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ABSTRACT
We de�ne a number of threat models to describe the goals, the
available information and the actions characterising the behaviour
of a possible a�acker in multimedia forensic scenarios. We dis-
tinguish between an investigative scenario, wherein the forensic
analysis is used to guide the investigative action and a use-in-court
scenario, wherein forensic evidence must be defended during a
lawsuit. We argue that the goals and actions of the a�acker in these
two cases are very di�erent, thus exposing the forensic analyst to
di�erent challenges. Distinction is also made between model-based
techniques and techniques based on machine learning, showing
how in the la�er case the necessity of de�ning a proper training set
enriches the set of actions available to the a�acker. By leveraging
on the previous analysis, we then introduce some game-theoretic
models to describe the interaction between the forensic analyst and
the a�acker in the investigative and use-in-court scenarios.
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1 INTRODUCTION
Multimedia forensics in adversarial conditions has received in-
creasing a�ention due to the ease with which multimedia forensic
tools can be fooled by an adversary (o�en referred to as a�acker),
aiming at deleting the traces le� within a document during the
acquisition phase or as a consequence of subsequent processing
[1, 9, 10, 14, 18, 22]. At the beginning, anti-counter-forensic re-
search has been carried out in a sca�ered way, with the develop-
ment of tools to detect the traces le� by speci�c counter-forensic
techniques [6, 11, 16, 24]. More recently, some e�orts have been
made to ground the race of arms between the forensic analyst and
the a�acker on solid theoretical bases. �e most promising ap-
proach consists in modelling the interplay between the analyst an
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the a�acker as a competitive game, in which the two players have
opposite goals [3, 4, 21, 23]. In [3], for instance, the forensic analysis
consists of a binary hypothesis test, where the analyst is interested
in minimising the false negative error probability for a �xed value
of the false positive probability, while the a�acker pursues the op-
posite goal of maximising the false negative probability. In [21],
game theory is used to model the anti-counter-forensic problem in
the framework of video tampering through frame deletion. Despite
these e�orts, no a�empt has been made to categorise the goals
that an a�acker may pursue, and the means and information avail-
able to him to reach his goals in di�erent scenarios. In this paper,
we take a step in this direction, by proposing a number of threat
models describing the behaviour of the a�acker in some of the
most common forensic scenarios. �e threat models can be used
by researchers to clearly identify the scenario addressed in their
works, and to develop suitable models, possibly assuming the form
of a multimedia forensic game, so to derive the optimum strategies
that the forensic analyst and the a�acker should adopt in a given
set-up. Expanding the horizon beyond multimedia forensics, our
analysis parallels a similar e�ort made in the context of machine
learning classi�cation [5, 8] and biometrics [12, 20]. We are not
going to provide a thorough taxonomy covering all possible appli-
cations. On the contrary, we focus on one of the most common
forensic problems, that is binary decision, or hypothesis testing
[2]. Our analysis considers two forensic scenarios: i) investigative
operations, and ii) use of forensic evidence in court. As we will see,
the security models characterising these two scenarios are quite
di�erent and pose di�erent challenges. We will also distinguish two
basic categories of forensic techniques depending on the approach
used by the analyst to solve the binary decision problem, namely
model-based techniques and techniques based on machine learning.
In fact, the importance of and a certain arbitrariness in the choice
of the training set, play an important role in the de�nition of the
threat models for this kind of techniques. We complete our analysis
by introducing a number of games, in which the opposite goals of
the analyst and the a�acker and the interplay between their choices
are casted in a game-theoretic framework.

1.1 Notation
�roughout the paper, we assume that the forensic analysis corre-
sponds to looking for the traces, somewhat called footprints, le�
by a particular event in the history of a document. As an example,
the analysis may aim at detecting the presence of the traces le�
by a speci�c camera, or the cameras belonging to a certain class,
within a digital image. Alternatively, the forensic analysis may look
for the traces le� within an image by a certain class of processing
tools, like lossy compression, �ltering or contrast-enhancement.
Without loss of generality, we let H1 correspond to the presence of
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the trace, and H0 to its absence. Given the above, the work of the
forensic analyst corresponds to the application of a binary decision
function ϕ that takes a feature vector x as input and gives a binary
output, that is ϕ (x) ∈ {0, 1}, corresponding to the choice of one
hypothesis between H0 and H1. �e feature vector is usually the
result of a dimensionality reduction process that takes a signal s in
the original space and maps it into a space with fewer dimensions.
�e function ϕ splits the feature space (and hence the signal space)
into two regions Λ0 and Λ1 corresponding to the feature vectors
for which ϕ is in favour of H0 and H1, respectively. A decision error
occurs either when H1 holds and ϕ (x) = 0, or when H0 holds and
ϕ (x) = 1. In most cases, H1 corresponds to a signi�cant event from
an investigative point of view, so it is customary to call the former
type of error a missed detection, and the la�er a false alarm. �e cor-
responding error probabilities are usually denoted missed detection,
or false negative, error probability (Pf n = Pr {x ∈ Λ0 |H1}), and false
alarm, or false positive, error probability (Pf p = Pr {x ∈ Λ1 |H0}).
As an example, we may consider a forensic test aiming at deciding
whether an image was captured by a given camera. When an image
is said to be taken from the camera even when this was not the
case, we have a false alarm event, while failing to recognise that an
image was taken by the camera that actually shot it is referred to
as a missed detection, or false negative, event. Even if such a termi-
nology is not justi�ed in all application scenarios, in the following
we will adhere to this notation, its adaption to di�erent contexts
being straightforward.

In the above framework, a threat model consists of three pieces
of information: i) the goal of the a�acker; ii) the information that
the a�acker has regarding ϕ; iii) the actions that the a�acker can
undertake to reach his goal, e.g., if and to which extent we can
modify the feature vector x. In the following sections we introduce
several possible threat models for two of the most common appli-
cation scenarios, namely when the forensic analysis is used during
an investigation and when the analysis is used to provide evidence
in court.

2 INVESTIGATIVE SCENARIO
When the forensic tools are used as part of an investigative pro-
cess, they usually must ensure a low missed detection probability,
possibly at the expense of false positive error probability, which,
however, should not be so high to �ood the investigator with false
alarms. �e forensic tools are usually applied to large amounts of
data, thus calling for operational simplicity. Eventually, the analyst
may keep the details of the forensic algorithm he is using (or part
of them) secret.

2.0.1 Goal of the adversary. In an investigative scenario, the
goal of the a�acker is to delete, or hide, the footprints contained
in a document so to hinder their detection, since they can help the
investigator to solve the case he is working on. In other words,
the a�acker is interested in generating a missed detection (false
negative) event. O�en the a�acker is not interested in increasing
the overall false negative error probability, but to induce a missed
detection error on a speci�c document. On the other hand, he
usually has no interest to induce a false positive error, unless in
some speci�c cases where he aims at sidetracking the investigation.

In the following we distinguish between model-based and machine-
learning (or data-driven) techniques. �e la�er, in fact, need to
be trained on a properly de�ned training set which introduces
an additional degree of freedom for the a�acker with respect to
model-based approaches.

2.1 Model-based techniques
2.1.1 Information available to the adversary. By following Ker-

ckho�’s principle [13], we assume that the a�acker knows the
algorithm used by the investigator. At most we can assume that he
does not know the exact implementation details. �is is the case,
for instance, of the data used to calibrate the model which may not
be known to the a�acker and hence can be assimilated to a kind of
secret key. �e extensive knowledge that the a�acker has about the
forensic tools means that he can build its own version of ϕ which
is exactly equal to or a very good approximation of ϕ. Let us call
such an approximation ϕ ′. �e a�acker, can use ϕ ′ to understand
if his a�ack was successful or even to exploit the output of ϕ ′ to
carry out its a�ack. For instance, he could use ϕ ′ to implement
a gradient descent, so to �nd the direction of the shorter path to
the decision boundary, or to carry out a sensitivity a�ack [7]. �e
sensitivity a�ack works by changing one component of the signal
at a time and observing the binary output of the decision function
to learn the normal vector that (locally) represents the detection
region boundary.

2.1.2 Actions available to the adversary. In an investigative sce-
nario the a�acker has a signal s for which ϕ (x(s)) = 1 (x(s) is a
feature vector extracted from s) and wants to modify it in such a way
that when ϕ is applied to the modi�ed signal z we have ϕ (x(z)) = 0.
In doing so he must respect a constraint on the amount of distortion
he can introduce as a result of the a�ack. In fact, should the a�acker
be allowed to modify s at will, he would be able to prevent footprint
detection by replacing s with a completely di�erent signal z, but
the a�acked signal z would no more serve the original purpose of
s. Consider for instance the case of photographer who wants to
delete from an image the footprint of the camera he used to capture
it. He must do so without degrading too much the quality of the
image. Mathematically speaking, the a�acker looks for a signal z
such that: {

ϕ ′(z) = 0
d (z, s) ≤ Dmax

(1)

where d () is s properly de�ned distance function, Dmax is the
maximum distortion the a�acker can introduce, and ϕ ′ is either
equal to or a good approximation of ϕ.

2.2 Machine learning techniques
When the investigator relies on a machine learning approach to
detect the trace he is looking for, we must take into account the
role of the training data T in the de�nition of ϕ, which, for this
reason, will be referred to as ϕ (x;T ). As we will see, the presence
of T marks a signi�cant di�erence with respect to the case of
model-based footprint detection.

2.2.1 Information available to the adversary. While Kerckho�’s
principle requires that we assume that the a�acker knows ϕ, we
can safely presuppose that T is kept secret. As a consequence, the
a�acker can not build an exact replica of ϕ, so he must either a�ack
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the signal s blindly, or build a detector based on its own training set
T ′. �is is not an impossible task, since the investigator can not
choose T at random. However, it is known that the performance
of machine learning methods used in forensics or in the contiguous
�eld of steganalysis are sensitive to database mismatch [15, 19],
hence making the replication of the results produced by the inves-
tigator di�cult. Such a di�culty may diminish the e�ectiveness of
a�acks obtained by applying gradient descent or sensitive a�acks
built starting from ϕ (x(s);T ′) instead of ϕ (x(s);T ).

With regard to the actions available to the adversary, they are
the same as for model-based forensic techniques, with ϕ (x(s);T ′)
instead of ϕ ′.

3 USE IN COURT
When the footprints detected by the forensic analysis must be used
in a lawsuit, the analysis must satisfy more rigid constraints dictated
by the strict rules adopted in court.

3.1 Model-based techniques
As opposed to the investigative scenario now the signal s is not
accessible to the a�acker, since s has been seized during the in-
vestigative process and delivered to the court. Furthermore, all
the details of the procedure used to detect the footprints are now
public since it must be possible for all the parties in the lawsuit to
re-obtain the same results.

3.1.1 Goal of the adversary. Since s can not be modi�ed and ϕ
is �xed, there is no way for the a�acker to induce a false negative
event (ϕ (x(s)) = 0). Still the adversary can undermine the credi-
bility of the forensic test by inducing a su�ciently large number
of false positive errors, thus showing that the false positive error
probability is larger than expected.

3.1.2 Information available to the adversary. Due to the repro-
ducibility constraint required for the use in court, the a�acker has
a complete knowledge of function ϕ. He can exploit such a knowl-
edge to verify whether or not his a�acks were successful and to
mount gradient descend and/or sensitivity a�acks.

3.1.3 Actions available to the adversary. Given that now the goal
is to increase Pf p , the a�acker aims at forging a number of examples
{z1, z2 . . . zm } such that ϕ (x(zi )) = 1 and for which the expected
answer would be 0. �e exact meaning of the la�er requirement
depends on the case at hand. Suppose, for instance, that ϕ is used to
detect the footprint le� within an image by a cameraY . �e a�acker
could take a number of images which are known to have been taken
by a camera X and modify them in such a way that the detector
�nds in them the footprint of camera Y . Note that even if the judge
knows that the forged images have been cra�ed by the a�acker, the
mere fact that creating such forgeries is possible may undermine the
validity of the forensic analysis, since the a�acker may always claim
that the investigator cra�ed the image s to inculpate (or exculpate)
the defendant.

3.2 Machine learning techniques
�e main peculiarity of the use of machine-learning methods in
court regards the role and de�nition of the training set. If a standard
training set is available and used, then machine learning methods

are not di�erent from model-based techniques, since the training
set can be considered as part of the detector itself. �is is rarely the
case, though, so the a�acker can exploit the additional degree of
freedom provided by a loose de�nition of the training set to reach
his goal.

3.2.1 Goal of the adversary. If the training data is standardised,
then the only possibility for the a�acker is to forge a number of
false positive examples, to undermine the credibility of the detector.
When this is not the case, however, he may also try to cra� an
ad-hoc, yet plausible, training set which gives a negative result on
the to-be-analysed signal, thus raising doubts on the real presence
of the footprint within it.

With regard to the information available to the adversary, as
with model-based techniques, use in court of forensic evidence
requires that all the details of the detector ϕ are public, including
the training set.

3.2.2 Actions available to the adversary. Two classes of a�acks
can be carried out depending on whether a standard training set
is used or not. In the former case, the a�acker operates as in the
case of model-based techniques, by arti�cially creating a number
of forged signals to show that Pf p is too large for the detector to be
credible. If no standard training set exists, the a�acker may build
an ad-hoc (yet reasonable) training set resulting in a larger false
positive probability insinuating that the investigator did the same,
or to show that with an alternative training set the presence within
s of the to-be-looked footprint is not revealed. More precisely, in
this case the a�acker aims at creating a training set TA such that

ϕ (x(s);TA ) = 0, (2)

and where ϕ (x(s);TA ) provides su�ciently good results on a ref-
erence test set recognised by the judge, e.g. because it is widely
adopted by the scienti�c community. As with the model-based
scenario, proving that the a�acker cra�ed the training set with the
explicit aim of causing a false negative event on s, does not help,
since he could claim that the investigator did the same with the
training set TI he used to obtain ϕ (x(s);TI ) = 1.

A summary of the threat models that we have discussed in the
paper are summarised in Table 1.

4 GAME-THEORETIC FORMULATION
In this section, we introduce a number of games associated to the
threat models discussed so far. As we will see, whereas the task
of the forensics analyst (FA) is always to de�ne a test to accept or
reject the hypothesis that the looked-for trace is present (H1), the
speci�c goal of the adversary (AD) and his behaviour depend on
the speci�c scenario (investigative or use-in-court), thus leading to
di�erent game de�nitions. A 2-player game is de�ned by a set of
strategies for �rst and second player, namely S1 = {s1,1 . . . s1,n1 }

and S2 = {s2,1 . . . s2,n2 }, and the payo� functions. Speci�cally,
ul (s1,i , s2, j ), l = 1, 2 is the payo� for player l , when the players
play the strategies (s1,i , s2, j ). When u1 (ss1,i , s2, j ) = −u2 (s1,i , s2, j ),
the game is said to be zero-sum. A pro�le (s∗1,i , s

∗
2, j ) is a Nash

equilibirum (NE) if u1 (s∗1,i , s
∗
2, j ) ≥ u1 (s1,i , s∗2, j ), ∀s1,i ∈ S1 and

u2 (s∗1,i , s
∗
2, j ) ≥ u2 (s∗1,i , s2, j ), ∀s2, j ∈ S2. A Nash equilibrium repre-

sents a solution for a simultaneous game. For sequential games,
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�reat model Investigation Court use
Model-based Data-driven Model-based Data-driven

Goal False negative event Increase Pf p Increase Pf p False negative event

Available information Complete information Type of classi�er∗ Complete information

A�ack Modify the to-be-analyzed signal Forge false positive examples
Forge false positive examples
Build ad-hoc training set†

Build ad-hoc training set†

Informed about success? YES (good con�dence) Homemade guess‡ YES YES

∗�e a�acker knows the type of classi�er used (e.g. a neural network with a certain architecture), but he does not know the training set used by the investigator.
†Possible only if the training set is not standardized.
‡�e guess is based on a copy of the detector trained with a homemade training set.

Table 1: Summary of the threat models characterising the scenarios addressed in this paper.

where later players have some knowledge about previous actions,
an equivalent equilibrium notion is given by the subgame perfect
equilibrium (SPE). A pro�le is a SPE if it represents a NE of every
subgame of the original game. SPE can be found through backward
induction [17].

4.1 Investigative scenario
In this scenario, the adversary is interested in modifying the signal
s to cause a missed detection event (see discussion in Section 2).
Reasonably, both players are unaware of the action chosen by the
other and play simultaneously. By assuming that the analyst adopts
a Neyman-Pearson (NP) approach, we can model the interplay in
the investigative scenario as in the following game:

De�nition 4.1. �eGI (SFC ,SAD ,u) is a simultaneous, zero-sum
game with:

SFA = {ϕ : Pr {ϕ (x) = 1|H0} ≤ P∗f p },

SAD = {д : d (д(s), s) ≤ Dmax },

u (ϕ,д) = Pr {ϕ (x(д(s))) = 0|H1} = −Pf n , (3)

for a prescribed maximum false positive value P∗f p . We have that
u = uFA = −uAD .

�en, the analyst can choose any statistical test which guarantees
the false alarm constraint, whereas the a�acker can choose any
function satisfying the distortion constraint. Solving the game
means looking for the existence of Nash equilibria. When the
features extracted from s correspond to the empirical probability
mass function (pmf) of the signal, that is, x(s) = P̂s (i.e., the FA
performs a �rst order analysis), an asymptotic version of the above
game has been solved in [3]. In this case, the winning regions for
the two players have also been determined. �e theoretical results
of the game analysis derived in [3] have been applied in [1] to the
case of contrast-enhancement detection.

For the data-driven case, the probability under the two hypothe-
ses is estimated from the training set T (i.e., the evidence provided
by the training is used as an estimation for the model). Reasonably,
the a�acker will rely on a set T ′ di�erent from T , thus basing his
action on a di�erent estimation. An asymptotic version of such
game has been solved in [4] for the case of �rst order analysis.

4.2 Use in court
We focus on the case in which the a�acker aims at forging false
positive examples. Accordingly, under hypothesis H0 (absence of
the trace), the signal under inspection may have been forged by

the a�acker to induce the analyst to decide that the trace is present.
Formally, we let α be the probability that the signal is forged by the
a�acker (this determines the percentage of forgeries on the total
number of signals under H0 examined at the court).

For the court scenario, it is natural to de�ne the game as a
sequential game where the a�acker plays second and perfectly
knows the action chosen by the analyst. We observe that, since
in this case the a�acker can not in�uence the behavior under H1
(i.e., act on the false negative probability), it is reasonable for the
defender to put a constraint on Pf n and consider a NP test. �en,
for the court scenario we give the following de�nition:

De�nition 4.2. �e GC (SFA (1),SAD (2),u) game is a sequential,
zero-sum game in which the analyst plays �rst and the a�acker
plays second, where:

SFA (1) = {ϕ : Pr {ϕ (x) = 0|H1} ≤ P∗f n },

SAD (2) = {д : d (д(s), s) ≤ Dmax },

u (ϕ,д) = −Pf p , (4)

where P∗f n is a prescribed false negative error probability and

Pf p = (1 − α )Pr {ϕ (x(s))=1|H0} + αPr {ϕ (x(д(s)))=1|H0}.

It is easy to derive the subgame perfect equilibrium of the GC
game corresponding to the pro�le (ϕ∗,д∗) satisfying

max
ϕ∈SFA

min
д∈SA

u (ϕ,д).

�is is indeed the solution we obtain by maximising the utilities of
the analyst and the a�acker according to the playing order (back-
ward induction). �e above game de�nition also holds for the case
of machine learning techniques, by replacing ϕ (x) with ϕ (x;T )1.

5 CONCLUSIONS
In this paper, we have discussed a number of threat models for
adversarial multimedia forensics suited to describe the behaviour of
the a�acker in two of the most common forensic scenarios, namely
the investigative and court scenarios. We have shown that the two
scenarios are characterised by di�erent goals, available information
and possible actions for the a�acker. We have also de�ned a number
of games associated to the threat model introduced. We believe this
work will help guiding further research in the �eld and contribute
to a systematic development of multimedia forensics as a solid and
well-funded discipline.

1We are considering the case in which the training set is standardised.
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