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ABSTRACT
Signal processing modules working directly on the encrypted
data could provide an elegant solution to application scenarios
where valuable signals should be protected from a malicious
processing device. In this paper, we investigate the implemen-
tation of the discrete Fourier transform (DFT) in the encrypted
domain, by using the homomorphic properties of the under-
lying cryptosystem. Several important issues are considered
for both the DFT and radix-2 fast Fourier transform, includ-
ing the error analysis and the maximum size of the sequence
that can be transformed.

Index Terms— Discrete Fourier transforms, cryptogra-
phy, error analysis, homomorphic encryption, signal process-
ing in the encrypted domain

1. INTRODUCTION

Signal processing in the encrypted domain (s.p.e.d.), i.e, the
availability of signal processing modules that work directly
on the encrypted data, would be of great help for application
scenarios where “valuable” signals must be processed. Two
recent examples regard zero-knowlegde watermark detection
[1], or privacy preserving analysis of personal data [2].

From the signal processing point of view, one of the most
extensively used modules is the discrete Fourier transform
(DFT), defined as

X(k) =
M−1∑
n=0

x(n)Wnk, k = 0, 1, . . . ,M − 1 (1)

where W = e−j2π/M and x(n) is a finite duration sequence
with length M . One of the appealing properties of the above
transform is that it can be implemented via fast algorithms,
noted as fast Fourier transforms (FFTs).

The aim of our work is to provide a s.p.e.d. implemen-
tation of the above expression. We will consider a scenario
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in which the transform device is fed with a sample-wise en-
crypted version of the input vector. In order to make possible
linear computations on encrypted values, we will assume that
the chosen cryptosystem is homomorphic with respect to the
addition, i.e., there exists an operator φ(·, ·) such that

D[φ(E[a], E[b])] = a + b (2)

where E[·] and D[·] denote the encryption and decryption op-
erators. With such a cryptosystem it is indeed possible to add
two encrypted values without first decrypting them. More-
over, it is possible to multiply an encrypted value by a public
integer value by repeatedly applying the operator φ(·, ·).

Another property of the above cryptosystem we assume is
that it is probabilistic, that is, given two encrypted values it
is not possible to decide if they conceal the same value. This
is fundamental, since the alphabet to which the input samples
belong is usually limited, and a non-probabilistic cryptosys-
tem would disclose a great amount of information about the
statistical distribution of the input signal. A widely known
example of a cryptosystem fulfilling both the above require-
ments is the Paillier cryptosystem [3], for which the operator
φ(·, ·) is a modular multiplication1.

Since the DFT transform coefficients are public, the ex-
pression in (1) can be computed with an encrypted input vec-
tor by relying on the homomorphic property. However, some
issues need to be addressed.

First of all, both the input samples and the DFT coeffi-
cients need to be represented as integer values. Secondly, FFT
like algorithms should be applicable also in the encrypted do-
main. Finally, encrypted values can not be scaled relying on
homomorphic computations. Since many practical homomor-
phic cryptosystems are based on modular operations on a fi-
nite field/ring, we must ensure that both input and output val-
ues do not wrap around in the modular representation.

In this paper, we will provide solutions to the above is-
sues. A convenient signal model for s.p.e.d. will be proposed,
allowing us to define both a s.p.e.d. DFT and a s.p.e.d. FFT.
Particular attention will be devoted to the quantization error

1With the Paillier cryptosystem, the following s.p.e.d. operations are de-
fined: D[E[a] ·E[b]] = a+ b; D[E[a] ·E[b]−1] = a− b; D[E[a]b] = ab.
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introduced by the s.p.e.d. implementation and to the maxi-
mum size of the sequence that can be transformed.

2. SIGNAL MODEL FOR S.P.E.D.

Let us consider a signal x(n) ∈ C, n = 0, . . . , M − 1, with
x(n) = xR(n)+ jxI(n), xR,I ∈ R. In the following, we will
assume |x(n)| ≤ 1, from which |xR,I(n)| ≤ 1.

In order to process x(n) in the encrypted domain, the sig-
nal values must be approximated by suitable integers. This is
accomplished by the following quantization process

s(n) = �Q1xR(n)�+ j�Q1xI(n)� = sR(n) + jsI(n) (3)

where �·� is the rounding function and Q1 is a suitable scaling
factor. In the following, we will assume that the quantization
scaling factor is an integer. Based on the properties of x(n),
the quantized signal will satisfy−Q1 ≤ sR,I(n) ≤ Q1. If the
cryptosystem encrypts integers modulo N , this means that the
scaling factor must satisfy N ≥ 2Q1 + 1, so that there is a
one-to-one mapping between sR,I(n) mod N and sR,I(n).

The coefficients Wnk can be quantized using the same
strategy as above. In particular, we define

C(r) =

⌈
Q2 cos

(
2πr

M

)⌋
− j

⌈
Q2 sin

(
2πr

M

)⌋
=CR(r) + jCI(r)

(4)

where Q2 is the DFT coefficient scaling factor. Thanks to the
properties of W , we have −Q2 ≤ CR,I(r) ≤ Q2.

Based on the above model, the s.p.e.d. DFT is defined as

S(k) =

M−1∑
n=0

C(nk)s(n), k = 0, . . . , M − 1. (5)

Since all computations are between integers, the expression
above can be evaluated in the encrypted domain by relying on
the homomorphic properties. If the inputs are encrypted with
the Paillier cryptosystem, the s.p.e.d. DFT is given as

E[S(k)] =

M−1∏
n=0

E[s(n)]C(nk), k = 0, . . . ,M − 1 (6)

where all computations are done modulo N2 [3].

3. MAGNITUDE REQUIREMENTS

The computation of the DFT using (5) requires two problems
to be tackled with. The first one is that there will be a scaling
factor between S(k) and the desired value X(k). The second
one is that, in order to implement (5) using a cryptosystem
which encrypts integers modulo N , one must ensure that S(k)
is always recoverable from S(k) mod N . Hence, according
to the proposed model, one has to find an upper bound on
S(k) such that |SR,I(k)| ≤ QS , and verify that N ≥ 2QS+1.

In general, S(k) can be expressed as

S(k) = KX(k) + εS(k). (7)

Based on the above equation, the desired DFT output can be
estimated as X̃(k) = S(k)/K, and the upper bound is

QS = �MK + εS,max� . (8)

The value of both K and εS,max will depend on the scal-
ing factors Q1 and Q2 and on the particular implementation
of the DFT. These issues will be discussed in the following.

3.1. Direct Computation

Let us express s(n) = Q1x(n)+ εs(n) and C(r) = Q2W
r +

εW (r). If the DFT is directly computed by applying (5), then

S(k) =Q1Q2X(k) +
M−1∑
n=0

Q1x(n)εW (nk)

+
M−1∑
n=0

Q2εs(n)Wnk +
M−1∑
n=0

εs(n)εW (nk).

(9)

The scaling factor is K = Q1Q2. As to the upper bound, due
to the properties of the rounding function, |εs,W (n)| ≤ 1/

√
2.

Hence |s(n)| ≤ Q1 + 1/
√

2, |C(r)| ≤ Q2 + 1/
√

2 and, after
simple manupulations,

|S(k)| ≤M

(
Q1Q2 +

Q1√
2

+
Q2√

2
+

1

2

)
(10)

from which QS = M�Q1Q2 + Q1/
√

2 + Q2/
√

2 + 1/2�.

3.2. Decimation in Time Radix-2 FFT

This algorithm is applied when M = 2ν and allows the DFT
to be computed in ν stages. At each stage, a new pair of
coefficients is obtained as a linear combination of the corre-
sponding old pair of coefficients, using a so-called butterfly
structure [4]. By applying the proposed model, the s.p.e.d.
radix-2 butterfly can be obtained as

S(m+1)(p) = Q2S
(m)(p) + C(r)S(m)(q) (11)

S(m+1)(q) = Q2S
(m)(p)− C(r)S(m)(q). (12)

Note that the multiplication by Q2 is required in order to add
(or subtract) integers which are related to the corresponding
complex coefficients by the same scale factor.

As to the upper bound analysis, the two branches of the
butterfly are equivalent. Let us consider the first branch. If
we express S(m)(p) = K(m)X(m)(p) + ε

(m)
S (p), then

S(m+1)(p) = Q2K
(m)

(
X(m)(p) + W rX(m)(q)

)
+ Q2

(
ε
(m)
S (p) + W rε

(m)
S (q)

)
+ K(m)X(m)(q)εW (r) + ε

(m)
S (q)εW (r)

(13)
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from which the following recursions can be derived

K(m+1) = Q2K
(m) (14)

ε
(m+1)
S (p) = Q2

(
ε
(m)
S (p) + W rε

(m)
S (q)

)
+ K(m)X(m)(q)εW (r) + ε

(m)
S (q)εW (r).

(15)

At the first stage S(0)(n) = s(ñ) = Q1x(ñ) + εs(ñ), where
ñ indicates n in bit reverse order, so that the recursion starts
with K(0) = Q1 and ε

(0)
S (p) = εs(p̃). Moreover, up to the

second stage we have W r ∈ {1, j}. Hence, the multiplication
by Wr does not require any integer multiplication at all, so
that no scaling factor is introduced and εW = 0. Therefore,
K(2) = Q1 and by using (14), it is easy to derive the scale
factor as K = K(ν) = Q1Q

ν−2
2 .

As to the upper bound, we consider an equivalent recur-
sive relation on an upper bound of the quantization error

|ε(m+1)
S | ≤

(
2Q2 +

1√
2

)
|ε(m)

S |+ 2m

√
2
K(m). (16)

Note that for the first two stages the above expression simpli-
fies as |ε(m+1)

S | ≤ 2|ε(m)
S |, since εW = 0. Hence, by using as

initial condition |ε(2)S | ≤ 4/
√

2 in (16) , the final upper bound
can be expressed as

|ε(ν)
S | ≤ 4√

2

(
2Q2 +

1√
2

)ν−2

+
ν−3∑
k=0

2ν−1−k

√
2

Q1Q
ν−3−k
2

(
2Q2 +

1√
2

)k

= εS,max

(17)

from which we derive the upper bound on S(k) as QS =
MQ1Q

ν−2
2 + εS,max.

4. ERROR ANALYSIS

Since in the s.p.e.d. DFT there is no rescaling after multipli-
cation, there is no computational noise, and the error is due
only to the quantization of the twiddle factors.

In order to estimate the overall quantization error on the
DFT values, the noise-to-signal ratio (NSR) will be evaluated.
We will assume that both εs(n) and εW (r) are i.i.d. variables
with zero mean and variance σ2

q and σ2
W,q , respectively. Al-

though εW (r) is deterministic, this will produce a simple es-
timate of the quantization noise.

As to the input signal, its NSR can be estimated as η =
σ2

q/Q2
1σ

2
x where σ2

x indicates the signal power. If we con-
sider the DFT computation, the NSR can be estimated as η̃ =
σ2

εS
/K2Mσ2

x. In the case of the direct DFT computation, re-
lying on equation (9) and neglecting the terms εs(n)εW (nk),
we can estimate σ2

εS
≈MQ2

1σ
2
xσ2

W,q + MQ2
2σ

2
q . Hence

η̃D = η +
σ2

W,q

Q2
2

. (18)

In the case of a radix-2 FFT, the variance of the error at the
mth stage can be recursively approximated as

σ2

ε
(m+1)
S

≈ 2Q2
2σ

2

ε
(m)
S

+ 2mσ2
xσ2

W,qQ
2
1Q

2(m−2)
2 . (19)

If we set the initial condition σ2

ε
(2)
S

= 4σ2
q , then we have

σ2
εS

= 2νQ
2(ν−2)
2 σ2

q+(ν−2)2ν−1σ2
xσ2

W,qQ
2
1Q

2(ν−3)
2 . There-

fore, the NSR can be expressed as

η̃R2 = η +
ν − 2

2

σ2
W,q

Q2
2

. (20)

Since the value of Q1, and hence η, is fixed by the proper-
ties of the input signal, the above formulas permit to evaluate
the degradation introduced on the encrypted DFT coefficients
as a function of Q2. A fair design criterion could be that of
choosing a value of Q2 which yields a similar degradation
with respect to that introduced by a plaintext FFT.

According to the way a plaintext FFT is implemented,
two cases need to be analyzed: if a plaintext radix-2 FFT is
implemented on a fixed point hardware with registers hav-
ing b2 bits and scaling is performed at each stage, an equiv-
alent encrypted domain implementation should satisfy η̃ ≤
4M · 2−2b2/3σ2

x [4], where σ2
x is the power of the input sig-

nal, assumed white. If we assume σ2
W,q = 1/6, we have

Q2 ≥
{

σx · 2b2−ν/2−3/2 DFT

σx

√
ν − 2 · 2b2−ν/2−2 FFT.

(21)

As a consequence, the s.p.e.d. implementation will require
less bits for quantizing the twiddle factors with respect to a
classical fixed point implementation.

In the case of a plaintext radix-2 FFT implementation on
a floating pointing hardware using f2 bits for the fractional
part, the NSR bound is given by η̃ ≤ 2ν · 2−2f2/3 [4]. Hence

Q2 ≥
{√

1/4ν · 2f2 DFT√
(ν − 2)/8ν · 2f2 FFT.

(22)

In this case, the quantization of the twiddle factors in the
s.p.e.d. implementation requires almost the same number of
bits of the fractional part of the floating point registers.

5. PRACTICAL EXAMPLES

Consider a scenario in which a set of encrypted data must
undergo different processing tasks. It is reasonable to assume
that the data are encrypted once, and that each processing task
employs the same set of encrypted data. Therefore, each pro-
cessing task must rely on an implementation satisfying the
requirement on the modulus.

In the following, we will assume that each s.p.e.d. im-
plementation fulfills the same requirements in terms of both
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Fig. 1. Minimum value of nP = �log2 N
 as a function of
ν = log2 M for different scenarios: a) fixed point inputs; b)
floating point inputs. Solid line is DFT. Dashed line is FFT.
The straight line corresponds to nP = 1024. c1 = 8 and
f2 = 23 correspond to IEEE 754 single precision, c1 = 11
and f2 = 52 correspond to IEEE 754 double precision.

input NSR and output NSR as the plaintext version. More-
over, we will assume Q1 = 2n1 and Q2 = 2n2 . Finally, for
security reasons, we will assume that the modulus used by
Paillier satisfies nP = �log2 N
 = 1024.

Given (10), a simple design strategy ensuring that no wrap
around occurs in the internal computations of DFT is

N ≥ 4 (2νQ1Q2) (23)

which holds for every Q1, Q2 ≥ 2. The above bound is satis-
fied by requiring �log2 N� ≥ ⌈

log2

(
2ν+2Q1Q2

)⌉
or

nP ≥ ν + n1 + n2 + 3. (24)

As to the FFT, a similar bound can be derived as

N ≥ 2
(
2νQ1Q

ν−2
2 + ξ

)
+ 1 (25)

where ξ can be deduced from equation (17). Unless Q2 is
very small, it is safe to assume ξ < 2νQ1Q

ν−2
2 − 1/2, so that

the above bound is satisfied by requiring

nP ≥ ν + n1 + (ν − 2)n2 + 3. (26)

For a fixed n2, both the above constraints depend linearly on
ν, i.e., nP ≥ αν +β, with α = 1 for the DFT and α = 1+n2

for the FFT. Hence, the maximum allowable FFT size mainly
depends on n2 (Asymptotically, νFFT,max ≈ nP /n2).

We will consider different scenarios, according to whether
the inputs and the twiddle factors of the original FFT are ei-
ther fixed point or floating point values: a) Fixed point inputs:
if the input is quantized using b1 bits, its values can be mapped
onto integer values in the interval [−2b1−1, 2b1−1−1], so that
we can assume n1 = b1 − 1. b) Floating point inputs: in or-
der to preserve the whole dynamic of the normalized floating
point representation, one should be able to represent values
from ±2−2c1−1

−2 to ±22c1−1

, where c1 is the number of bits

of the exponent. Unless the properties of the input signal are
known, this requires n1 = 2c1−2; c) Fixed point coefficients:
based on (21), a convenient choice is n2 = �b2−ν/2+1/2
;
d) Floating point coefficients: based on (22), a convenient
choice is n2 = f2 − 1.

According to the considered scenario, one can choose the
convenient values of n1 and n2 and substitute them into (24)-
(26) in order to verify the requirements of the cryptosystem.
In Fig. 1, we show the minimum nP required by six different
scenarios characterized by either fixed point or floating point
inputs. If the number of FFT point is not very high, most
of the scenarios can rely on the 1024-bit modulus. However,
when either the twiddle factors or the inputs require a high
precision quantization, the allowable FFT size can be quite
limited. A simple solution could be to use a direct DFT im-
plementation, which has less stringent requirements on the
cryptosystem modulus, at the cost of a greater complexity.

6. CONCLUDING REMARKS

We have investigated the implementation of the DFT on a vec-
tor of encrypted samples relying on the homomorphic prop-
erties of the underlying cryptosystem. It has been shown how
the maximum allowable DFT size depends on the modulus
of the cryptosystem, on the DFT/FFT implementation, and
on the required precision. The results have also shown that
the noise introduced by a s.p.e.d. implementation is usually
smaller than in a classical fixed point implementation and
comparable to a floating point one. Our approach gives use-
ful design criteria for the implementation of s.p.e.d. modules
and suggests several other issues to be addressed in future re-
search on s.p.e.d. topics. For instance, an interesting open
question is the tradeoff between feasibility and complexity,
i.e., the comparison between feasible but less efficient imple-
mentations and efficient but sometimes unfeasible ones.
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