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Abstract—In recent decades, a significant research effort has
been devoted to the development of forensic tools for retrieving
information and detecting possible tampering of multimedia
documents. A number of counter-forensic tools have been de-
veloped as well in order to impede a correct analysis. Such tools
are often very effective due to the vulnerability of multimedia
forensics tools, which are not designed to work in an adversarial
environment. In this scenario, developing forensic techniques
capable of granting good performance even in the presence of an
adversary aiming at impeding the forensic analysis, is becoming a
necessity. This turns out to be a difficult task, given the weakness
of the traces the forensic analysis usually relies on. The goal of
this paper is to provide an overview of the advances made over
the last decade in the field of adversarial multimedia forensics.
We first consider the view points of the forensic analyst and
the attacker independently, then we review some of the attempts
made to simultaneously take into account both perspectives by
resorting to game theory. Eventually, we discuss the hottest open
problems and outline possible paths for future research.

I. INTRODUCTION

The development of Counter-Forensic (CF) techniques has
proceeded in parallel with the design of multimedia forensic
tools. Counter-forensic techniques are often successful due to
the weaknesses of the traces the forensic analysis relies on.
This is worsened by the fact that the majority of multimedia
forensic tools are designed neglecting the possibility that an
adversary may actively work to make the forensic analysis
fail [1]. In reaction, several anti-CF techniques have also
been developed in the last years, the most common approach
consisting in looking for the traces left by the CF tools, and
develop new forensic algorithms explicitly thought to expose
documents subjected to specific CF techniques.

Early CF techniques were rather simple, as they consisted
in the application of some basic processing operators [2]–
[4]. When the attacker has enough information about the
forensic algorithm, more effective CF techniques can be de-
vised. Following a terminology adopted in adversarial machine
learning [5], we can distinguish between attacks with Perfect
Knowledge (PK) when the attacker has complete information
about the forensic algorithm, and attacks with Limited Knowl-
edge (LK), when the attacker knows only some details about
the forensic algorithm. In the great majority of the cases,
CF techniques are designed to attack a specific algorithm
(targeted attacks) without paying attention to the possible
countermeasures adopted by the analyst, e.g. by neglecting
the fact that the CF attack may itself leave traces that can be

revealed by the analyst. On the other hand, anti-CF techniques
are developed, often by targeting a specific CF technique,
without taking into account the possibility that the attacker
foresees the moves of the analyst. The search for CF traces
can be carried out by relying on new features explicitly
designed for this goal [6]–[10], or by using the same features
of the original forensic technique to design an adversary-aware
version of the classifier [11], [12]. An obvious problem with
the above approach occurs when the attacker anticipates that
the traces left by the CF tools may themselves be subjected to
a forensics analysis. In this case, we fall in a situation wherein
CF and anti-CF techniques are iteratively developed in a never-
ending loop, whose outcome can hardly be foreseen [13], [14].
A possible approach to avoid this problem is to design the
forensic techniques in such a way that they are intrinsically
more resistant to CF attempts or to resort to game theory to
model the interplay between the analyst and the attacker, and
use the performance at the equilibrium to evaluate which party
will win the arms race [15], [16]. Though rather theoretical
in nature, these works provide a natural framework to cast
multimedia forensics in and can provide very useful insight
about the achievable security of a wide class of multimedia
forensic tasks [17].

In the rest of this paper, we overview the CF and anti-CF
techniques developed so far and outline the most interesting
challenges ahead. We do so by focusing on image forensic
techniques, since research in this area is more advanced with
respect to video and audio forensics. More specifically, in
Section II and Section III, we adopt, respectively, the point
of view of the attacker and the forensic analyst, assuming that
they operate independently. Then, in Section IV, we review
some attempts made to simultaneously take into account
both perspectives by resorting to game theory. Eventually, in
Section V, we list some open problems and outline possible
paths for future research.

II. ATTACKER’S VIEW

By following the terminology introduced in [18], we focus
on exploratory attacks, that is, attacks carried out at test time,
since the large majority of the CF methods proposed so far
belong to this category. With regard to the kind of errors the
attacker aims at, CF attacks are usually integrity violation
attacks [18], as they aim at avoiding that the manipulation
is detected, that is, at causing a missed detection event. In the



rest of the paper we use the following formalism: we indicate
with A the CF method adopted by the attacker and with φ the
forensic algorithm used by the analyst, or, simply, the detector.
φ depends on: i.) the type of algorithm, its structure and its
parameters li (as well as the learning algorithm, for data-
driven methods), all together denoted by L = {l1, l2, ..}; ii.)
the feature space X ; iii.) the training data D (for data-driven
approaches only). Therefore, φ = φ(L,X ;D) (φ(L,X ), for
the model-based case). In the sequel, we refer to φ as φ(L,X ),
the dependence on the training data being explicitly stated only
when needed.

A. Attacks with perfect knowledge

In the PK scenario, the attacker can build the attack by
relying on the knowledge of the forensic algorithm φ, and
then he can apply a targeted attack [1]. In this case, it is
possible for the attacker to induce a false positive decision
error by introducing a limited, ideally minimum, distortion.
Generally speaking, the attacker needs to solve an optimisation
problem looking for the image which is in some sense closest
to the image under attack and for which the output of the
forensic analysis is the wrong one. Although such optimization
is not always easy to solve, the exact knowledge of φ often
allows to carry out very powerful CF techniques in closed
form. This is the case of the CF method in [19], and the more
general one in [20], for countering the model-based detectors
of double (multiple) JPEG compression based on the analysis
of the First Significant Digits (FSD), or the approaches in [21]
and [22] against median filtering and copy move detection.
When the detector is more complicated, as it is often the case
with machine learning (ML) approaches, the optimum attack
can be implemented by relying on Gradient-Descent solutions
[5], [23], [24] or other iterative techniques such as L-BFGS,
recently adopted for generating adversarial examples against
deep neural networks [25]. Multimedia forensics is recently
moving towards the use of deep learning architectures. A
targeted attack to fool CNN-based camera model identification
algorithms, based on the Fast Gradient Sign Method [26], is
proposed in [27].

A problem with many PK approaches is that the CF
algorithm is directly applied in the feature domain and it
is difficult to control the distortion introduced in the pixel
domain, all the more that the dependence between the pixel
and feature domain is often non-invertible, thus also raising
the problem of mapping back the attack (e.g., in [19]). When
first order features of pixel or invertible transformed domains
(e.g. the DCT domain) are considered, the image distortion
can be controlled by operating in the feature domain as it is
the case in [28], [29]. A gradient-based attack directly applied
in the pixel domain, which then does not require invertibility
of pixel and feature domain, is provided in [24].

B. Attacks with limited knowledge

We start by introducing a taxonomy to classify the attacks
within this category.
• Universal attacks

The attacker only knows the feature space (or class of fea-
tures) X . Since he is not aware of the statistic used by the

analyst, he carries out an attack which is effective against
any detector φ′ inside the class Φ = {φ(L′,X ),∀L′}.

• Attacks based on a surrogate detector
The attacker has a partial knowledge of the algorithm φ;
for instance, he might know the feature space but not
all the parameters of the algorithm and/or the training
data. In this case, the attacker generates a surrogate
detector φ̂ by exploiting the available information and
making an educated guess about the parameters he does
not know. Then, he builds the CF attack by performing
a targeted attack against φ̂, hoping that the attack will
also work against the real detector (attack transferability).
Formally, if we let for instance l1, l2 be the unknown
parameters, then L̂ = {l̂1, l̂2, l3, l4...} where l̂1 and l̂2 are
the attacker’s guesses of l1 and l2 and φ̂ = φ(L̂,X ;D).
The effectiveness is then assessed against φ.

• Laundering attacks
The attacker has only a very general and limited knowl-
edge of the algorithm; then, he tries to erase the CF traces
by applying some basic processing operations (e.g. noise
addition, recompression, resampling or filtering). In this
case, the attacker does not target any specific detector or
class of detectors.

As examples of attacks belonging to the first category we
mention the universal CF methods in [28], [30] and [29],
developed against the class of detectors based on first order
statistics in pixel and DCT domain respectively, and applied
to counter the detection of contrast enhancement and double
(multiple) JPEG compression.

An example of attack based on a surrogate detector is the
fingerprint-copy attack for PRNU-based camera identification
[31]: the real camera fingerprint K (K ∈ L) is unknown to the
attacker, who then bases the attack on an estimation K̂ made
from a set of available images. Attacks to ML detectors often
fall into this category: in fact, even if it is safely assumed
that the attacker knows the kind of classifier used (e.g., an
SVM, or a neural network), and also its parameters, he rarely
has access to the same dataset D used by the analyst to
train the detector. However, the attacker may build another
dataset D̂, sampled from the same distribution, and use it in
place of the real one, thus attacking an home-made replica
of the detector φ(L,X ; D̂), see for instance [5], [24], [32].
Another LK attack for the case where the attacker knows
only the feature space X and guesses both L and D is
provided in [23]. It is worth stressing that such attacks work
well under the assumption of attack transferability. Noticeably,
standard ML tools are known to be sensitive to the problem
of database mismatch, then, relying on home-made replica of
ML classifiers is not always effective to build an attack which
works against the real classifiers. This is less the case with
deep learning architectures where the attack transferability
assumption works well under a wide variety of scenarios [26].

We categorize as laundering-type, early CF techniques
against detection of resampling [2], single and double JPEG
compression [4], [33], contrast adjustments [3], median filter-



ing [34], and splicing detection [35], just to mention a few.1

Though very simplistic, the application of a post-processing
operation has recently been shown to be very effective also
against general SVM-based manipulation detectors trained on
rich image representations [36]. A noticeable strength of such
CF attacks with respect to most PK attacks is that they are
much easier to implement; by applying a basic processing, in
fact, the attacker can easily control the distortion introduced
into the image.

III. ANALYST’S VIEW

We classify the solutions proposed so far to counter CF
attacks according to the perspective adopted by the analyst,
which can be tailored against a specific CF method or more
general. In particular, we distinguish between adversary-
aware systems and intrinsically more secure detectors.

A. Adversary-aware systems

The analyst, aware of the CF method the system is subject
to, develops a new algorithm capable to expose the attack, by
looking for the traces left by the CF tool. This is the most
common approach used so far. In most cases, this goal is
achieved by resorting to new, tailored, features. Then, a new
algorithm φA is explicitly designed to reveal if the document
underwent the CF attack, and used in conjunction with the
original, unaware, algorithm φ. Such a view is adopted in [6],
[8], [9], to address the adversarial detection of JPEG compres-
sion and median filtering. Among other examples, we mention
the algorithm proposed in [37] for defeating the fingerprint-
copy attack to PRNU-based camera identification and the one
in [38] against the keypoint removal and injection attack to
copy-move detectors. In other cases, the new algorithm is
obtained by using the same features of the original algorithm φ
and designing an adversary-aware version of the algorithm φA,
which is then used in place of φ. This method is particularly
suited for ML approaches, where the original detector is re-
trained also with examples of attacked images to learn the
statistical traces left by the CF algorithm. In this way, the
analyst obtains a refined detector φA = φ(L,X ;D ∪ DA),
where DA is the set of attacked images used for training.
In general, this approach is viable when the feature space is
discriminative enough, i.e., it is capable to distinguish original,
manipulated, as well as attacked images. Examples of this
approach can be found in [11], [12] for adversarial double
compression detection, and in [39] for a variety of manipu-
lation detection problems with the JPEG laundering attacks.
Exploiting the superior capabilities of deep architectures to
learn good feature representations, adversary-aware training
can also be used in image recognition applications to improve
CNN robustness to adversarial examples [26].

We observe that by following the above approach, the
analyst tries to exit the PK scenario, since it is (implicitly) as-
sumed that the attacker keeps attacking the original algorithm

1Such attacks are often referred to as targeted attacks in the literature.
However, we do not include them in the PK category, since the knowledge of
the detector is only marginally exploited in these works. In most cases, the
specific detector is only used to prove the attack effectiveness.

φ. In other words, the analyst uses a system thought to reveal
the traces introduced by an attacker which attacks a different
system, namely the unaware algorithm, thus overlooking the
game-theoretic nature of the problem (see Section IV).

B. Intrinsically more secure detectors

The analysts designs a system which is intrinsically more
resistant to CF attempts, i.e. a system which is more difficult to
attack even in the PK case. In this case, then, differently from
the previous one, the analyst does not specialize the algorithm
to work against a particular CF tool. Improved intrinsic
security can be achieved in several ways. A possibility is to
use higher order statistics; formally, the algorithm is refined by
considering larger feature spaces X ′ (X ′ ⊃ X ). This is done
for instance for the detection of contrast enhancement [40],
double JPEG [41] and local tampering [42], where resorting to
second-order statistics allows the analyst to expose CF attacks
and re-establish a correct analysis. Another approach consists
in fusing the outputs of several forensic algorithms looking
for different traces [43].

More in general, approaches belonging to this category look
for solutions that work under a worst-case or a kind of most-
powerful attack (MPA) A∗, namely, an attack that causes
the largest damage when applied to the original (unaware)
algorithm. Examples of MPA-aware detectors are provided
in [11], [12], where the algorithm is refined by training on
D∪DA∗ . Another possibility is to resort to intrinsically more
secure features, as done in general literature about ML secu-
rity, by optimizing in some way the feature set, for instance
by looking for the best feature set (in a large feature space)
against a PK attack [32], or searching for intrinsically more
secure architectures [44]. Randomizing the feature selection
according to a secret key, thus preventing the attacker from
gaining full knowledge of the system, is another way to design
a more secure algorithm; such a strategy has been proven to
be effective against PK attacks to SVM-based detectors [45].

IV. GAME THEORETIC VIEW

As we have seen in Section III, an intelligent analyst
can design an adversary-aware detector φA anticipating the
presence of a CF attack A. Under the PK scenario, however,
an intelligent attacker can alter his attack to avoid detection by
φA. The analyst, in turn, can again adjust his detector, leading
to a dynamic interplay between the analyst and the attacker.
Game theory can be used to study this dynamic interplay,
and to identify optimal attack and detection strategies for the
attacker and the analyst [13], [14].

The forensic scenarios described above are typically for-
mulated as two player games [46], where the analyst’s utility
is defined as the probability of detecting a forgery and the
attacker’s utility is defined as the probability that the forgery
is not detected. Since an increase in one player’s utility leads
to a corresponding decrease in the other player’s utility, these
games are known as zero sum games, i.e. games in which the
sum of players’ utilities is zero.

Game theory can be used to analyze the PK scenario where
a CF attack A designed against an analyst’s detector φ also



leaves behind its own detectable traces [7], [15]. An analyst
can then form a refined detector φA by fusing the detection
results from φ and a second detector φ′ designed to detect A.
The attacker can modulate the strength of A in an attempt
to avoid detection while the analyst can alter the decision
thresholds associated with φ and φ′. This setup has been used
to identify the Nash equilibrium (NE) of the game in a scenario
wherein the adversary aims at hiding the evidence of segment
addition or deletion in a video sequence [7]. Game theory
has also been used to analyze detection strategies and CF
attacks in forensic source identification. In this scenario, a
forensic analyst wishes to determine if a sequence originates
from a known source X , while an attacker wishes to modify
a sequence drawn from a different source Y in such a way
that the analyst believes that it originated from X . This has
important applications in PRNU-based camera model identi-
fication, where an adversary can attempt to falsify the PRNU
pattern in a set of images. The asymptotic NE can be used
to approximate the optimal detection and CF strategies of the
attacker and the analyst for finite length sequences [16]. The
set of source distributions that can not be distinguished reliably
in the presence of an attack, can be identified when the analyst
and adversary share the same training sequence, and when
they utilize different sequences to empirically approximate a
source’s distribution [47]. Further analysis has been performed
for the case when the attacker can also corrupt the analyst’s
training data [48].

V. LOOKING AHEAD

Recently, deep learning techniques have significantly shifted
the way researchers develop new forensic algorithms. Con-
volutional neural networks (CNNs) capable of automatically
learning forensic feature extractors have been developed to
address several problems in forensics such as manipulation
detection [49]–[51] and camera model identification [50], [52].
While deep learning techniques are going to revolutionize
multimedia forensics, they also open up new vulnerabilities
that can be exploited by an attacker. It will be critical for
researchers to understand new CF attacks that are enabled
by deep learning and to search for ways to mitigate their
effects. While a key advantage of CNNs is their ability
to learn forensic features directly from data, an intelligent
attacker can use this to his advantage. Since the space of
possible inputs to a CNN is substantially larger than the set
of images used to train it, an attacker can create modified
images that fall into an ‘unseen’ space and force the CNN
to misclassify. One method of accomplishing this involves
introducing adversarial perturbations into an image. These
perturbations are typically learned by computing the gradient
of the loss function with respect to the input as done in the
Fast Gradient Sign Method [26] and DeepFool attacks [53],
or by using an iterative method such as the Jacobian-Based
Saliency Map Attack [54]. As mentioned in Section II, a first
CF attack based on this approach was recently proposed to
fool CNN-based camera model identification algorithms [27].

Another significant threat is posed by Generative Adversar-
ial Networks (GANs) [55]. GANs are a learning framework
developed to create generative models capable of statistically

mimicking the distribution of training data. This is done by
iteratively training a discriminator to differentiate between real
and generated samples of data and training the generator to
produce samples capable of fooling the discriminator. GANs
have been used by the computer vision community to produce
visually realistic images [56] and even synthesized faces [57].
While the automatic creation of visually realistic images itself
poses a forensic challenge, an even greater threat lies in the
possibility that GANs can be used to create generators capable
of producing forensically realistic images. Specifically, an
attacker may be able to use a GAN to train a generator capable
of falsifying forensic traces. A GAN capable of removing
forensic traces left by median filtering [58] has already been
developed, and it is very likely that more GAN-based CF
attacks will be developed in the near future. Understanding
the capabilities and limitations of deep learning-based attacks,
and developing forensic measures to defend against or detect
these attacks as they emerge will likely prove an important
and difficult challenge for the future.
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