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ABSTRACT

Detection of contrast adjustments in the presence of JPEG post
processing is known to be a challenging task. JPEG post processing
is often applied innocently, as JPEG is the most common image
format, or it may correspond to a laundering attack, when it is
purposely applied to erase the traces of manipulation. In this paper,
we propose a CNN-based detector for generic contrast adjustment,
which is robust to JPEG compression. The proposed system relies
on a patch-based Convolutional Neural Network (CNN), trained to
distinguish pristine images from contrast adjusted images, for some
selected adjustment operators of different nature. Robustness to
JPEG compression is achieved by training a JPEG-aware version of
the CNN, i.e., feeding the CNN with JPEG examples, compressed
over a range of Quality Factors (QFs). Experimental results show
that the detector works very well under a wide range of QFs and
scales well with respect to the adjustment type, yielding very good
performance under a large variety of unseen tonal adjustments.

Index Terms— Adversarial multimedia forensics, adversarial
learning, deep learning for Multimedia Forensics, transfer-learning,
contrast manipulation detection, cybersecurity.

I. INTRODUCTION

Adjustment of contrast and lighting conditions of image sub-
parts is often performed during forgery creation. Therefore, the
problem of detecting such manipulation has been widely studied
in image forensics, and, more recently, in scenarios encompassing
the presence of an adversary [1], [2]. Due to the peculiar traces
left by contrast adjustment operators, most early works were based
on the analysis of first order statistics [3]-[5]. Such approaches,
however, are easily circumvented by the adversary, by means of
both targeted [6] and also universal approaches [7]. To cope with
such attacks, countermeasures were developed in turn, based on a
second-order analysis [8], [9]. However, in most cases, the attack
is of laundering-type, consisting in the application of a post-
processing operation, e.g., a geometric transformation, filtering or
compression. Laundering attacks are shown to be very powerful
against manipulation detectors in general [10]. In particular, the
performance of contrast manipulation detectors proposed so far
decreases significantly in the presence of even mild post-processing
and, above all, they all exhibit a poor robustness against JPEG
compression [3], [5], [8], [10], [11], even when the compression is
very weak. Since images are often stored and distributed in JPEG
format, JPEG compression is also one of the most common post-
processing images are subject to. Therefore, designing a JPEG-
robust contrast adjustment detector is of primary importance.

In this paper, we face with the above problem by resorting to
adversary-aware data-driven classification [12], that is, by designing

a data driven detector for contrast adjustment which is trained
to recognise the specific class of JPEG laundering attacks. In
particular, we look for a generic detector of contrast adjustment,
that is, a detector which generalizes well to a wide variety of
types of tonal adjustments. Such adversarial detection task is not
trivial and requires that highly descriptive features are adopted. This
is hard to accomplish with standard machine learning classifiers
trained on rich image representations (e.g. the rich feature models
[13]). Then, in this paper, we propose to rely on a Convolutional
Neural Network (CNN) architecture. The CNN is directly fed by
the pixel image (with no pre-processing), hence the discriminative
features for our problem are self-learned by the CNN. Specifically,
the proposed detector relies on a JPEG-aware, patch-based CNN,
which is used to classify image regions, i.e. image patches. A test
image is then divided into patches which are tested separately by
feeding them to the CNN. The soft patch scores (CNN outputs) are
collected and the global decision on the image is performed on the
score vector.

All the compression QFs inside a range of values are considered
to train the aware CNN. Noticeably, the performance of the CNN
could be improved by exploiting the knowledge of the QF, which
can be estimated from the image header, and specializing the CNN
to work for one QF (hence training several CNNs). However,
such an approach has the drawback of being easily prone to
attacks: just re-saving the image in uncompressed format (e.g.,
PNG,..) or compressing again the image with a different QF would
prevent the correct identification of the QF used to compress the
image. Therefore, for our global manipulation detection task, we
considered only one CNN model; the final detection accuracy is
raised by exploiting the fact that patches coming from a same
image are generated under the same hypothesis (being all pristine
or contrast adjusted patches), and hence should all result in a small
(or large) soft value as CNN output.

Experiments show that our system achieves good performance
over a wide range of QFs. Thanks to the fact that the CNN
is simultaneously trained with different contrast adjustments, our
detector achieves good scalability with respect to the contrast
adjustment types, yielding good performance with a large variety
of contrast, brightness and tonal adjustments, i.e. under processing
mismatch conditions. Good performance are maintained in the
absence of JPEG, that is, when the contrast adjustment is the last
step of the manipulation chain.

The rest of the paper is organized as follows: Section II, we
define the detection task addressed, describe the proposed CNN-
based detector and the network architecture. In Section III-A, we
first detail the methodology followed for conducting our experi-
ments, then we report and discuss the results.
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Fig. 1. Detection task considered in this paper.
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Fig. 2. Pipeline of the proposed generic, JPEG-aware, contrast
adjustment detector. Adaptive histogram equalization, gamma cor-
rection (both compression and expansion) and histogram stretching
are used to train the network.

II. PROPOSED SYSTEM

Figure 1 schematizes the problem addressed in this paper. We
let hypothesis H correspond to the case of pristine image and H;
to the case of contrast adjusted images In both cases, the image is
JPEG compressed at the end, with a given QF. In this scheme, JPEG
compression can also be viewed as a counter-forensic, laundering-
type, attack, due to its known effectiveness in erasing the traces of
contrast manipulations [3], [5], [8], [10], [11].

The architecture of the proposed detection scheme is reported in
Figure 2. The color image is divided into non-overlapping patches
of size 64 x 64 which are fed to a JPEG-aware version of a CNN.
The patch scores, i.e. the CNN soft outputs for all the patches,
are then collected and the final decision is based on the score
vector s = (81, S2,...sNx M) (Where N X M is the total number of
blocks). The decision is made by simply thresholding the sum of the
scores, i.e. according to the statistic' 3, s;/(M-N). Since patches
coming from a same image are drawn under the same hypothesis,
such normalized sum is expected to be large in one case (contrast
adjusted image) and small in the other (pristine image).

The JPEG-aware CNN is trained with JPEG compressed images
on one hand (Ho) and images subject to a contrast adjustment
followed by JPEG compression on the other (H:). The network
architecture and the training strategy are detailed in the following
sections In the attempt to build a detector which generalizes
to unseen adjustments (transfer-learning), we consider contrast
adjustments of different nature to train the network. Specifically,
the processing we selected are: adaptive histogram equalization,
gamma correction (both compression and expansion of the contrast)
and histogram stretching.

Regarding the compression QF, we focus on values ranging from
medium-high to high values (i.e., QF > 80), which are common
values in many practical applications.

This is a simple and non optimized choice. Other possible fusion
strategies could be adopted.

II-A. CNN architecture

First attempts to train a network for our problem by using
architectures similar to those adopted for other forensic tasks [14]—
[16] were unsuccessful. A possible explanation is the following:
while some processing operations, e.g. local filtering and double
JPEG, introduces some local patterns that a properly trained CNN
with few layers is able to ’easily’ learn, common contrast adjust-
ments do no leave local visual artifacts, thus making self CNN
learning harder and calling for the adoption of deeper models. We
were in fact able to get higher accuracies by switching to deeper
architectures, inspired by those adopted in image classification and
pattern recognition applications [17].

The structure of our network for patch classification (see Figure
3) is detailed as follows: it takes a color patch of size 64 x 64 as
input and consists of

« 5 convolutional layers followed by a max-pooling layer. In
the first convolutional layer 32 filters are applied. The number
of filters increases by 32 at each layer. For all the filters, the
kernel size is 3 X 3 and the stride is always 1. Max-pooling is
applied with kernel size 2 X 2 and stride 2 producing a final
27 x 27 x 160 feature map.

« 3 convolutional layers followed by a max-pooling layer. As
before, the number of filters of size 3 x 3 and stride 1 increases
by 32 at each layer. The pooling is the same as before, yielding
a 10 x 10 x 256 feature map.

« A final convolutional layer with a filter of size 1 x 1 x 128
generating a 10 x 10 x 128 feature map.

« A fully-connected layer with 250 input neurons and 2 output
neurons, followed by a softmax layer.

Some comments regarding the main features of the above architec-
ture are in order: the use of many convolutions (5) before the first
pooling layer permits to consider a large receptive field for each
neuron, which is good to capture relationships among pixels in
large neighborhoods; the stride 1 permits to retain as much spatial
information as possible. The purpose of the final convolutional
layer is to reduce the number of parameters by halving the number
of maps (from 256 to 128), without affecting spatial information.
The adoption of only one fully connected layer also permits to
reduce the number of parameters without affecting too much the
performance. Finally, we observe that using small patches (64 x 64)
permitted us to increase the depth of the network for the same
number of parameters.

II-B. CNN training strategy

We obtained the JPEG-aware CNN model by training the net-
work in two steps. First, the network is trained to recognize between
patches coming from pristine and contrast-adjusted images for the
uncompressed case (unaware pre-training). Then, the aware model
is obtained by fine-tuning the unaware network, by feeding the
CNN with JPEG compressed examples of the above classes.

Since the network is very deep and then the number of images
used for training is very large, we perform compression on-the-fly
by augmenting the data inside the network; hence, the compression
is performed directly on the 64 x 64 patches (that is, after the image
splitting). Such a strategy is viable because the JPEG compression
is a local operator which can be applied separately on multiples of
8 x 8 image patches producing the same result as applied on the
entire image.
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Fig. 3. Architecture of the proposed network.

II1.
III-A. Methodology

We built the training and testing sets by starting from color
images in uncompressed format. The images for the Hy and H:
classes were produced as detailed in Figure 1. The adjustment of the
contrast under H; is obtained by considering several algorithms.
As we said, to generate the images used for training, we consid-
ered the following operators: Adaptive Histogram Equalization (in
particular, its refined, Contrast Limited, implementation, CLAHE
[18]), Gamma Correction (v Corr), and Histogram Stretching
(HS). Such operators are designed for one-channel images; to make
them work on color images, we apply them as follows: for the
images processed with CLAHE, we first converted the image from
the RGB to the HSV color space, we applied the enhancement to the
luminance channel only, namely the V channel, and converted back
to the RGB domain 2. The same strategy is adopted to generate the
images processed with HS. Finally, for the v Corr, the contrast
is modified by applying the operator to each channel (R, G and B)
separately. The above operators are applied in equal percentage to
generate the class of contrast adjusted images (H1). Regarding the
parameters, the clip-limit parameter for CLAHE is set to 0.005, the
7 value to 1.5 and 0.7 (randomly chosen with probability 0.5), and
the saturation percentage of the HS to 5% for both black and white
values. The above choices do not introduce visually unpleasant
artifacts.

For generating the test images, we also considered different
values of the parameters for the same operators, in order to
assess the performance under parameter mismatch, and different
operators, by processing the images with adjustment tools provided
by Photoshop. In particular, we considered the following tonal
adjustments:

EXPERIMENTS

2The straightforward application of CLAHE (and HS) to each channel
separately unnaturally changes the color balance and produces visually
unpleasant images.

AutoContrast, AutoColor and AutoTone; algo-
rithms which operate differently with respect to the color
channels. The clipping is set to 7% for AutoContrast and
AutoColor and to 5% for AutoTone; the snap neutral
midtones option is selected for the AutoColor;
Curves_S; a (hand-made) smooth S-curve is applied to
enhance the contrast in the midtones;

Brightness and Contrast; generic tools for enhanc-
ing and reducing brightness and contrast; for the enhance-
ment, we set Brightness to 50 (Brightness+) and
Contrast to 70 (Contrast+), while for the reduction, we
set Brightness to -70 ( Brightness—) and Contrast
to -50 (Contrast-);

Histogram Equalization (HistEq).

The HistEqg manipulation is considered for completeness: al-
though its visual impact is much stronger with respect to that of
the other manipulations considered, and hence is rarely adopted
in practice, the HistEqg manipulation is often considered in
multimedia forensic literature.

Regarding JPEG compression, we random selected the QF's
(uniformly) in the range [90,100] to compress the images used
for training. For testing, we also considered images compressed
with QF 85 and 80.

The images used for training were all processed with the
OpenCV library for Python. For the tests, the Photoshop software
was also adopted. We used TensorFlow, via the Keras API [19], to
train and test the CNN.

II1I-B. Results

Uncompressed, camera-native, images (.tiff) are taken from the
RAISESK dataset [20] (of size 4288 x 2848), splitted into training
and test set, and then contrast-adjusted to produce the images
for H; in the unaware case (i.e., without the final JPEG). The
images are then divided into 64 x 64 patches for CNN training and
testing: 2 x 10° patches per class (coming from more than 1000



Table I. Performance (AUC) of the detector under matched pro-
cessing. The matched parameters are in bold.

QF
nojpg 100 98 95 90 85 80
0.003 100 99.9 99.8 989 97.6 97.1 96.8

CLAHE | 0.005| 100 999 999 994 989 988 98.5
0.007 | 100 999 100 99.6 99.1 98.9 98.7
15 98.8 985 942 892 87 84 812
1.7 99.4 989 957 91.8 904 89.7 892
v Corr

0.7 99.1 97.1 923 873 856 81 78
0.6 99.7 99.5 973 91.6 86.7 83.7 80.1
3 99.6 98.1 958 914 87.8 857 835
HS (%) 5 99.5 989 976 937 926 915 903
7 100 993 983 955 94 937 93.6

training images) were selected to train the CNN, whereas 2 x 10°
patches were used for testing. In the aware case, the patches are
JPEG compressed with QF € [90,100]. The overall performance
of the detector are tested on 300 images from the test set, both
uncompressed and compressed with QF = {100, 98, 95, 90, 85, 80}.

When training and testing are performed with uncompressed
images (unaware case), the average test accuracy of the CNN on
image patches is 93,5%, where the average is taken on the 3
manipulations, i.e., CLAHE, v Corr (compression and expansion)
and HS, and on all the QFs inside the training range. For the
overall system, we get almost perfect classification, that is, the
Area Under Curve (AUC) is 99, 8%, which is in line with the state
of the art [10]. A noticeable strength is that here these performance
are achieved by one (generic) system only, rather than using
separate systems each one specialized on one manipulation only.
By testing the unaware detector with JPEG compressed images, the
performance drop to AUC = 56% (the CNN accuracy on image
patches is around 50% even for weak compression), thus showing
that, as it is the case with SVM detectors [10], the CNN model is
not robust to the JPEG laundering attack.

Concerning the aware case, the average accuracies that we
obtained at the patch level in the range of QFs [90,100] are: 0.84
for CLAHE, 0.72 for v Corr and 0.79 for HS. These accuracies
are not high; however, we stress that we do not need them to
be very high, since the detection accuracy is then raised by the
final decision stage (see Figure 2). What is it more important is
that the performance are moderately good with respect to all the
contrast adjustment operators. We also observe that specializing our
network to work with one QF only, we could have obtained much
higher performance on a patch level; however, as motivated in the
introduction, to avoid easy attacks (as recompression and saving
in uncompressed formats), we want a detector of generic contrast
adjustments which works well on a range of QFs (and also in the
absence of JPEG).

The overall performance of the detector on full images are
reported in Table I in terms of AUC values, for both matched
and mismatched processing parameters. The most difficult case
corresponds to v Corr, where the AUC is below 90% for QF
< 95. This behavior is due to the fact that such kind of adjustment
is difficult to detect by itself and above all to the fact that the
CNN is simultaneously trained with values smaller and larger
than 1, corresponding to a compression and an expansion of

Table II. Performance (AUC) of the detector for different tonal
adjustments.

QF
nojpg 100 98 95 90 85 80
HistEq 100 990 999 995 983 969 943

Brightness+ 975 977 952 93.6 91.2 878 856
Contrast+ 99.1 100 99.6 979 947 919 87.1
Brightness— 96.7 973 933 90.1 842 788 756
Contrast- 98.8 99.6 964 912 &7 82 80
Curve_S 99.6 99.8 99.8 99.1 97.7 96 93.6
AutoContrast | 959 947 93 919 902 89 86.5
AutoColor 982 98.6 96.8 953 937 91.8 89.1
AutoTone 995 995 99 982 972 96.1 94.5

the contrast.® We observe that the performance are good in the
presence of a mismatch in the processing parameters, obtaining
better classification when the adjustment is stronger than in the
matched case, and worse when it is weaker. The performance
remain very good in the absence of JPEG, in line with those
achieved by the unaware detector (AUC = 99.6% on the average
in the matched case). Expectedly, performance decreases as QF
decreases. However, good robustness to JPEG compression is
achieved (at least for CLAHE and HS) also when the QF is 85
and 80, which are outside the training range. Table II shows the
results under various contrast/brightness adjustment performed with
Photoshop. Based on these results, the CNN-based detector scales
very well with respect to the adjustment type maintaining good
performance when the tones of the image are adjusted in different
ways and, possibly, selectively in different tonal ranges, and when
the adjustment operates differently on the color channels.

IV. CONCLUSIONS

In this paper, we proposed an adversary-aware CNN-based
approach to cope with the well known problem of detection of
contrast adjusted images in the presence of JPEG post-processing.
To accomplish this task, we exploited the superior capabilities
of CNN architectures with respect to classical machine learning
tools. In order to build a detector which works well for generic
contrast adjustment, we trained the CNN with a certain number
of adjustments of different nature. Results show that our detector
achieves good performance over a wide range of QFs and gen-
eralizes well to unseen tonal adjustments. As further research, it
would be interesting to see if the performance with respect to the
most difficult cases can be improved by refining the composition
of the training, i.e., the types of contrast adjustments considered,
their proportions, and the distribution of the QF over the range,
and also the fusion strategy at the final stage. As a future work, we
would like to improve the performance on a patch level to move
from detection to localization.
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