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Abstract—We present a gradient-based attack against SVM-based
forensic techniques relying on high-dimensional SPAM features. As
opposed to prior work, the attack works directly in the pixel domain
even if the relationship between pixel values and SPAM features can not
be inverted. The proposed method relies on the estimation of the gradient
of the SVM output with respect to pixel values, however it departs from
gradient descent methodology due to the necessity of preserving the
integer nature of pixels and to reduce the effect of the attack on image
quality. A fast algorithm to estimate the gradient is also introduced to
reduce the complexity of the attack. We tested the proposed attack against
SVM detection of histogram stretching, adaptive histogram equalization
and median filtering. In all cases the attack succeeded in inducing a
decision error with a very limited distortion, the PSNR between the
original and the attacked images ranging from 50 to 70 dBs. The attack
is also effective in the case of attacks with Limited Knowledge (LK)
when the SVM used by the attacker is trained on a different dataset
with respect to that used by the analyst.

I. INTRODUCTION

The necessity of understanding the limits of image forensic anal-
ysis in the presence of an adversary has prompted the development
of a large number of counter-forensic methods [1]. From a general
perspective, the recent trend toward the study of the Adversarial
Signal Processing from a more theoretical basis goes in this direction
[2], [3]. While the first attempts were rather simplistic and boiled
down to basic processing like noise addition, recompression, resam-
pling or filtering [4], [5], [6], [7], [8], [9], more recent works aimed
at inducing a decision error with the minimum possible distortion
so to preserve the quality of the attacked image. This is possible
when the attacker has enough information about the details of the
forensic algorithm. By adopting the terminology introduced in [10],
in a Perfect Knowledge (PK) scenario, the attacker has complete
information about the forensic algorithm and hence can optimise the
attack in order to minimise the amount of distortion necessary to
induce a decision error. In some cases, the attacker only knows the
type of detector used by the analyst, e.g. a Support Vector Machine
(SVM) or a neural network with known parameters, and the feature
space wherein the analysis is carried out, however it does not have
access to the data used to train the detector. In this case, referred to
as attack with Limited Knowledge (LK) [10], the attacker can build
a surrogate version of the detector by using its own training data,
and carry out the attack on the surrogate detector, assuming that the
attack will also work on the detector used by the analyst.

In principle, the optimum attack could be implemented by applying
a gradient-descent technique directly in the pixel domain, however
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several problems prevent a straightforward adoption of such a strat-
egy. First and foremost, the relationship between the image pixels and
the output of the detector, passing through the feature domain, is often
very complicated, thus making impossible to derive a closed form
expression for the gradient. This is especially true for detectors based
on a large number of possibly correlated features like it is customary
in forensic detectors based on machine learning [11], [12]. Together
with the necessity of computing the gradient for all the pixels of the
image, this results in an unmanageable computational complexity.

A possibility to overcome the above problem is to derive the opti-
mum attack in the feature domain and then modify the image pixels
so that the features extracted from the attacked image correspond to
those defining the optimum attack. In [13], for instance, the optimum
attack is derived in the block-DCT domain and the attacked image is
obtained by applying the inverse DCT. Such an approach, however,
works only when the relationship between the pixel and the feature
domain is invertible (as in [13]) and the distortion introduced in the
feature domain corresponds to that introduced in the pixel domain
or, more in general, when the distortion in the pixel domain can be
controlled by operating in the feature domain (once, again this is
the case with pixel and DCT domains). Other examples of the above
approach are given in [14], [15], [16] where the distortion introduced
by attacking the image in the histogram domain is directly related to
the distortion introduced in the pixel domain by resorting to optimal
transport theory [17], [18]. The tradeoff between effectiveness of the
attack and distortion introduced for the case of double JPEG anti-
forensics is investigated in [19]. When the relationship between pixel
and features values is too complicated, it is possible to implement the
attack in two steps: first the attack which minimises the distortion in
the feature domain is determined, then a new minimisation is carried
out in the pixel domain, by adopting as objective function the distance
between the attacked features and the feature vector resulting from
the attack in the feature domain. An example of the above approach
is given in [20], where a greedy approach is used to map back into
the pixel domain a feature-domain attack against a machine-learning-
based forgery detection method working in a higher-order feature
domain. In many other papers, the authors focus on feature domain
attacks without describing how the attack can be mapped back in the
pixel or sample domain [10], [21], [22], [23].

Other problems associated with the use a gradient-descent image
counter-forensics, include the necessity to preserve the integer nature
of image pixels, which prevents the possibility to finely tune the
magnitude of the descent step carried out at each iteration, and the
highly irregular, non-differentiable, relationship between the pixels
and the feature values. This is the case with the features proposed



in [24], [25], [26], which are widely used in image forensic (see for
instance [11], [27]). The quantisation of pixel residuals preceding
the construction of the co-occurrence matrices at the heart of feature
computation, in fact, makes the application of the gradient descent
algorithm problematic.

In this paper, we present a gradient-based attack against SVM-
based forensic techniques relying on high-dimensional SPAM fea-
tures [24]. The attack works directly in the pixel domain even if
the relationship between pixel values and SPAM features can not be
inverted, and relies on a fast estimation of the gradient of the SVM
output with respect to pixel values. Due to the necessity of constrain-
ing the pixel values to be integer numbers, the actual implementation
of the attack departs from the classical gradient-descent algorithm,
since the magnitude of the descent step is controlled by adjusting the
number of pixels affected by the attack rather than by diminishing
the modification undergone by each pixel. Our approach marks an
improvement with respect to [20] where a minimum distortion attack
is applied only for the case of linear SVM, when the point of the
boundary which minimizes the distortion in the feature domain can
be found analytically. For the more general case of non-linear SVM,
the best target point cannot be identified, and the attack is carried out
by randomly modifying some pixels of the image, in a way which
reduces the SVM output, until the decision of the detector is reverted.
Such an approach however departs from a minimum distortion one
and, in the case of high dimensionality of the feature space, requires a
large number modifications which lead to a unacceptable degradation
of the quality of the attacked image. We tested the proposed attack
against SVM detection of histogram stretching, adaptive histogram
equalisation and median filtering. In all cases the attack succeeded
in inducing a decision error with a very limited distortion, the PSNR
between the original and the attacked images ranging from 50 to
70 dBs. The attack is also effective in a LK case, when a surrogate
detector is attacked.

The rest of this paper is organised as follows: in Section II we
state the general detection problem and characterize the behavior of
the attack; then, in Section III we describe the gradient-based attack
scheme against SVM detectors and the implementation procedure
to reduce the computational complexity. The performance of the
proposed attack are evaluated in Section IV by considering two global
manipulations: the contrast-enhancement and the median-filtering.

II. PROBLEM STATEMENT

We consider the problem of detection of global image manipula-
tions, in which a forensic analyst searches an image for the traces
left by a specific processing operator (e.g., resizing, filtering, contrast-
enhancement, double JPEG compression). We let H0 correspond to
the case of manipulation absence and H1 to the case in which the
image has manipulated with a given global operator. Then, given an
image I and a feature vector f = f(I) extracted from the image
(f ∈ F), the analyst applies a binary decision function φ such
that φ(f) = −1 if the manipulation is not revealed (decision is in
favor of H0), φ(f) = +1 otherwise.The feature vector is a result
of a dimensionality reduction. Many powerful tampering detectors
proposed in the recent literature, e.g. [11], [27], exploit higher-order
statistics and a quite large number of features so to capture many
different types of dependencies among neighbouring pixels. Then,
they resort to machine learning to decide between H0 and H1. Let
y denote the decision labels, y ∈ {−1, 1}. The machine learning
classifier φ is trained on a dataset D = {fi, yi}ni=1. The labels
y = φ(f) are obtained by thresholding the learned discriminant func-
tion g : F 7→ R; w.l.o.g., we assume that φ(f) = +1 if g(f) > 0,
−1 otherwise. By following a common trend in the literature, in this

paper, we consider the Substractive Pixel Adjancency Model (SPAM)
model for the features. Such a model is rich enough to perform an
accurate classification (i.e., to capture the artifacts introduced by the
various manipulations) and, at the same time, has a dimensionality
which makes the use of an SVM still viable1.

A. Attack model

Regarding the model for the attacker, his goal, knowledge and
capabilities are defined as follow.

1) Attacker’s goal: We assume that the attacker wants to modify
a manipulated image in such a way that it is misclassified by the
detector as a non-manipulated one. That is, he is interested in causing
a false negative event (decision in favour of H0 when H1 holds). In
doing so, the attacker wants to introduce the minimum distortion
allowing to cross the decision boundary. This scenario is similar to
those considered in [22], [23], [28], with the noticeable difference
that in our case the attack is pursued in the pixel domain rather than
in the feature domain2. In formula, given an image I , the goal of
the attacker is to find an image I ′ such that φ(f(I ′)) = −1, and the
distortion between I and I ′ is minimum.

2) Attacker’s knowledge: In the PK scenario, the attacker has a
perfect knowledge of the detector and then can build the attack by
relying on the knowledge of φ, whereas in the LK scenario he does
not know the training data D. Then, he considers an approximation
φ̂ of φ, built starting from a surrogate dataset.

3) Attacker’s capability: We assume that the attacker can only
modify the test data and not the training data.

III. A GRADIENT-BASED ATTACK TO SVM-DETECTORS

According to the problem statement given in the previous section,
given a manipulated image I , the goal of the attacker is to solve the
following problem:

I∗ = arg min
I′:g(f(I′))≤−ν

d(I, I ′) (1)

where d(·, ·) is a suitable distortion measure, e.g. the Mean Square
Error (MSE). We observe that the admissibility region corresponds
to the acceptance region of the test (decision in favor of H0), with
a safety margin ν. A larger ν means that the attacked image I∗

will lie more inside the acceptance region, thus being more robust
to perturbations of the decision boundary, at the price of a larger
distortion. We take ν arbitrarily small in the PK scenario, whereas
a larger ν is set for the LK case. For an SVM-based detector, the
discriminant function of the classifier after training can be expressed
as

g(f) =

n∑
i=1

yiαik(f , fi)− ρ (2)

where n is the number of training samples, k(·, ·) is the kernel
function, α is a vector of scalars (multipliers) and ρ is a bias term. In
our experiments, we considered the RBF kernel function, for which
k(f , fi) = exp {−γ||f − fi||22}, where γ > 0 is a parameter of the
kernel.

When d corresponds to the MSE distortion, solving (1) corresponds
to search for the shortest path to the decision boundary. In principle,
this can be done by applying the gradient descent algorithm. As
discussed in Section I, however, the integer nature of the pixel values

1We notice that, although we focus on SVMs, in principle, the proposed
attack can be applied to any classifier.

2We do not consider the fact that an adversary-aware defender may thwart
the attack by moving the decision boundary (i.e., adjusting the threshold).
To avoid this, the attacker might choose an I′ which is misclassified with a
higher confidence. This scenario would lead to a cat and mouse loop between
the analyst and the attacker whose study is beyond the scope of this paper.



and the complicate form of g() as a function of I , prevents the direct
application of the gradient descent algorithm. Therefore, we propose
a suboptimum, yet effective, iterative approach to solve (1), inspired
to the gradient-descent method. The algorithm works as follow: first,
an approximation of the gradient is derived to estimate the descent
direction; then, the step-size for the descent is determined by properly
choosing the percentage of to-be-modified pixels. If the decision
boundary cannot be crossed by modifying at most a fraction 0.2 of the
total number of pixels, then the modification is applied, the gradient
is estimated again and the process is iterated3. In the following, we
describe more in detail the proposed algorithm.

We start by estimating the gradient of g(f(I)) with respect to I .
Let δ be a small increment applied to a pixel position. The gradient
∇g in position (i, j) is given by:

(∇g)ij =
g(f(I + ∆ij))− g(f(I))

δ
, (3)

where ∆ij is a matrix of the same size of I with only one non-zero
entry, of value δ, in position (i, j). By definition, in order to compute
the gradient, we should let δ → 0. In our case, due to the integer
nature of pixel values, δ must be an integer, hence we let δ = 1, thus
obtaining only a rough approximation of the gradient.

The gradient descent algorithm should now proceed by modifying
the image by a step of size ε along the direction specified by ∇g. The
exact value of ε is a critical parameter, since small values result in
a better precision, at the price of a slower convergence. In addition,
with small values of ε, it is more probable that the descent is stuck
into a local minimum. In the specific case studied here, there are
some additional problems. First of all, values of ε for which pixels
are modified by an amount smaller than one do not make sense
since image pixels can take only integer values. A second problem,
is related to the particular nature of the SPAM features [24]. Such
features are computed by first computing image residuals based on
simple predictors, and then computing a number of cooccurrence
matrices on a heavily truncated version of the residuals. Truncation
makes the relationship between pixel and feature values highly
irregular and non-differentiable, thus making difficult to predict the
effect of a perturbation of image pixels on the feature values (and
hence on the SVM output). As a last problem, indirectly related to the
impossibility of adopting very small values of δ and to the irregular
dependence of the SVM output on pixel values, occurs when the
number of modified pixels is too large, thus resulting in modifications
of many neighbouring pixels. The effects that the modifications of
these pixels have in the feature space are not independent (actually,
they can be highly correlated), as a consequence, the effect of a joint
modification is difficult to predict by looking at the gradient only.
For all these reasons, there is no guarantee that gradient direction
derived in (3) provides the steepest direction for the attack.

Our solution to the above problems consists in adjusting the
strength of the attack by controlling the number of modified pixels
rather than the amount of modifications undergone by each pixel and
by keeping the number of modified pixels at each iteration below a
certain percentage so to avoid that neighbouring pixels are modified
too often. To be specific, let K denote the fraction of modified pixel
and εK denote the step-size. The generic iteration of the attack in
the pixel domain is defined by:

I ′ = I − trunc1(round(εK · ∇g)), (4)

where trunc1() denotes the truncation to 1 and εK is chosen in such
a way that the l · K pixels of the image with the larger intensity

3We verified experimentally that it is more convenient to run more iterations
rather than raising the percentage of pixels modified at each step.

of the gradient are modified (where l is the total number of pixels).
Accordingly, trunc1(round(ε · ∇g) is a matrix with lK entries ±1,
and the remaining entries equal to zero.

The choice of K is performed by starting from 0 and iteratively
increasing the percentage of a small amount S until one of the
following conditions is verified: i) g(f(I ′)) ≤ −ν (see equation
(1)); ii) the maximum value of K is reached (set to 0.2). In the
former case, a bisection method is applied to refine the value of K,
so to find the smallest value for which g(f(I ′)) ≤ −ν (thus actually
minimising the MSE); then, the attack in (4) is implemented with the
corresponding εK . In the latter case, the attack is applied by using
the value of K in the [0, 0.2] range yielding the minimum value of
the decision function. The attack is then iterated by estimating the
gradient on I ′ and so on. The main steps of the algorithm are detailed
in Algorithms 1 and 2.

Algorithm 1 Gradient based attack
Input: I , original image; δ = 1, pixel modification amount;
g(·), trained SVM classifier. Output: I∗, attacked image.
repeat

Loop at each of locations (i, j)
I′ij = Iij + δ

(∇g)ij = g(f(I′))− g(f(I))
end
Select K according to Algorithm2
εK → (1−K)-th percentile of ∇g
I∗ ← I − trunc1(round(εK · ∇g))
I = I∗

until g(f) ≤ −ν
return: I∗

Algorithm 2: search of K
Input: ∇g, the gradient matrix; S = 0.002, the search step;
I , the input image, s = 1, K(s) = 0.
repeat
s = s+ 1
K(s)← K(s− 1)− S
Is ← attack I according to (4) with K(s)

until g(f(Is)) ≤ −ν or K(s) > 0.2
if g(f(Is)) ≤ −ν
K ← run bisection between K(s) and K(s− 1)

end
if K(s) > 0.2
K ← K(s∗), s∗ such that g(f(I∗s )) is minimum, s∗ ∈ [1 : s− 1]

end
return: K

In order to characterize the stopping condition g(f(I)) < −ν, in
practice, we may alternatively look at the soft output of the SVM,
namely p̂1(f(I)), which provides an estimation of the probability that
I belongs to the H1 class. The decision boundary is crossed when
p̂1(f) is equal to 0.5. Then, the stopping condition can be rephrased
as p̂1(f) < 0.5 − pν , where pν is a probability margin. Given that
pν always ranges between 0 and 0.5, in the experiments, we found
it easier to set this margin to determine how much the attack goes
inside the acceptance region.

A. Reducing the complexity of the attack

A problem with the basic algorithm described so far is compu-
tational complexity. In fact, computing ∇g requires to evaluate the
output of the SVM and the features the SVM relies on after each pixel
modification. This results in a prohibitively high complexity, mostly
due to the necessity of recomputing the features for each component
of the gradient. To alleviate the computational burden, we can exploit
dynamic programming to avoid recomputing the features from scratch
for each pixel modification. This approach, is particularly easy and
effective in the case of the SPAM features considered in this paper.



The basic idea is that, since with the SPAM model each pixel
modification results in the modification of a small number of features,
equation (3) can be conveniently rephrased as follows:

(∇g)ij = g(f + vi,j(δ))− g(f), (5)

where vi,j(δ) denotes the impact on the feature vector of the
modification of pixel (i, j). In the following we describe the exact
procedure we used to compute vi,j . To start with, we observe
that the calculation of SPAM features starts from the computation
of the difference 2-D array for horizontal, vertical and diagonal
directions. Then, these residuals are truncated with a given T and
the co-occurrences are computed, where the value of T and the
order of the co-occurrences depend on the specific order of the
SPAM features considered. Specifically, given an M × N image
I , the horizontal residual in the right-to-left direction is computed
as
←−
D i,j = truncT (Ii,j+1 − Ii,j), 1 ≤ i ≤ M, 1 ≤ j ≤ N − 1.

According to this extraction process, it is easy to argue that one
pixel modification affects only two elements of the residual array for
each direction. In fact, when the pixel in position (i, j) is modified
by adding δ, residuals

←−
D i,j and

←−
D i,j−1 are modified. Let us denote

with
←−
D′i,j and

←−
D′i,j−1 the modified values. Then, for the case of

first-order SPAM features, where second-order co-occurrences are
considered, as a consequence of one pixel modification, at most 6
elements of the co-occurrence matrix C are altered, corresponding
to positions (

←−
D i,j−2,

←−
D i,j−1), (

←−
D i,j−1,

←−
D i,j) and (

←−
D i,j ,

←−
D i,j+1),

which are decreased by 1, and (
←−
D i,j−2,

←−
D′i,j−1), (

←−
D′i,j−1,

←−
D′i,j)

and (
←−
D′i,j ,

←−
D i,j+1), which are increased by 1. The situation is

illustrated in Figure 1 where δ = 1 is added to the entry in position
(3, 4) and

←−
D i,j−2,

←−
D i,j−1,

←−
D i,j and

←−
D i,j+1 are denoted with

u0, u1, u2 and u3.
In general, the computational complexity of the feature update

step depends on the order of the SPAM model. In the case of m-th
SPAM features, (2 ·m+ 4) elements of the co-occurence matrix of
each directional residual must be updated. Then, with second-order
SPAM features, 8 elements in the co-occurrence matrices change
when one pixel is modified. This is the best performing SPAM model
according to [24], where the truncation value is set to T = 3 and third
order co-occurrences are considered for a 686 total dimensionality.
In the rest of this paper, we will consider such SPAM686 model.
Our experiments show that the above procedure allows to reduce
the complexity required to compute the feature vector by a factor of
almost 50.

Fig. 1. Co-occurrences update for the horizontal residual (right to left) before
and after one-pixel modification with 1st order SPAM.

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the attack described in the previous
section, we focus on two specific image forensic problems: contrast
enhancement and median filtering detection. For the case of contrast

enhancement, we consider both the case of histogram stretching and
adaptive histogram equalization, whereas for the case of median filter-
ing detection, we consider various filtering windows (3×3, 5×5 and
7× 7). We carried out our tests by considering 2000 uncompressed
grayscale images from the RAISE dataset [29]. The manipulated
images are then created by processing the images in the Matlab
environment. For adaptive histogram equalization, we considered the
contrast-limited variant (CLAHE) which prevents over-amplification
of noise in homogeneous regions. In our experiments, we set the clip-
limit parameter to 0.02. To build the detectors, both the original set
and the manipulated set are split as follows: 1600 images are used
for training the SVM, the remaining 600 for testing. We denote with
HS the set of the histogram stretched images, with AHE the set
of the contrast-limited adaptive histogram equalized and with MF3,
MF5 and MF7 the set of images processed with median filtering,
with filtering window 3× 3, 5× 5 and 7× 7 respectively. The SVM
model is built by using the tools provided by the LIBSVM library.

A. PK case

Assuming that the attacker has full knowledge of the trained SVM,
we implement the attack described in the previous section on the 600
manipulated images of the testing set. Note that in the PK scenario, it
is reasonable to assume that the safety margin is arbitrarily small, and
then the attacker is satisfied as soon as the soft output of the SVM
falls below 0.5, that is p̂1(f) < 0.5. The average number of iterations
for the attack are: 0.965 for HS, 2.75 for AHE, 1.22 for MF3, 1.47
for MF5 and 1.83 for MF7. The fact that the average number of
iterations is below 1 for the attack to the histogram stretching detector
can be explained by noticing that there is a fraction of manipulated
images for which the detector fails even without attack (see Table II)
The average fraction of pixels modified by the attack is reported in
Table I. We can see that, in order to successfully attack the median
filtering detector, a large number of pixels of the image must be
changed. Expectedly, this number increases when the manipulation
the attack wants to conceal is stronger, as it is the case of filtering
with larger windows. An example of manipulated image before and

TABLE I
AVERAGE FRACTION OF PIXELS MODIFIED BY THE ATTACK

HS AHE MF3 MF5 MF7
Mean 0.0052 0.138 0.1155 0.1365 0.1553

Std. Dev. 0.0084 0.0549 0.0473 0.0561 0.0609

after attack is provided in Figure 2. The soft output of the SVM is
reduced from 0.862 to 0.491 in the case of attack to the histogram
stretching detector, from 0.998 to 0.484 for the attack to CLAHE
detector, and from 0.999 to 0.489 for the median filtering detector
with 3×3 window. The visual quality of the attacked images is good;
specifically, the PSNR between attacked and manipulated image in
the three cases is 82 dB, 60.9 dB and 56.5 dB respectively.

The average performance of the attack are evaluated in terms of
visual quality and capability of inducing a decision error. The success
rate of the attack is reported in Table II, where the percentage of
misclassified images is reported for the various cases. The PSNR
and the Structural Similarity (SSIM) index [30] have been used to
evaluate the visual quality of the attacked images. As we can see
from the results are shown in Table III, the attacked images have a
very good quality.

B. LK case

We also assessed the performance of the proposed attack in a case
of limited knowledge, when the attacker knows the feature selection
process and the type of classifier adopted by the detector, but not



(a) Output value: 0.862 (b) Output value: 0.491; PSNR=82 dB (c) Difference between (a) and (b)

(d) Output value: 0.998 (e) Output value: 0.484; PSNR=60.9
dB

(f) Difference between (d) and (e)

(g) Output value: 0.999 (h) Output value: 0.489; PSNR=56.5
dB

(i) Difference between (g) and (h)

Fig. 2. (a) An histogram stretched image I; (b) the attacked version; (c) the enhanced difference between the two (better viewed on screen). (d) The adaptive
histogram equalized version of I; (e) the attacked adaptive histogram equalized version; (f) the enhanced difference. (h) The median filtered version of I, (i)
the attacked median filtered version and (j) the enhanced difference.

TABLE II
ERROR PROBABILITY OF THE DETECTORS

HS AHE MF3 MF5 MF7
Manipulated 2.83% 0 0 0 0

Attacked 99.83% 100% 100% 99 98.7

TABLE III
QUALITATIVE PERFORMANCE OF THE GRADIENT-BASED ATTACK

Mean PSNR Mean SSIM Std. dev. SSIM
HS 74.3 dB 0.99997 0.00006

AHE 55 dB 0.9993 0.00049
MF3 57.7 dB 0.9992 0.00036
MF5 56.8 dB 0.9987 0.00075
MF7 56 dB 0.9983 0.0011

the training set. In this case, he cannot build an exact replica of the
detector φ. Then, he builds its own version of the detector by training
the SVM on a different set of images and uses such surrogate detector
φ̂ to run the gradient-based attack. In our experiments, we built φ̂ by
training the SVM on a different set of 1600 images from the RAISE
dataset. Table IV shows the performance of the attack in the LK case
against the histogram stretching detector. Results are reported for the
case in which the attacker is satisfied with any point that crosses
the boundary (as for the PK case), named Attacked, and the case
in which a margin pν equal to 0.2 and 0.4 is used, and then, the
stopping condition for the attack is p̂1(f) ≤ 0.3 and p̂1(f) ≤ 0.1,
which are named Attacked-m02 and Attacked-m04 respectively. The

error probability in the first column, named Pe(φ̂), refers to the result
of the test on the surrogate dataset φ̂. The true error probability, that
is the error probability of the detector φ named Pe(φ), is reported
in the second column. We see that, because of dataset mismatch4,
the performance of the attack decreases with respect to the PK case.
When the safety margin is increased the attack is more powerful,
being more robust to perturbations of the decision boundary, as the
one caused by the use of a different dataset for training. Expectedly,
this goes at the expense of a slightly larger distortion.

TABLE IV
ERROR PROBABILITY OF THE HS DETECTOR (LK CASE)

Pe(φ̂) Pe(φ) Mean SSIM Mean PSNR
Attacked 100% 53% 0.99996 73.9766

Attacked-m02 100% 80.5% 0.99995 72.6223
Attacked-m04 100% 100% 0.99994 71.2038

V. CONCLUSION

We have developed and tested a general attacking procedure on
image forensic detectors based on the use of a large dimensionality
feature vector coupled with machine learning, which works directly
in the pixel domain. We have specialised the attack to work efficiently
against an SVM detector relying on SPAM features, nevertheless
the general procedure can be applied to other detectors relying on
different feature models, e.g., the Spatial Rich Model (SRM) [26],

4Since we are considering the same database, strictly speaking, this is not
a case of database mismatch, whose investigation is left as future work.



possibly at the expenses of a higher complexity. It is worth saying
that, although we focus on uncompressed images, our method can be
also applied when JPEG images are considered. Since the compres-
sion tends to erase the modifications introduced in the pixel domain,
the attacker has to get more inside the detection region (so that it
remains inside after quantization); alternatively, we could directly
apply our gradient-inspired attack to the quantized DCT coefficients5.
Interesting extensions include tests on a wider class of detectors, and
studying the impact of a detector mismatch in a fixed feature space
(e.g. an neural network detector attacked with a surrogate SVM-
based detector). The good performance of the proposed attack poses
new challenges to the image forensic community. Some possible
approaches to counter the attack include the resort to fusion of several
forensic tools operating in different feature domains, and the training
of an adversary-aware version of the detector that is able to recognise
the possible traces left by the gradient-based attack.
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