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Abstract. In distributed detection based on consensus algorithm, all
nodes reach the same decision by locally exchanging information with
their neighbors. Due to the distributed nature of the consensus algo-
rithm, an attacker can induce a wrong decision by corrupting just a few
measurements. As a countermeasure, we propose a modified algorithm
wherein the nodes discard the corrupted measurements by comparing
them to the expected statistics under the two hypothesis. Although the
nodes with corrupted measurements are not considered in the protocol,
under proper assumptions on network topology, the convergence of the
distributed algorithm can be preserved. On his hand, the attacker may
try to corrupt the measurements up to a level which is not detectable
to avoid that the corrupted measurements are discarded. We describe
the interplay between the nodes and the attacker in a game-theoretic
setting and use simulations to derive the equilibrium point of the game
and evaluate the performance of the proposed scheme.

Keywords: Adversarial signal processing · Consensus algorithm · Dis-
tributed detection with corrupted measurements · Data fusion in mali-
cious settings · Game theory

1 Introduction

In distributed detection applications a group of nodes in a network collect mea-
surements about a certain phenomenon [1]. In centralized architectures, the mea-
surements are sent to a central processor, called fusion center (FC), which is
responsible of making a global decision. If needed, the result of the decision
is then transmitted to all the nodes. Though attractive for the possibility of
adopting an optimum decision strategy based on the entire set of measurements
collected by the network, centralized solutions present a number of drawbacks,
most of which related to the security of the network. For instance, the FC rep-
resents a single point of failure or a bottleneck for the network, and its failure
may compromise the correct behavior of the whole network. In addition, due to
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privacy considerations or power constraints, the nodes may prefer not to share
the gathered information with a remote device. For the above reasons, decentral-
ized solutions have attracted an increasing interest. Consensus Algorithm is a
fusion decentralized algorithm in which the nodes locally exchange information
to reach a final agreement about the phenomenon of interest [2,3]. Consensus
algorithm have been proven to provide good performance in many applications
like cognitive radio [4], social networks or experimental sociology [5], and many
others like flocking, formation control, load-balancing network, wireless sensor
networks, etc. [2].

Despite the benefits of decentralized solutions using consensus algorithm,
their nature makes them vulnerable to many security threats: for instance,
attacks that emulate the phenomenon of interest to have an exclusive benefit
from the resource, i.e., the Primary User Emulation Attack (PUEA) in cognitive
radio applications [6], or data (measurements) falsification attacks [7], in which
the attacker tries to induce a wrong decision by injecting forged measurements.
This kind of attack can be launched in one of two ways: either the attacker can
directly access the programmable device or, more simply, attack the physical link
between the phenomenon and the nodes. In the first case, the attacker has full
control over the nodes, and many effective solutions are proposed [8–11] whereas
in the second case, the attacker cannot control the node and then he is not part
of the network. In this paper, we focus on this second case.

In this attack scenario, when centralized systems are considered, by relying
on the observation of the entire set of measurements, the fusion center can easily
’detect’ the corrupted values and discard them, as long as their number remains
limited. In this way, a reliable decision can still be done, see [12–15]. Attempts
have been made to defend against those attacks in decentralized networks that
employ a consensus algorithm to make a decision [16–18], when the attacker is
assumed to control the nodes. Other solutions based on network control theory
are proposed in [8–11]. However, all these methods do not consider the possibility
that the attackers are aware of the defense mechanism adopted by the network
and hence have their own countermeasures.

In this paper, by focusing on the measurement falsification attack with cor-
ruption of the physical link, we propose a game theoretical framework to distrib-
uted detection based on consensus algorithm. Specifically, we propose to include
a preliminary isolation step in which each node may discard its own measure-
ment based on the available a priori knowledge of the measurements statistics
under the tho hypotheses. Then, the algorithm proceeds as usual, with the nodes
that continue to receive and dispatch messages from their neighbors. Under some
assumptions on network topology, that prevents that isolation step causes the
network to disconnect, the convergence of the consensus algorithm is preserved.
By following the principles of adversarial signal processing [19], we assume that in
turn the attacker may adjust the strength of the falsification attack to avoid that
the fake measurements are discarded. We then formalise the interplay between
the network designed and the attacker as a zero-sum competitive game and use
simulations to derive equilibrium point of the game.
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The rest of this paper is organized as follows. In Sect. 2, we introduce the
network model and describe the consensus algorithm. In Sect. 3, we introduce
the measurement falsification attack against the detection based on consensus
showing its powerfulness. In Sect. 4, we propose a refinement of the consensus
algorithm to make it robust to the measurement falsification attack. Then, the
interplay between the attacker and the network designer is casted into a game-
theoretic framework in Sect. 5. The equilibrium point is found numerically in
Sect. 6. Then, we conclude the paper in Sect. 7 with some final remarks.

2 Distributed Detection Based on Consensus Algorithm

In this section, we describe the distributed detection system considered in this
paper, when no adversary is present and introduce the consensus algorithm the
detection system relies on.

2.1 The Network Model

The network is modeled as an undirected graph G where the information can be
exchanged in both directions between the nodes. A graph G = (N , E) consists
of the set of nodes N = {n1, ..., nN} and the set of edges E where (ni, nj) ∈ E
if and only if there is a common communication link between ni and nj , i.e.,
they are neighbors. The neighborhood of a node ni is indicated as Ni = {nj ∈
N : (ni, nj) ∈ E }. For task of simplicity, we sometimes refer to Ni as the set of
indexes j instead than directly of nodes. The graph G can be represented by its
adjacency matrix A = {aij} where aij = 1, if (ni, nj) ∈ E , 0 otherwise.

The degree matrix D of G is a diagonal matrix with dii = ai1 +ai2 + ...+ain,
dij = 0, ∀i, j �= i [20].

2.2 The Measurement Model

Let S be the status of the system under observation: we have S = 0, under
hypothesis H0 and S = 1 under hypothesis H1. We use the capital letter Xi

to denote the random variable describing the measurement at node ni, and the
lower-case letter xi for a specific instantiation. By adopting a Gaussian model,
the probability distribution of each measurement xi under the two hypothesis is
given by:1

PX(x) =

{
N (−μ, σ), under H0,

N (μ, σ),under H1,
(1)

where, N (μ, σ) is the Normal Distribution with mean μ and variance σ2.
Let us denote with U the result of the final (binary) decision. An error occurs

if u �= s. By assuming that the measurements are conditionally independent, that

1 We are assuming that the statistical characterization of the measurement at all the
nodes is the same.
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is that are independent conditioned to the status of the system, the optimum
decision strategy consists in computing the mean of the measurements, x̄ =∑

i xi/N and comparing it with a threshold λ which is set based on the a-priori
probability (λ = 0 in the case of equiprobable system states). In a distributed
architecture based on consensus, the value of x̄ is computed iteratively by means
of a proper message exchanging procedure between neighboring nodes, the final
decision is made at each single node by comparing x̄ with λ.

In this paper we consider the case of equiprobable system states. It is worth
observing that our analysis, included the game formulation in Sect. 5, can be
extended to the general case in which this assumption does not hold.

2.3 The Consensus Algorithm

Consensus algorithm for distributed detection is a protocol where the nodes
locally exchange information with their neighbors in order to converge to an
agreement about an event or a physical phenomenon [2], e.g. the existence of a
transmission signal in cognitive radio applications [4]. It consists of three phases:
the initial phase, the state update phase and the decision phase.

1. Initial phase: the nodes collect their initial measurement xi(0) about the
phenomenon they are monitoring, and exchange the measurement with their
neighbors.

2. State update phase: at each time step k, each node updates its state based
on the information received from its neighbors. Then, at step k + 1 we have:

xi(k + 1) = xi(k) + ε
∑
j∈Ni

(xj(k) − xi(k)) (2)

where, 0 < ε < (max
i

Ni)−1 is the update step parameter. This phase is

iterated until they reach the consensus value x̄(N ) = 1
N

∑
i∈N xi(0), which

corresponds to the mean of the initial measurements. It is proven that, with
the above choice for ε, the consensus algorithm converges to x̄ regardless of
the network topology [3].

3. The final decision phase: this is the last phase in which all nodes compare the
consensus value x̄ to a threshold λ to make the final decision u:

u =

{
1, if x̄ > λ.

0, otherwise,
(3)

In the symmetric setup considered in this paper λ = 0.

3 Measurement Falsification Attack Against
Consensus-Based Detection

In this section, we consider an adversarial setup of the setting described in the
previous section and show that even a single false measurement can result in a
wrong decision.
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3.1 Consensus Algorithm with Corrupted Measurements

In the binary decision setup we are considering, the objective of the attacker
is inducing one of the two decision errors (or both of them): decide that S =
0 when H1 holds (False Alarm), decide that S = 1 when H0 holds (Missed
Detection). For simplicity, we optimistically make the worst case assumption
that the attacker knows the true system state. In this case, he can try to push
the network toward a wrong decision by replacing one or more measurements
so to bias the average computed by using the consensus algorithm. Specifically,
for any corrupted node, the attacker forces the measurement to a positive value
Δ0 under H0 and to a negative value Δ1 under H1. For the symmetric setup,
reasonably, Δ1 = −Δ0 = Δ > 0. In the following we assume that the attacker
corrupts a fraction α of the nodes, that is the number of attacked nodes is
NA = αN .

Given the initial vector of measurements, the consensus value the network
converge to because of the attack is:

x̃ =
1
N

∑
i∈NH

xi(0) +
NAΔ

N
, (4)

where NH is the set of the uncorrupted nodes (|NH | = N − NA).
By referring to the model described in Sect. 2.2, it is easy to draw a relation

between Δ, α and the probability p that the attacker induces a decision error. By
exploiting the symmetry of the considered setup we can compute p by considering
the behavior under one hypothesis only, that is we have p = P (U = 1|H0) =
P (X̃ > 0|H0).

In the following we indicate with X̄(N ) the average of the measurements
made by the nodes in a set N .

The error probability p for a given NA can be written as:

p =P (X̃ > 0|H0) = P

(
N − NA

N
X̄(NH) > −NAΔ

N

∣∣∣∣H0

)
(5)

=P

(
X̄(NH) >

N

N − NA

(
− NAΔ

N

)∣∣∣∣H0

)
=

∞∫
− NAΔ

N−NA

N (−μ, σ/
√

N − NA).

Clearly, if there is no limit to the value of Δ, the attacker will always succeed
in inducing a wrong decision (see for example Fig. 1).

This shows how harmful the attack can be against distributed detection
based on consensus algorithm. Therefore, the issue of securing distributed detec-
tion with consensus algorithm must be studied, at the purpose to increase the
robustness of the consensus algorithm to intentional attacks.

4 Consensus Algorithm with Censored Data

With centralized fusion is quite easy to detect false measurements, since they
assume outlier values with respect to the majority of the measurements. In a



460 K. Kallas et al.

Δ
10 15 20 25 30 35

p

0

0.2

0.4

0.6

0.8

1

(a)

Iterations
0 10 20 30 40 50 60

M
e

a
s
u

re
m

e
n

ts

-10

0

10

20

30

(b)

Fig. 1. (a): Success probability of the attack versus Δ in the adversarial setup N = 20,
μ = 2.5, σ = 1, NA = 2(α = 0.1). (b): Effect of the attack on the convergence of the
consensus algorithm for Δ = 27, the network decides for H1 even if H0 is true.

distributed setting, however, this is not easy since, at least in the initial phase
(see Sect. 2.3), each node sees only its measurement and has no other clue about
the system status.

In contrary with most of proposed solutions in the literature [8,18], in this
paper we propose to tackle with the problem of the measurement falsifications
at the initial phase of the consensus algorithm (see for instance [2]), by let-
ting each node discard its measurement if it does not fall within a predefined
interval containing most of the probability mass associated to both H0 and H1,
being then a suspect measurement. In the subsequent phase the remaining nodes
continue exchanging messages as usual according to the algorithm, whereas the
nodes which discarded their measurements only act as receivers and do not take
part in the protocol. Due to the removal, the measurements exchanged by the
nodes follows a censored gaussian distribution, i.e. the distribution which results
by constraining the (initial) gaussian variable to stay within an interval [21].
Specifically, the nodes discards all the measurements whose absolute values are
large than a removal threshold η. By considering the results shown in Fig. 1a,
we see that, in the setup considered, if we let by letting η = 17.5 the error prob-
ability drops to nearly zero since the attacker must confine the choice of Δ to
values lower than 17.5. The proposed strategy is simple, yet effective, and allow
us to use a game theoretical approach to set the parameters (see Sect. 5).

For our analysis, we consider conditions on the network topology, such that
the connectivity of the network is preserved and then the algorithm converges
to the average of measurements which have not been discarded. For a given
graph, this fact is characterized by the node connectivity, namely, the maximum
number of nodes whose removal does not cause a disconnection [22]. Convergence
is guaranteed for instance in the following cases (see [23] for an extensive analysis
of the connectivity properties for the various topologies): Fully-connected graph;
Random Graph [24], when the probability of having a connection between two
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nodes is large enough; Small-World Graph [25] when the neighbour list in ring
formation is large and the rewiring probability is large as well; Scale-Free Graph
[26], for sufficiently large degree of the non-fully meshed nodes.

We now give a more precise formulation of the consensus algorithm based on
censored data. Let us denote with R the set of all the remaining nodes after the
removal, that is

R = {nj ∈ N : −η < xj < η}, (6)

and let Ri be the ‘active’ neighborhood of node i after the isolation, i ∈ R (i.e.
the set of the nodes in the neighborhood of i which take part in the protocol).
The update rule for node i ∈ R can be written as:

xi(k + 1) = xi(k) + ε
∑
j∈Ri

(xj(k) − xi(k)), (7)

where 0 < ε < (max
i

Ni)−1, and the degree refers to the network after the removal

of the suspect nodes, that is to the graph (R, E) (instead of (N , E)).
Under the above conditions on the network topologies, the consensus algo-

rithm converges to the average value computed over the measurements made by
the nodes in R, namely x̄(R). Otherwise, disconnection may occur and then it
is possible that different parts of the network (connected components) converge
to possibly different values.

5 Game-Theoretic Formulation

The consensus based on censored data is expected to be robust in the pres-
ence of corrupted measurements. On the other hand, we should assume that
the attacker is aware that the network takes countermeasures and removes sus-
pect measurements in the initial phase, hence he will adjust the attack strength
Δ to avoid that the false measurement is removed. We model the interplay
between the attacker and the network as a two-player zero sum game where
each player will try to maximize its own payoff. Specifically, we assume that
the network designer, hereafter referred as the defender (D), does not know the
attack strength Δ, while the attacker (A) does not know the value of the removal
threshold η adopted by the defender.

With these ideas in mind, the Consensus-based Distributed Detection game
CDD(SA,SD, v) is a two-player, strategic game played by the attacker and the
defender, defined by the following strategies and payoff.

• The space strategies of the defender and the attacker are respectively

SD = {η ∈ [0,∞)}
SA = {Δ ∈ [0,∞)}; (8)

The reason to limit the strategies of D to values larger than by λ is to avoid
removing correct measurements at the defender side and to prevent to vote
for the correct hypothesis at the attacker side.
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• The payoff function is defined as the final error probability,

v = Pe = P (U �= S) = P (X̄ > 0/H0), (9)

where X̄ = X̄(R), that is the mean computed over the nodes that remain
after the removal. The attacker wishes to maximize v, whereas the defender
wants to minimize it.

Note that according to the definition of the CDD game, the sets of strategies
of the attacker and the defender are continuous sets. We remind that, in this
paper, we consider situations in which the network remains connected after the
isolation and then convergence of the algorithm is preserved. Notice that, with
general topologies, when disconnection may occur, the payoff function should be
redefined in terms of error probability at the node level.

In the next section, we use numerical simulations to derive the equilibrium
point of the game under different settings and to evaluate the payoff at the
equilibrium.

6 Simulation Results

We run numerical simulations in order to investigate the behavior of the CDD
game for different setups and analyze the achievable performance when the
attacker and the defender adopt their best strategies with parameters tuned
following a game-theoretic formalization. Specifically, the first goal of the sim-
ulations is to study the existence of an equilibrium point for the CDD game
and analyze the expected behavior of the attacker as well as the defender at
the equilibrium. The second goal is to evaluate the payoff at the equilibrium as
a measure of the best achievable performance of distributed detection with the
consensus algorithm based on censored data.

Fig. 2. Payoff matrix of the game with N = 20, α = 0.1 and μ = 1 (SNR = 4).
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Fig. 3. Equilibrium strategies in the following setup: N = 20, α = 0.1, μ = 1,
(SNR = 4). Payoff at the equilibrium: v = 0.0176.
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Fig. 4. Equilibrium strategies in the following setup: N = 20, α = 0.2, μ = 1
(SNR = 4). Payoff at the equilibrium: v = 0.1097.

To perform our experiments, we quantize the values of η and Δ with step 0.2
and then we consider the following sets: SD = {η ∈ {0, 0.2, ...}} and SA = {Δ ∈
{0, 0.2, ...}}. Simulations were carried out according to the following setup. We
considered a network with N = {20, 50} nodes where the measurement of each
node is corrupted with probability α ∈ {0.1, 0.2}. We assume that the probability
that the measurement of a node is corrupted does not depend on the other nodes
(independent node corruption). According to the model introduced in Sect. 2.2,
the measurements are drawn according to Gaussian distribution with variance
σ2 = 1 and mean −μ and μ under H0 and H1 respectively. In our tests, we take
μ = {1, 2}. For each setting, we estimated the error probability of the decision
based on the censored data over 105 trials. Then, we find the mixed strategies
Nash equilibrium by relying on the minimax theorem [27] and then solving two
separate linear programming problems.

Figure 2 shows the payoff matrix in gray levels for the game with α = 0.1
and μ = 1 (i.e., SNR = 4). Notice that the stepwise behavior of the values of
the payoff in correspondence of the diagonal, which is due to the hard isolation
(for each Δ, when η < Δ all the corrupted measurements are kept, while they
are removed for η ≥ Δ). When very low values of η are considered, the error
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probability increases because many ‘honest’ (good) measurements are removed
from the network and the decision is based on very few measurements (in the
limit case, when all measurements are removed, the network decides at random,
leading to Pe = 0.5). Figure 3 shows the player’s mixed strategies at the equilib-
rium. By focusing on the distribution of the defense strategy, D seems to follow
the choice of A by choosing the value η which is one step ahead of Δ, a part for
the presence of a peak, that is a probability mass (of about 0.075) assigned to the
value η = 5.6, which is the last non-zero value. Interestingly, a closer inspection
of the payoff matrix shows that all the strategies above this values are dom-
inated strategies; hence, reasonably, the defender never plays them (assigning
them a 0 probability). This is quite expected since for larger η it is unlikely
that an observation falls outside the range [−η, η] and then the ‘censoring’ does
not significantly affect the ‘honest’ measurements (i.e. R = N with very high
probability). When this is the case, it is clear that it is better for D to choose η
small, thus increasing the probability of removing the corrupted measurements.

A possible explanation for the peaked behavior is the following. When η
decreases, D starts removing good measurements which fall in the tail of the
Gaussian under the corresponding hypothesis, whose values are not limited to
Δ, but can take arbitrarily large values. Depending also on the setup considered,
it may happen that the positive contribution they give to the correct decision is
more relevant than the negative contribution given by the values introduced by
A. When this is the case, it is better for the defender to use all the measurements.
Therefore, the behavior of the defender at the equilibrium has a twofold purpose:
trying to remove the corrupted measurements on one side (by choosing η one
step ahead of Δ) and avoiding to rule out the large good measurements on the
other (by selecting the critical η). The error probability at the equilibrium is
0.0176 thus showing that the proposed scheme allows to get correct detection
with high probability despite the data corruption performed by A.

Figure 4 shows the equilibrium strategies for α = 0.2. Since the removal of the
large good measurements has more impact when α is large, a bit higher weight
is associated in this case to the peak. The error probability at the equilibrium is
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Fig. 5. Equilibrium strategies in the following setup: N = 50, α = 0.2, μ = 2
(SNR = 4). Payoff at the equilibrium v = 0.0556.
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v = 0.1097. Finally, Fig. 5 shows the equilibrium mixed strategies for D and A
when N = 50, α = 0.2 and μ = 2.

7 Conclusion

We proposed a consensus algorithm based on censored data which is robust to
measurement falsification attacks. Besides, we formalized the interplay between
the attacker and the network in a game-theoretic sense, and we numerically
derive the optimal strategies for both players and the achievable performance in
terms of error probability in different setups. Simulation results show that, by
adopting the proposed scheme, the network can still achieve correct detection
through consensus, despite the presence of corrupted measurements.

As a future work, we would like to extend the game-theoretic approach to
include the graph disconnection as a part of the defender payoff and then apply
our analysis to general topologies. In addition, we would like to extend the
analysis to more complicated statistical models for the measurements, e.g. the
case of the chi-square distribution, and to consider more complicated versions of
the game, e.g. by allowing the players to adopt randomized strategies.
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