a block of 10000 queries are

7Note, in any case, that for finite L a trade-off between PM,q and PF,q
must be achieved by choosing k.



sufficient to detect a threat with very small error probability. This
suggests that the attacker has to spread his attack over a very large
number of query blocks, and thus wait a considerable time to succeed
if he does not want to be detected. Finally, experiments show that for
the same setup, but with L = 2 ·105, the critical number of queries is
M = 7 (which confirms the logarithmic growth predicted by theory).

N - D
2 3 4 5 6 7 8

P̂M,q 1 1 1 6.845 · 10−1 < 10−6 < 10−6 < 10−6

TABLE I
P̂M,q FOR VARIOUS VALUES OF N −D (N = 1000, P̂F,q < 10−6).

N
102 103 104 2 · 104 105

P̂F,q < 10−6 < 10−6 < 10−6 2 · 10−6 6 · 10−5

TABLE II
P̂F,q FOR VARIOUS VALUES OF N (N −D = 6, P̂M,q < 10−6).

VI. CONCLUSIONS

In this work we took a step towards the analysis of oracle attack
metadetectors. Specifically, the assumption of a previous work [9]
on the watermark detector to be exclusively used by a malicious
attacker has been removed. By doing so, we got closer to a real
scenario wherein multiple users (some of them legal, some of them
malicious) query the same detector. The same analysis can be applied
to the case in which the attacker himself mixes honest-looking queries
with malicious ones, in order to reduce the probability of being
detected. The performance of the CTB metadetector is analyzed
in this new setup in terms of missed detection and false alarm
error probabilities. As a result, we derived some useful performance
bounds, that allow to determine the maximum attacking rate that
a malicious user can afford without being discovered. Indeed, this
maximum attacking rate is shown to depend on both the watermark
detector and the metadetector parameters. These results illustrate the
power of metadetectors as countermeasures against oracle attacks,
since even in the realistic framework studied in this paper very few
queries are necessary for a successful detection.

Future research will focus on the extension of our results to the case
of targeted metadetectors, as the one based on line search originally
proposed in [9].

ACKNOWLEDGMENT

Research supported by the Illegal use of Internet (INT) call within
the Prevention of and Fight against Crime (ISEC) programme of the
Home Affairs Department of the European Commission under project
NIFTy (Project Number HOME/2012/ISEC/AG/INT/4000003892),
the European Regional Development Fund (ERDF) and the Galician
Regional Government for funding the AtlantTIC center, the Spanish
Government and the ERDF under projects TACTICA and COMPASS,
and the Galician Regional Government under project ”Consolidation
of Research Units”.

REFERENCES

[1] I. J. Cox and J. P. M. G. Linnartz, “Public watermarks and resistance
to tampering,” in IEEE International Conference on Image Processing,
ICIP’97, vol. 3, (Santa Barbara, California, USA), pp. 3–6, October
1997.

[2] J. P. M. G. Linnartz and M. van Dijk, “Analysis of the sensitivity attack
against electronic watermarks in images,” in 2nd International Workshop
on Information Hiding, IH’98 (D. Aucsmith, ed.), vol. 1525 of Lecture
Notes in Computer Science, (Portland, OR, USA), pp. 258–272, Springer
Verlag, April 1998.

[3] M. F. Mansour and A. H. Tewfik, “LMS-based attack on watermark pub-
lic detectors,” in IEEE International Conference on Image Processing,
ICIP’02, vol. 3, (Rochester, NY, USA), pp. 649–652, September 2002.

[4] M. E. Choubassi and P. Moulin, “Noniterative Algorithms for Sensitivity
Analysis Attacks,” IEEE Transactions on Information Forensics and
Security, vol. 2, pp. 113–126, June 2007.
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APPENDIX

In order to prove sufficiency of condition (21) we assumed
p∆ = o(1/N). We now check which conditions must be satisfied
by N (growing rate) in order for p∆ to satisfy such condition.
The probability that a query Y falls inside A under Hq,0 goes
to zero if both the two terms P (Y ∈ A|Hq,0, S = 0) and
P (Y ∈ A|Hq,0, S = 1) go to zero too. Let us focus on the behavior
of the term P (Y ∈ A|Hq,0, S = 0). For large values of L we can
write:

P (Y ∈ A|Hq,0, S = 0) ≈ e
− 1

2

(
T−∆
σρ

)2

− e
− 1

2

(
T+∆
σρ

)2

≈ e
−T

2+∆2−2∆T

2σ2
ρ

(
1− e

− 2∆T
σ2
ρ

)
. (28)

The first term tends to 0, while the second term is non-negative and
smaller than or equal to 1. Then, a sufficient condition ensuring that
P (Y ∈ A|Hq,0, S = 0) = o(1/N) is given by:

lim
L→∞

(
Ne−

T2

L

)
= 0, (29)

that is,
lim
L→∞

√
T 2/L− log(N) =∞. (30)

Threshold T is a parameter of the watermarking system that we
assume to be fixed. The metadetector chooses N in such a way that
condition (30) is satisfied. Notice that the condition can always be
satisfied for some positive N(L), thanks to the assumption on the
growing rate of T , made in Section II-B. As to P (Y ∈ A|Hq,0, S =
1), by exploiting the exponential approximation of the Q function
for large arguments, we have

P (Y ∈ A|Hq,0, S = 1) ≈ e
− 1

2

(
γL−(T+∆)

σρ

)2

− e
− 1

2

(
γL−(T−∆)

σρ

)2

.

By reasoning as before, it is easy to argue that, if the condition
limL→∞

γ
√
L√

logN
holds, this probability goes to zero at a rate larger

than 1/N . This is a less strict condition w.r.t. to the one holding for
the case S = 0, and it is then verified for the values of N which
satisfy (30).


