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Abstract— Contrast Enhancement (CE) detection in the pres-
ence of laundering attacks, i.e. common processing operators
applied with the goal to erase the traces the CE detector looks
for, is a challenging task. JPEG compression is one of the most
harmful laundering attacks, which has been proven to deceive
most CE detectors proposed so far. In this paper, we present
a system that is able to detect contrast enhancement by means
of adaptive histogram equalization in the presence of JPEG
compression, by training a JPEG-aware SVM detector based on
color SPAM features, i.e., an SVM detector trained on contrast-
enhanced-then-JPEG-compressed images. Experimental results
show that the detector works well only if the Quality Factor
(QF) used during training matches the QF used to compress the
images under test. To cope with this problem in cases where the
QF cannot be extracted from the image header, we use a QF
estimation step based on the idempotency properties of JPEG
compression. Experimental results show good performance
under a wide range of QFs.

Index Terms— Multimedia forensics, Histogram equalization
detection, Adversarial multimedia forensics, JPEG quality fac-
tor estimation.

I. INTRODUCTION

When creating a forgery, contrast enhancement (CE) is
often used to adjust the contrast and lighting conditions of
image subparts. The detection of this manipulation has thus
been widely studied in image forensics, and, more recently,
in scenarios encompassing the presence of an adversary,
e.g., in adversarial image forensics [1], [2]. Due to the
peculiar traces left by contrast enhancement operators in
the image histogram, most early works were based on the
analysis of image first order statistics [3]–[5]. Anti-forensic
methods have been developed as well; in addition to targeted
approaches, aiming at removing the specific histogram arti-
facts the attacked detectors look at [6], universal approaches
against generic histogram-based detectors have also been
developed with good results [7]. Expectedly, it is quite easy
to cope with such attacks by developing detectors based
on second-order statistics [8], [9]. Such ad-hoc detectors,
however, fail when different attacks are considered. Since, in
real applications, the attack is not known in advance, targeted
anti-counter-forensic methods are of little help. Moreover,
in most cases, the attack consists in the application of one
(or several) post-processing operations, e.g., a geometric
transformation, filtering or compression. Coping with such

*The list of authors is provided in alphabetic order. The corresponding
author of the paper is Ehsan Nowroozi.

attacks often referred to as laundering attacks, turns out
to be a very challenging task. Since in most applications
images are stored and distributed in JPEG format, JPEG
compression is one of the most common laundering attacks
contrast-enhanced images are subject to. Unfortunately, the
performance of CE detectors proposed so far tend to decrease
significantly in the presence of even mild post-processing
and, in particular, all of them exhibit a poor robustness
against JPEG compression [3], [5], [10]–[12], even when the
compression is weak. Poor resilience to post-processing, and
in particular to JPEG compression, is a common problem
of state-of-the-art detectors of CE, and, to the best of our
knowledge, it has not been addressed yet.

In order to cope with this problem, in this paper we
propose an adversary-aware data-driven CE detector, inspired
by [13], where an SVM detector is trained to recognize a
specific class of attacks, corresponding, in our case, to JPEG
compression. Specifically, a pool of JPEG-compression-
aware SVM CE-detectors is trained for different values of
the JPEG quality factor (QF) of the attacked images. Given
a test image, the QF can be extracted from the header of the
image bitstream and the most suitable SVM detector used to
decide whether the image has been contrast-enhanced or not.
Such an approach is obviously prone to attacks, since forging
the header or re-saving the image in an uncompressed format
(e.g. PNG or bitmap) would prevent the identification of the
QF used to compress the image (or even to understand that
the image has been compressed) forcing the system to select
a wrong SVM detector. To prevent this problem, we devised
a refined scheme that does not rely on the information
contained in the image header, thus working only on image
pixels. The refined system works as follows: it first gets an
estimate of the QF by exploiting the idempotency property of
JPEG compression, that is, the fact that JPEG compression
with the same QF is an (almost) idempotent operation [14];
then, such an estimate is used to choose the proper SVM, i.e.,
the one that was trained on the QF closest to the estimated
one.

Among contrast enhancement operators, we focused on
Adaptive Histogram Equalization (AHE), which applying
contrast enhancement on a local basis. To the best of our
knowledge, the detection of such a local CE operator has
not been addressed so far. Besides, it is more challenging
than the detection of global CE operators (like for instance
gamma correction and histogram stretching), since it does not



introduce easily identifiable artifacts in the image histogram.
Regarding the feature set, we considered residual-based

features, that is features extracted by high-pass filtering the
image [15]. Such features have been recently used to detect
several types of image processing operations [5], [16]. In
particular, since we focus on color images, we considered
a feature model, inspired by the CRMQ1 model proposed
in [17], which also takes into account the pixel relationships
among the color channels. As contrast enhancement modifies
the inter-channel relationships among pixels [10], in fact,
possibly useful information may be discarded by converting
to grey-scale or considering the luminance channel only.

Experiments show that our system provides improved
performance in the presence of JPEG compression over a
wide range of QFs, while it maintains good performance in
the absence of attacks, that is when the AHE is the last step
of the manipulation chain.

As the further contribution, we also assess the performance
of our system when JPEG compression is carried out with
a different software concerning the one used to generate the
training images and to perform the QF estimation (JPEG-
compression software mismatch).

The paper is organized as follows: in Section II, we
define the detection task addressed in the paper and de-
scribe the proposed JPEG-aware detector. In Section III, we
describe the methodology we followed for conducting our
experiments. The results of the experiments are discussed in
Section IV. Conclusions and some considerations on future
work are finally given in Section V.

II. PROPOSED SYSTEM

Our goal is to design a detector to reveal if an image has
undergone contrast enhancement even when the enhanced
image is JPEG compressed. Specifically, we focus on con-
trast enhancement using Adaptive Histogram Equalization
[18]. In the following, we first formalize the detection
problem, then we describe our choice of the feature set and
present the architecture of the detector, which is based on
a pool of Support Vector Machines (SVMs) trained in an
adversary-aware modality.

The detection task is schematised in Figure 1. We let
hypothesis H0 correspond to the case of pristine images and
H1 to the case of contrast enhanced images. In both cases,
the images are JPEG compressed at the end (post-processing
operation) with a given Quality Factor (QF). In this scheme,
JPEG compression can also be viewed as a counter-forensic,
laundering-type, attack, due to its effectiveness in erasing the
traces of contrast manipulations [3], [5], [10]–[12].

A. THE CSPAM FEATURE SET

For our detection task, we need to select a sufficiently large
number features which are capable of capturing peculiar
types of dependencies among neighboring pixels. On the
other hand, we want to limit the dimensionality of the feature
set, so to be able to train an SVM. In fact, using a very large
feature set could provide better modeling capabilities, but
it would require resorting to multiple classifier approaches

Fig. 1: Detection task considered in this paper: adaptive
histogram equalization detection in the presence of JPEG
compression.

(e.g., ensemble classifiers) [19], which are more difficult to
train, especially in the adversary-aware modality. Residual-
based features (e.g., [15], [20]) have been largely used for the
detection of a wide variety of global manipulations [11]. For
a given choice of the residual, the feature set is computed by
evaluating the residual noises in all the directions (horizontal
left, horizontal right, vertical left, vertical right, diagonal left,
diagonal right), truncating the values at a certain T and then
computing the co-occurrences of order d. However, these
feature extractors, widely used in forensics, are designed
for grayscale images and cannot be directly applied to
color images. In this case, a possibility would be to extract
the features on the luminance channel; however, contrast
enhancement also modifies the relationship among color
channels, and hence considering the luminance only (or,
similarly, converting the images to grayscale), would result in
a loss of possibly useful information. To take into account
the relationships among color channels, we considered the
rich model for color images proposed in [17] for staganalysis
(CSRMQ1), and adapted it to our case. Basically, the rich
color feature space proposed in [17] consists of two different
components. The first component is derived from the spatial
rich model as in [15] (SRMQ1): specifically, the SRMQ1
features are computed for each color channel and added to
keep the same dimensionality of grayscale images. The sec-
ond component is a collection of 3-D color co-occurrences,
computed from the same noise residuals as for the SRMQ1
model but formed across the three channels of each pixel1.
For more details, the reader may refer to [17]. In its complete
form, the SRMQ1 model considers many different types
of residuals and then the final feature space has a very
large dimensionality (it consists of 12.753 features), which
cannot be adopted for standard detectors based on a single
classifier. Therefore, in our case, we adopted a new feature
model by using the SPAM (Subtractive Pixel Adjacency
Matrix) feature set [20] as the base set. More specifically,
according to the SPAM model, the first component of the
feature vector is obtained by considering the second-order
co-occurrences (i.e., d = 2) of the first order residuals, with
a truncation parameter T = 3, computed for each channel
and then merged. For the second component, the residual co-
occurrences are computed with respect to the three channels.

1These are always second-order co-occurrences (d = 2).



We call CSPAM this simplification of the CSRMQ1 feature
set. Since the dimensionality of the SPAM set is 686, the
final dimensionality of the CSPAM set is 2× 686 = 1372.

B. ADVERSARY-AWARE DETECTOR

Similarly to the what happens with the CE detectors
proposed in the literature, if we train the SVM classifier
based on the CSPAM feature set on pristine and enhanced
images (without taking into account the JPEG compression in
the end), the detector can correctly reveal the enhancement
in the ideal scenario in which CE is the last step of the
manipulation chain, but it completely fails in the presence
of JPEG post-processing, even when JPEG compression is
very mild (high-quality factors).

To design a contrast enhancement detector robust to JPEG
laundering attack, we trained several adversary-aware ver-
sions of the SVM classifier, where the classifier is trained
with JPEG compressed images on one hand (H0) and images
subject to contrast enhancement followed by JPEG compres-
sion with different QFs on the other hand (H1).

The overall architecture of the detector is reported in Fig-
ure 2. For a given image, the value of the QF used for JPEG
compression can be easily extracted from the quantization
table provided in the header of the image bitstream and used
to select the most suitable version of the SVM classifier (i.e.
the one trained with the QF which is most similar to the one
used to compress the test image).

In principle, we should train an SVM for any value of
the QF and then, given the image QF, use the corresponding
SVM model for testing2. However, similar results can be
obtained by training a lower number of SVMs for some
selected values of QF and then using the SVM corresponding
to the closest QF. By referring to Figure 5, we see that the
performance decay rather slowly (in terms of AUC) when
the QF of the test image departs from the QF used for
training (matched value). Notice also that, not surprisingly,
the performance in the matched case increases for larger
values of QF, since a weaker compression is less effective in
erasing the traces of AHE. Based on our tests, we argued that
a quantization step equal to 5 for medium-high QF values,
and 2 for very high QFs is appropriate. Then, we built our
classifier by considering the 6 SVM models reported in the
scheme of Figure 2.

1) Idempotency-based QF estimation: As we said, given a
JPEG image, the QF can be almost perfectly estimated from
the JPEG bitstream. However, if the compressed image is
re-saved in uncompressed format (e.g., png, bitmap), or the
image header is manipulated, it is clear that the proposed
detector does not work. In this case, in fact, an SVM with a
large QF mismatch would likely be chosen thus significantly
impairing the detection performance. Therefore, as a further
contribution, we propose an algorithm to estimate the QF
directly from image pixels, thus extending the applicability
of our detector. Another possibility to design a system which

2Since we are interested in medium-high quality factor, we take QF > 80
(much lower QF are not very common in practice since the visual image
quality degrades too much).

Fig. 2: Scheme of the proposed JPEG-aware detector.

is robust to attacks would be to train a single SVM classifier
for all or some selected values of the QF. However, based on
our experiments, by following this approach, we get lower
performance.

In order to get an estimate of the QF from the pixel do-
main, we propose to exploit the fact that JPEG compression
is an (almost) idempotent operator, that is, whenever applied
multiple times with the same QF, it produces the same result
obtained with a single application. A similar property has
been exploited in [14] for video codec identification. Our
algorithm works as follow: first, the image under analysis
is compressed with various QFs3, then the value leading to
the minimum distance between the images before and after
compression is searched for (the L1 distance is adopted as
distance measure). In particular, we identified a critical QF
value, say QF∗. A local minimum is then searched below
QF∗ (and above 50). If no local minimum is found inside
this range, then a finer search is performed over the QFs
larger than QF∗, and up to 98. For higher QFs, namely
99 and 100, the system guess is always 98.4 We point out
that, as a consequence, when QF estimation is performed
in the pixel domain with the idempotency-based algorithm,
the SVM model for QF=100 (SVM100 in Figure 2) is never
selected by the detector. We experimentally set QF∗ = 93.

III. EXPERIMENTAL METHODOLOGY

To produce the datasets for our experiments, we started
from color images in uncompressed (TIFF) format, part of
which used for training and part for testing. The images
for the H0 and H1 classes were built as detailed in the
scheme in Figure 1. The images were JPEG compressed with
quality factor QF for producing the H0 samples, while, the
images for the H1 class were generated by first applying

3We start from QF = 50 assuming that the image is never compressed
with a lower QF.

4Very high values of QF (99 and 100) are difficult to estimate with no
errors. However, the detection performance of our system training in these
cases are generally very good (see Figure 5), so getting a very accurate
estimation in this range is not of primary importance.



the AHE operator and then compressing them with quality
factor QF (the same as for H0). For the unaware case, the
training images were built according to the same scheme but
without considering the JPEG compression stage at the end.
The Contrast-Limited implementation of AHE (CLAHE) was
used for contrast enhancement [21]. With respect to the
ordinary AHE, CLAHE prevents the overamplification of
noise (that adaptive histogram equalization can give rise to)
in relatively homogeneous regions. This is done by clipping
the histogram at a predefined value before computing the
cumulative distribution function (CDF); this limits the slope
of the transformation function (given by the CDF) which
determines the contrast amplification. The value at which
the histogram is clipped, called clip limit, depends on the
normalization of the histogram and thereby on the size of
the neighborhood region, which by default is 8×8. On color
images, the straightforward application of CLAHE to each
channel separately unnaturally changes the color balance and
produces a visually unpleasant image. A common strategy is
to convert the image from the RGB to the HSV color space
and then applying CLAHE only to the luminance channel,
namely the V channel. Then, the image is converted back to
the RGB domain. We then followed this strategy to produce
the AHE manipulated images in our case. In our experiments,
the clip limit parameter for CLAHE is set to 0.004 (resulting
in a not too strong enhancement). Some sample of images for
the hypotheses H0 and H1 are provided in Figure 3 for QF
equal to 80 and 98. Regarding QF values, the images used
for training (both under H0 and H1) were compressed with
QF ∈ {80, 85, 90, 95, 98, 100}, whereas for the test images
all the QFs in the range [80, 100] were considered.

The Matlab environment was used to process the images,
to train and test the SVMs (with the LibSVM library package
[22]) and run the idempotency-based QF estimator. In our
tests, we also considered the GIMP software (and also
Photoshop) for compressing the test images, in order to
assess the performance of the detector in the presence of
a mismatch in the compression software.

Each SVM classifier was fed with the 1372-dimensional
features (CSPAM) extracted from the color images. A Gaus-
sian kernel was adopted, and the kernel parameters were
determined by 5-fold cross-validation. In the unaware case,
we trained the SVM with uncompressed pristine and contrast
manipulated images. In the aware case, to build the pool
of SVMs detectors depicted in Figure 2, we separately
trained the 6 SVMs (namely SVM80, SVM85, SVM90,
SVM95, SVM98 and SVM100) on the corresponding JPEG
compressed versions of the images.

IV. EXPERIMENTAL RESULTS

We considered uncompressed (TIFF) images taken from
the RAISE8K dataset [23], consisting of camera-native im-
ages. Specifically, we built our dataset as follows: 6000
images were used for the training set (1000 of which were
used for tuning the kernel parameters, i.e., for internal cross-
validation) and 1997 images for the tests. To get a faster
feature computation, the images were subsampled to a size

(a) H0 sample for QF 80

(b) H1 sample for QF 80

(c) H0 sample for QF 98

(d) H1 sample for QF 98

Fig. 3: Visual comparison between an H0 and H1 sample
for two different QFs.



QF 80 81 82 83 84 85
AUC 0.5441 0.5429 0.5415 0.5390 0.5378 0.5370
QF 86 87 88 89 90 91

AUC 0.5331 0.5310 0.5287 0.5274 0.5242 0.5199
QF 92 93 94 95 96 97

AUC 0.5184 0.5118 0.5081 0.5027 0.4955 0.4871
QF 98 99 100

AUC 0.4754 0.4570 0.4507

TABLE I: AUC values of the unaware SVM classifier.

1072x770. Concerning the system hardware, we run our
experiments on an Intel(R) Core(TM) i7-6700 CPU @ 3.40
GHz with four cores, 32 GB of RAM and with graphics card
NVIDIA Geforce GT 730 (no GPU used).

A. RESULTS IN THE UNAWARE CASE

In this section, we show the results of unaware classifica-
tion. The unaware SVM can perfectly classify uncompressed
pristine and manipulated images, and the Area Under Curve
(AUC) of the ROC curve for the classification is 100%. We
also run some tests in the presence of laundering attacks, that
is when both the pristine and manipulated images are subject
to post-processing operations. In particular, we considered
a case of filtering (median filtering with window size 3x3)
and geometric transformations (resize with scaling factor 0.9,
rotation with an angle of 5 degrees). In all these cases, the
performance only slightly decreases, and the AUC remains
above 90%. This shows that the CSPAM feature set that
we defined is very discriminative for our classification task.
When JPEG laundering is considered, however, the detector
fails to classify the images, thus confirming that the JPEG
compression is very harmful. Table I shows the detection
performance of the unaware SVM in this case.

B. PERFORMANCE OF THE AWARE DETECTOR

We now focus on the results achieved by the aware detec-
tor illustrated in Figure 2. Figure 4 shows the performance
of each SVM classifier tested under matched condition, that
is, when the images considered for training and testing are
compressed with the same QF. The performance improves
significantly with respect to the unaware case. We observe
that performance reduces when the QF decreases. This is
expected since the lower the QF, the more the traces of
AHE are erased by compression, and the detection task
becomes harder. Arguably, for much lower quality factors,
it is possible that the traces are almost completely erased;
however, the quality of the images would also be seriously
impaired.

In Figure 5 we report the results of the 6 SVMs for QF ∈
[80,100]. The performance of the system based on the pool
of aware SVM classifiers when the QF value is extracted
from the JPEG header (i.e., perfect estimation) can be easily
argued from these plots by considering for each image the
closest QF value in the set {80,85,90,95,98,100} and then
select the corresponding SVM for testing. They are reported
in Figure 6. From Figure 5, we also observe that using
the minimum distance criterium for the SVM selection is

Fig. 4: Performance of the aware SVMs for the classification
task (under matched QF).

Fig. 5: Performance of the SVMs as a function of the QF.

a good choice. We also verified that by training only one
SVM considering all the 6 QF values above, the performance
degrades significantly (the average AUC is 87%).

When the QF is estimated on the pixel image according to
the proposed idempotency-based approach, the performance
is expected to decrease because of estimation errors. The
average error in terms of L1 distance between real and
estimated QFs under H0 and H1 is reported in Table II and
Table III respectively. The average is computed on the 1997
images in the test set. The performance of the idempotency-
based algorithm are pretty good, always leading to an average
estimation error below 0.1% for every QF ≤ 98 Note that
the average errors equal to 1 and 2 obtained, respectively,
for QF = 99 and 100 are expected, given that for such QFs
the algorithm always decide for 98 (see discussion in Section
II-B.1). Besides, we observe that the average error in the var-
ious cases is slightly larger under H1 than under H0. Figure
7 shows the performance of the system when QF estimation
is based on JPEG-idempotency. The performance reduction
with respect to the case of perfect QF estimation is pretty
slight (of order 10−3 on the average) and, expectedly (see
the discussion in Section II-B.1), pertains mainly to the case
of higher QF (99 and 100), where, however, the performance
of the detector remains very good. We also verified that the



Fig. 6: Performance of the system based on the pool of aware
SVM classifiers.

QF 80 81 82 83
Average Error 0.0856 0.1002 0.0586 0.0676

QF 84 85 86 87
Average Error 0.0656 0.0976 0.0190 5.0075e-04

QF 88 89 90 91
Average Error 0.0010 5.0075e-04 5.0075e-04 0

QF 92 93 94 95
Average Error 0 0.1202 0.1022 0.0315

QF 96 97 98 99
Average Error 0.0220 0.0015 0 1

QF 100
Average Error 2

TABLE II: Average error of QF estimation for H0.

performance for the case of uncompressed images remains
good. In this case, as a result of the idempotency-based
QF estimation, the SVM98 is always selected. The AUC is
97,2% and then the performance reduction with respect to
the unaware case is very small.

C. PERFORMANCE IN THE PRESENCE OF SOFTWARE
MISMATCH

All the results reported so far were obtained by working in
the Matlab environment. However, the performance can be
sensitive to a mismatch of the software used for compression,
as different software may use different JPEG quantization
tables. We may expect that this is especially the case when
the idempotency-based QF estimator is used; in this case,

QF 80 81 82 83
Average Error 0.1017 0.1202 0.0686 0.0721

QF 84 85 86 87
Average Error 0.0631 0.1107 0.0325 0.0015

QF 88 89 90 91
Average Error 0.0015 0.0010 0.0010 0

QF 92 93 94 95
Average Error 0 0.1778 0.1402 0.0451

QF 96 97 98 99
Average Error 0.0451 0.0015 0 1

QF 100
Average Error 2

TABLE III: Average error of QF estimation for H1.

Fig. 7: Performance of the system based on the pool of
aware SVM classifier when the QF is estimated by means
of idempotency.

Fig. 8: Performance of the SVMs as a function of the QF
in the presence of software mismatch. The test images are
compressed with GIMP while the images used for training
are compressed in Matlab.

in fact, software mismatch might also lead to a wrong
estimation. Then, we also assessed the performance of the
detector when the software used for compressing the test
images is different from the one used to compress the images
for training and inside the idempotency-based estimator. In
particular, we used the GIMP software for JPEG compression
of the test images5.

Figure 8 shows the results of the 5 SVMs for QF ∈
[80,100]. When the QF value can be read from the JPEG
header (i.e., perfect estimation), the performance of the
overall system based on the pool of aware SVM classifiers
can be easily derived from these plots. The performance
reduces with respect to the matched case, although not
drastically so (the AUC always remains above 80%). The
average error in terms of L1 distance between real and
estimated QF is reported in Table IV and Table V under

5This corresponds to implement the last step of the processing chain in
Figure 1 with the GIMP software instead than with Matlab.



QF 80 81 82 83
Average Error 0.0200 0.0250 0.0130 0.0090

QF 84 85 86 87
Average Error 0.0100 0.0195 5.0075e-04 0

QF 88 89 90 91
Average Error 0 0 0 0

QF 92 93 94 95
Average Error 0 0.0401 0.0401 0.0045

QF 96 97 98 99
Average Error 0.0030 0 0 1

QF 100
Average Error 2

TABLE IV: Average error of the QF estimation for H0 in
the presence of software mismatch (test images compressed
with GIMP).

QF 80 81 82 83
Average Error 0.0250 0.0300 0.0100 0.0090

QF 84 85 86 87
Average Error 5.0075e-04 0.0260 5.0075e-04 0

QF 88 89 90 91
Average Error 0 0 0 0

QF 92 93 94 95
Average Error 0 0.0376 0.0200 0.0030

QF 96 97 98 99
Average Error 0.0030 0 0 1

QF 100
Average Error 2

TABLE V: Average error of the QF estimation for H1 in
the presence of software mismatch (test images compressed
with GIMP).

H0 and H1 respectively. By comparing these results with
those reported in the previous section for the matched case,
we notice that the estimation is still very good.

Figure 9 shows the performance of the proposed detector
in the presence of software mismatch when the QF estimation
is made in the pixel domain by means of the idempotency-
based approach.

We also considered a mismatched case in which the Pho-
toshop software is used (instead of GIMP) for compressing
the test images. In this case, the idempotency-based approach
has poorer performance with respect to the GIMP software
case. By focusing on the Photoshop qualities 10, 11, 12 for
the compression (which correspond to medium-high values
of QF)6, the performance (AUC values) in the case of
QF estimated from the image pixels are 79, 85 and 90
respectively.

V. CONCLUDING REMARKS

Detection of contrast-enhanced images in the presence of
JPEG post-processing is known to be a hard task. This is a
serious problem since JPEG compression is often the last step
in any processing chain and also because an attacker may use
JPEG compression as a laundering attack. In this paper, we
used adversary-aware training to cope with this problem. The
performance of the aware detector is very good when the QF

6In Photoshop, the strength of the compression is determined by setting
a parameter for the image quality in a (non linear) scale from 0 to 12.

Fig. 9: Performance of the detector in the presence of
software mismatch. The test images are compressed with
GIMP while the compression of the images used for training
and the idempotency-based estimation is implemented in
Matlab.

used during training matches the QF used to compress the
images under test, but decrease significantly when the two
QFs are not matched. Hence, we proposed a system where
an SVM detector is chosen, within a pool of detectors trained
with different QFs, according to the detector’s estimate of the
QF used to compress the test image. When such a QF cannot
be reliably extracted from the image header, the detector
estimates the QF by exploiting the approximate idempotency
of JPEG compression. Experimental results prove that the
proposed system provides good performance for a wide range
of QFs (larger than 80) also in the presence of software
mismatch.

Our system is based on a set of image features obtained
by adapting the feature set proposed in [17], however we
did not make any attempt to optimise the feature set to the
problem at hand (as done in [11], [24] for the case of SRMQ1
features [15]), hence it is possible that better results could
be obtained by using a different feature set (e.g., by using
higher order residuals).

Throughout the paper, we focused on the detection of
adaptive histogram equalization (namely CLAHE), a prob-
lem that got lesser attention and is substantially more difficult
than the detection of global operators based, for instance,
on histogram stretching or gamma correction. As a further
work, we could evaluate the generalization capability of the
detector trained on CLAHE when used to detect other kinds
of contrast enhancement operators.

Eventually, we would like to apply our approach to CNN
(Convolutional Neural Networks) detectors, which have been
proven to provide significantly better results on other multi-
media forensic applications.
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