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Abstract—The problem of optimum watermark embedding and
detection was addressed in a recent paper by Merhav and Sabbag,
where the optimality criterion was the maximum false-negative
error exponent subject to a guaranteed false-positive error expo-
nent. In particular, Merhav and Sabbag derived universal asymp-
totically optimum embedding and detection rules under the as-
sumption that the detector relies solely on second-order joint em-
pirical statistics of the received signal and the watermark. In the
case of a Gaussian host signal and a Gaussian attack, however,
closed-form expressions for the optimum embedding strategy and
the false-negative error exponent were not obtained in that work.
In this paper, we derive the false-negative error exponent for any
given embedding strategy and use such a result to show that in gen-
eral the optimum embedding rule depends on the variance of the
host sequence and the variance of the attack noise. We then focus
on high signal-to-noise ratio (SNR) regime, deriving the optimum
embedding strategy for such a setup. In this case, a universally op-
timum embedding rule turns out to exist and to be very simple
with an intuitively appealing geometrical interpretation. The ef-
fectiveness of the newly proposed embedding strategy is evaluated
numerically.

Index Terms—Hypothesis testing, Neyman–Pearson, watermark
detection, watermark embedding, watermarking.

I. INTRODUCTION

A BOUT a decade ago, the community of researchers in
the field of watermarking and data hiding has learned

about the importance and relevance of the problem of channel
coding with noncausal side information at the transmitter [1],
and in particular, its Gaussian version—writing on dirty paper,
due to Costa [2], along with its direct applicability to water-
marking; cf. [3] and [4]. Costa’s main result is that the ca-
pacity of the additive white Gaussian noise (AWGN) channel
with an additional independent interfering signal, known non-
causally to the transmitter only, is the same as if this interfer-
ence were available at the decoder as well (or altogether nonex-
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istent). When applied in the realm of watermarking and data
hiding, this means that the host signal (playing the role of the
interfering signal), should not be actually considered as addi-
tional noise, since the embedder (the transmitter) can incorpo-
rate its knowledge upon generating the watermarked signal (the
codeword). The methods based on this paradigm, usually known
as side-informed methods, can even asymptotically eliminate
(under some particular conditions) the interference of the host
signal that was previously believed to be inherent to any water-
marking system.

Ever since the relevance of Costa’s result to watermarking
has been observed, numerous works have been published about
the practical implementation of the side-informed paradigm for
the so-called multibit watermarking [4]–[7] case, where the de-
coder estimates the transmitted message among many possible
messages. Far less attention has been devoted, however, to the
problem of deciding on the presence or absence of a given wa-
termark in the observed signal. In fact, in most of the works that
deal with this binary hypothesis testing problem, usually known
as zero-bit (a.k.a. one-bit) watermarking, the watermarking dis-
placement signal does not depend on the host1 [8]–[12] that then
interferes with the watermark, thus contributing to augment the
error probability. To the best of our knowledge, exceptions to
this statement are the works by Cox et al. [3], [13], Liu and
Moulin [14], Merhav and Sabbag [15], and Furon et al. [16],
[17]. In the next few paragraphs, we briefly describe the main
results contained in these works.

In [3], Cox et al. introduce the paradigm of watermarking as
a coded communication system with side information at the em-
bedder. Based on this paradigm, and by considering a statistical
model for attacks, the authors propose a detection rule based
on the Neyman–Pearson criterion. The resulting detection re-
gion is replaced by the union of two hypercones; mathemati-
cally, this detection rule is given by , where is
the received signal, is the watermark, is the transpose of

is the inner product of and is the maximum allowed
false-positive probability, and is the decision threshold,
which is a function of . In a successive paper [13], Miller et
al. also compare the performance of the strategy of [3] to other
typical embedding strategies. No attempt is made to jointly de-
sign the optimum embedding and detection rules.

In [18], Furon and Bas used a set of (sligthly modified)
double hypercones for zero-bit watermarking applications, and

1This is not really the case in practical scenarios, where the watermarking dis-
placement signal must be perceptually shaped; nevertheless, when performing
theoretical analysis the Euclidean norm is extensively used for the sake of anal-
ysis simplicity, therefore neglecting perceptual considerations. In any case, the
dependency produced by perceptual considerations is not intended to reduce the
host-interference effect.
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proposed to design the embedding strategy in such a way to
maximize the minimum distance to the detection boundary.

In [14], both false-positive and false-negative error exponents
are studied for the zero-bit watermarking problem, both for ad-
ditive spread spectrum (Add-SS) and a quantization index mod-
ulation (QIM) technique [4]. The constraint on the embedding
distortion is expressed in terms of the mean Euclidean norm of
the watermarking displacement signal, and the nonwatermarked
signal is also assumed to be attacked (with attacks that have
an impact on the false-positive error probability). For Add-SS,
exact expressions of the error exponents of both false-positive
and false-negative probabilities are derived. For QIM, the au-
thors provide bounds only. These results show that although the
error exponents of QIM are indeed larger than those obtained
by public Add-SS (where the host signal is not available at the
detector), they are still smaller than those computed for private
Add-SS (where the host signal is also available at the detector).
This seems to indicate that the interference due to the host is not
completely removed.

A practical scheme where quantization-based methods are
used for zero-bit watermarking purposes was proposed by
Pérez-Freire et al. [19]. In that work, several detection regions
are proposed, based on the geometry of the quantization noise
at the detector; the corresponding false-positive and false-neg-
ative error probabilities are calculated.

In [15], the problem of zero-bit watermarking is approached
from an information-theoretic point of view. Optimum embed-
ders and detectors are sought, in the sense of minimum false-
negative probability subject to the constraint that the false-posi-
tive exponent is guaranteed to be at least as large as a given pre-
scribed constant , under a certain limitation on the kind
of empirical statistics gathered by the detector. Another feature
of the analysis in [15] is that the statistics of the host signal are
assumed unknown. The proposed asymptotically optimum de-
tection rule compares the empirical mutual information between
the watermark and the received signal to a threshold de-
pending on . In the Gaussian case, this boils down to thresh-
olding the absolute value of the empirical correlation coefficient
between these two signals. Merhav and Sabbag also derive the
optimal embedding strategy for the attack-free case and derive a
lower bound on the false-negative error exponent. Furthermore,
the optimization problem associated with optimum embedding
is reduced to an easily implementable 2-D problem yielding a
very simple embedding rule. In the same paper, Merhav and
Sabbag also study the scenario where the watermarked signal
is attacked. In this case, however, closed-form expressions for
the error exponents and the optimum embedding rule are not
available due to the complexity of the involved optimizations.

In [16], Furon et al. propose to use the discrimination (i.e.,
the Kullback–Leibler divergence) between the probability den-
sity function (pdf) of the original host signal and the pdf of its
watermarked and attacked version in order to quantify the good-
ness of zero-bit embedding strategies. The considered attack is
based on adding AWGN to the watermarked content, and scaling
the resulting signal in order to have the same variance of the
original host. The argument put forward [16] is that a high dis-
crimination is a necessary condition to have good detection per-
formances, so the watermark detection problem is equivalent to

finding the embedding function that maximizes the discrimina-
tion; be aware that this analysis requires a perfect knowledge of
the statistics of all the involved signals. By using this measure,
the authors analyze the effect of considering quantization-based
approaches, as well as the improved spread spectrum [20] tech-
nique, showing that the later achieves optimal performance for
asymptotically long sequences. In the second part of [16], and
in [17], Furon uses the Pitman–Noether theorem [21] to derive
the form of the best detector for a given embedding function,
and the best embedding function for a given detection function.
By combining these results, a differential equation is obtained
that the author refers to as the fundamental equation of zero-bit
watermarking. Furon shows that many of the most popular wa-
termarking methods in the literature can be seen as special cases
of the fundamental equation, ranging from Add-SS, multiplica-
tive spread spectrum, or JANIS [22] (a zero-bit watermarking
technique previously proposed by Furon et al., where the de-
tector statistic is heuristically computed as an -order function,
and the watermarking displacement signal is a scaled version of
its gradient), to a two-sheet hyperboloid, or even combinations
of the previous techniques with watermarking on a projected do-
main [23], or watermarking based on lattice quantization. Com-
pared with the framework introduced in [15], two important dif-
ferences must be highlighted.

• In [17], the watermarking displacement signal is con-
strained to be a function of the host signal which is scaled
to yield a given embedding distortion. This means that in
this setup the direction of the watermarking displacement
signal cannot be changed as a function of the allowed
embedding distortion.

• One of the conditions that must be verified to apply the
Pitman–Noether theorem is that the power of the water-
marking displacement signal goes to zero when the di-
mensionality increases without bound. In fact, Furon hy-
pothesizes that this is the reason why neither the absolute
normalized correlation nor the normalized correlation are
solutions of the fundamental equation.

In this paper, we extend the results of [15] by deriving the
false-negative error exponent for any given embedding strategy
in the Gaussian setup, that is, for a Gaussian host signal and
a Gaussian attack channel. As in [15], we assume that the de-
tector is of limited resources, specifically, that it relies only on
the Euclidean norm of the received signal and the empirical cor-
relation between the received signal and the watermark. We then
use the optimal (under the mentioned constraints) detector ob-
tained in [15] to derive the optimum embedding strategy in the
Neyman–Pearson sense of maximizing the false-negative error
exponent for a given guaranteed false-positive error exponent. In
particular, we show that the optimum embedding rule depends
on the variance of both the host sequence and the attacking
noise. In the second part of the paper, we turn our attention to the
high signal-to-noise ratio (SNR) regime, where the variance of
the attacking noise is much smaller than the variance of the host
signal and the embedding distortion. For this setup, a class of
universal (asymptotically) optimum embedding strategies is de-
rived, in the sense that they do not depend on the variances of the
host sequence and the attacking noise. Closed-form expressions
for asymptotically optimum embedding rules are also derived.
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We then consider one particular embedding strategy in the class
derived before fitting the case of a vanishingly small (yet strictly
positive) false-negative error exponent. The performance of the
new scheme is evaluated numerically, showing that in addition
to be asymptotically optimum in the considered setups, the pro-
posed scheme provides good performance in a wide range of
settings, including realistic situations.

The remaining part of the paper is organized as follows. In
Section II, we introduce notation conventions and formalize the
problem. In Section III, the asymptotically optimum detection
region is derived. In Section IV, we use it to derive the false-neg-
ative error exponent for a generic embedding rule. The opti-
mization of the false-negative error exponent resulting in the
derivation of the high-dimensionality asymptotically optimum
embedding is addressed in Section V. Section VI is devoted to
the evaluation of the performance of the embedding rules de-
rived in Section V for various settings. Finally, the main results
of this work are summarized in Section VII where some sugges-
tions for future research are also outlined.

II. NOTATION AND PROBLEM FORMULATION

Throughout the paper, we denote scalar random variables by
capital letters (e.g., ), their realizations with corresponding
lower case letters (e.g., ), and their alphabets, with the respec-
tive script font (e.g., ). The same convention applies to -di-
mensional random vectors and their realizations, using bold face
fonts (e.g., , ). The alphabet of each corresponding -vector
will be taken to be the th Cartesian power of the alphabet of
a single component, which will be denoted by the alphabet of a
single component with a superscript (e.g., ). The th com-
ponent of a vector is denoted . The probability law of a
random vector is described by its pdf . The equality in
the exponential scale as a function of will be denoted by ;
more precisely, if and are two positive sequences,

means that .
Let and , both -dimensional vectors, be the watermark

sequence and the host sequence, respectively. While
, the components of take on binary values in

, and the components of , namely, ,
take values in . The embedder receives and , and
produces the watermarked sequence , yet another -dimen-
sional vector with components in . We refer to the
difference signal as the watermarking displace-
ment signal. The embedder must keep the embedding distortion

within a prescribed limit, i.e.,
, where is the maximum allowed distor-

tion per dimension, uniformly for every and .
The output signal of the transmitter may either be the unal-

tered original host , in the nonwatermarked case, or the vector
, in the watermarked case. In both cases, the output signal is

subjected to an attack, which yields a forgery signal, denoted by
. The action of the attacker is modeled by a channel, which is

given in terms of a conditional probability density of the forgery
given the input it receives, —in the nonwatermarked
case, or —in the watermarked case. For the sake of
convenience, we define as the noise vector added by the at-
tacker, i.e., the difference between the forgery signal and the

channel input signal, which is the transmitter output ( or , de-
pending on whether the signal is watermarked). We assume that

is a Gaussian vector with zero-mean, independent identically
distributed (i.i.d.) components, all having variance .2

The detector partitions into two complementary regions
(a.k.a. the detection region) and . If , the detector

decides that the watermark is present (hypothesis ), other-
wise it decides that the watermark is absent (hypothesis ).
We assume that the detector knows the watermark , but does
not know the host signal (blind or public watermarking). The
design of the optimum detection region for the attack-free case
was studied in [15], and it is generalized to the case of Gaussian
attacks in Section III.

The performance of a zero-bit watermarking system is usu-
ally measured in terms of the tradeoff between the false-positive
probability of deciding that the watermark is present when it is
actually absent, i.e.,

(1)

and the false-negative probability, of deciding that the water-
mark is absent when it is actually present, i.e.,

(2)

where is the embedding function, that is, . As
grows without bound, these probabilities normally decay expo-
nentially. The corresponding exponential decay rates, i.e., the
error exponents, are defined as

(3)

(4)

The aim of this paper is to devise a detector as well as an em-
bedding rule for a zero-mean, i.i.d. Gaussian host with variance

and a zero-mean memoryless Gaussian attack channel with
noise power , where the detector is limited to base its decision
on the empirical energy of the received signal and its empirical
correlation with . Both and are assumed unknown to
the detector, while the embedder knows them.3 We seek high-di-
mensionality asymptotically optimum embedding and detection
rules in the sense of maximizing the false-negative error expo-
nent , subject to the constraint that , where is a
prescribed positive real.

III. OPTIMUM DETECTION RULE

In [15], an asymptotically optimum detector is derived for the
discrete case and for the continuous Gaussian case. In the latter

2Although different additive noise variances could be considered depending
on the fact of the transmitted signal being watermarked or not, we will not dis-
tinguish the case where those variances are different, as due to the circular sym-
metry of the Gaussian noise, it is irrelevant for the subsequent derivation.

3We will remove this assumption in the second part of the paper where we
focus on the high-SNR regime.
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case, it is shown that if the detector is limited to base its deci-
sion on the empirical energy of the received signal, ,
and its empirical correlation with the watermark, ,
then an asymptotically optimum decision strategy, in the above
defined sense, is to compare the (Gaussian) empirical mutual in-
formation, given by

(5)

to , or equivalently, to compare the absolute normalized corre-
lation

(6)

to , i.e., the detection region is the union of two hy-
percones, around the vectors and , with a spread depending
on . This decision rule of thresholding the empirical mutual
information, or empirical correlation, is intuitively appealing
since the empirical mutual information is an estimate of the de-
gree of statistical dependence between two data vectors.4

For the present setting, we have to extend the analysis to
incorporate the Gaussian attack channel. This turns out to
be a straightforward task, since in the nonwatermarked case
(pertaining to the false-positive constraint), continues to be
Gaussian—the only effect of the channel is to change its vari-
ance, which is assumed unknown to the detector anyhow. Thus,
the detection rule outlined above continues to be asymptotically
optimum also in our setting.

Before we proceed with the derivation of the optimum em-
bedder, it is instructive to look more closely at the dependence
of the detection region on the false-positive exponent . As men-
tioned earlier, the choice of imposes a threshold that must
be compared with (6) in order to provide the detector output.
This is equivalent to establishing the limit angle of the detec-
tion region that we will denote by

. Letting , we then have

(7)

where is the surface area of the -dimensional spherical
cap cut from a unit sphere centered in the origin, by a right
circular cone of half-angle , and is the regularized
incomplete beta function. In (7), we used the fact that in the
nonwatermarked case, where is a zero-mean Gaussian vector
with i.i.d. components, independent of , the normalized vector

4It is also known from the literature on universal decoding that the max-
imum mutual information (MMI) decoder, which selects the codeword having
the highest empirical mutual information with the channel output vector, is uni-
versally optimum (in the random coding error exponent sense) for memoryless
channels.

is uniformly distributed over the surface of the -dimen-
sional unit sphere, as there are no preferred directions.

IV. THE FALSE-NEGATIVE EXPONENT

In this section, we derive the false-negative error exponent
as a function of the watermarking displacement signal . In
order to do that, and without loss of generality, we apply the
Gram–Schmidt orthogonalization procedure to the vectors , ,
and ,5 and then select the remaining orthonormal basis
vectors for in an arbitrary manner; the th basis vector will
be denoted by . After transforming to the resulting coordinate
system, the above vectors have the forms

,
and , while all the compo-
nents of the noise sequence will remain, in general, nonnull.
For the sake of convenience, in the remainder of the paper, we
will consider the normalized vector instead of .
The false-negative error exponent derived in this section will
be used later to derive asymptotically optimal embedding rules
subject to the distortion constraint , which corre-
sponds to the constraint . For convenience, we also
define the function

Our first main result is the following.

Theorem 1: Let and their corresponding error ex-
ponents and be defined as in (1), (2), (3), and (4),
respectively. Let be given, and let

. Then

(8)

where , and

Proof: From (6), a false-negative event occurs whenever

where . This is equivalently to

5In case � lies in the subspace spanned by � (i.e., � is proportional to �), an
arbitrary unit vector, orthogonal to � can be chosen as a second basis vector as
part of the Gram–Schmit procedure. Similarly, if� lies in the subspace spanned
by the two previous vectors, then an arbitrary unit vector orthogonal to both can
be selected as the third basis vector.
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where

By defining

(9)

a false-negative event is now defined by the condition .
Next, observe that , where designates the random variable

associated with , is a random variable with degrees of
freedom, i.e., its density is given by (10), shown at the bottom
of the page. By the same token, , where is the random

variable associated with , is a distribution with degrees
of freedom, and so we have (11), shown at the bottom of the
page. On the other hand

and, equivalently

where . Therefore, the probability of false negative is
given by

The last integral becomes

where we used the fact that

Finally, by using Laplace method of integration (see, e.g., [24]),
we observe that the exponential rate of this multidimensional in-
tegral is dominated by the point at which the integrand is max-
imum, thus obtaining the result asserted in the theorem and com-
pleting the proof.

V. OPTIMUM WATERMARK EMBEDDING

Having calculated as a function of , we can now char-
acterize a class of asymptotically optimum embedding func-
tions, i.e., those that maximize . To this end, we must take
into account that the embedder has access to the host signal, but
not to the attacking signal (the noise). Formally, we can write
the false-negative error exponent when the embedder designs
the watermarking displacement signal trying to maximize
as

(12)

Note that the dependence of on is through only.
From this formula, we can derive the following conclusions

about the optimal values of and , henceforth denoted
, respectively.

• : given the definition of , and the fact that the
embedder knows the host signal when computing the wa-
termarking displacement signal, could be chosen so to

if

elsewhere.

(10)

if

elsewhere.

(11)
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have the same sign of , and the embedder would take ad-
vantage of any value of to maximize , and there-
fore maximize . Formally

where

and the second inequality is based on the fact that
, as the embedder would select to be of the same

sign as , so that for any , there exists for which
and . Note

that equality between the first and last expressions is only
achieved when .

• : According to the definition of and the fact that
the determination of the worst noise takes into account the
choice of the watermark, could be chosen to have the
same sign as . Therefore, any value of would
yield a smaller minimum , which is not desired by the
embedder.
Specifically, let be the value of when . We
have

Given that in the optimization of (12), one has the freedom
to choose the sign of , it is clear that the selected value
will satisfy , so , and
consequently , achieving equality only when

.
• : We calculate the that minimizes , subject

to the constraint , for any arbitrary budget
[i.e., values providing a fixed value of the last term of (12)]
available for and . To this end, we consider the fact
that is chosen based on the knowledge of and , so
can be chosen to have the same sign as , as this is
the sign that minimizes . Therefore, we can write as

which is obviously minimized when .
Incorporating these facts, (12) can be rewritten as

(13)

where now

(14)

The most important conclusion from (13) is that, in general, the
asymptotically optimum watermarking displacement signal de-
pends on and . This implies that the watermark embed-
ding strategy that solves (13) is not universal.

A. Optimum Watermark Embedding in High-SNR Regime

An interesting situation takes place when the variance of the
attacking noise is much smaller than the variance of the host
sequence, i.e., , which we refer to as the high-SNR
regime. The high-SNR regime is motivated by situations of non-
malicious attacks, where the modification of the watermarked
signal is very small compared with the host signal. For fixed (but
arbitrary) , the high-SNR regime is, of course, equivalent to
a vanishing . It should be noted that the high-SNR regime
poses limitations neither on the value of nor on its ratio to

. As it will be shown below, our proposed class of optimum
embedding strategies does not depend on these quantities, so it
is universal in that sense (similarly as in [15]).

Since the target function in (13) is monotonically decreasing
with for a given itself is monotoni-
cally decreasing with . Therefore, the limit of as

, whether finite or infinite, must exist. The following theorem
asserts that converges to a finite limit and a universally op-
timum embedding rule exists in the large limit.

Theorem 2: In the high-SNR regime, i.e., , the max-

imum false-negative exponent, subject to the constraint
, is given by , and it is attained

by the set of equally optimal embedding strategies defined by

(15)

Proof: For the sake of notational simplicity, we define
. We are interested in , which we denote as

. We also define

(16)

The proof is based on the following chain of inequalities:

(17)

where we have made explicit the dependency of
upon , and where .
Here, stands for an arbitrary embed-
ding rule in . When , the set is
nonempty. As an example, for the embedding strategy
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,6 the
constraint can be rewritten as

(18)

which is equivalent to that always holds
whenever . On the other hand, when , any
embedding strategy that meets the distortion constraint belongs
to . We first prove that all these embedding rules satisfy

. To this end, we use a reductio ad
absurdum argument: assume, conversely, that there is at least
one embedding rule such that and

(19)

Since , (19) is equivalent to
. Note that due to the embedding power constraint and

its monotonicity in ,

is equivalent to . The solution
to this optimization problem is , being the
value of the target function . Therefore, on the one hand, we
have that for any satisfying the distortion constraint,

, whereas on the other hand, from (19),

we can say that , proving that
whenever and , then

, regardless of .
From an intuitive point of view, the previous derivation means

that if one fixes in the optimization described in (13) and
to be null [and consequently obtains an upper bound of (13)],
then the detection region is the hypercone

or, equivalently

where we have assumed that . In that case, whenever
, the host signal is too large, in the sense that the

embedder will not have power enough to produce a watermarked
signal in the detection region.

a) Upper Bound: First, we study the behavior of
. Here,

the optimization problem can be written as

(20)

or, equivalently

(21)

where

(22)

First, we prove that (21) vanishes whenever . To this
end, note that , and as was shown above,

6The ����� � � function value is �� or ��, depending on the sign of its argu-
ment; if its argument were 0, then �� or �� can be arbitrarily returned. This
choice of the sign of 	� is related to the first bullet of Section V.

for any embedding strategy satisfying the distor-
tion constraint, which yields for any . Consid-
ering both results together, and provide a null
value for (21). For this reason, in the following, we assume that

.
Maximization of (21) is equivalent to maximize (22).

Therefore, when , the embedding strategies
solving (21) must satisfy

(23)

Since the target function is monotonically increasing with ,
the maximum is achieved for , which allows to
represent the optimization problem as

(24)

Equating the partial derivative of the target function with respect
to to zero, and solving for , we obtain three solutions

(25)

Considering the second partial derivative, we see that
for , one ob-
tains maxima of the target function, yielding

, and a corresponding value
of , for any value of .

Summarizing, in this part we have proven that for any em-
bedding strategy satisfying the distortion constraint, the false
negative is upper bounded by .

b) Lower Bound: Consider now the problem

(26)

Defining ,
this optimization problem is equivalent to

(27)

where we have used the fact that

(28)

As was proven in the derivation of the upper bound, the false-
negative error exponent is bounded, independently of , by a
finite constant, which we will denote by . Since the lower
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bound on , in (27), is the sum of three nonnegative terms,
the first of which increases without bound as and/or go
to , the existence of a uniform upper bound implies that
a necessary condition for a point to solve the
minimization problem (27) is that each term of (27) is smaller
than or equal to . Applying this consideration to the term

, we have , hence enabling us to con-
fine the search over to the interval , where

. The same comment applies, of course, to . Conse-
quently, the lower bound in (27) is equivalent to

(29)

Now, the second argument of the operator is quadratic in
, i.e., it is of the form as , where , and

are independent of . Therefore, there exists a value of , which
we will denote by , such that is either mono-
tonically increasing for all , or monotonically decreasing
and less than unity for all , depending on the signs of
and .7 Accordingly, for any
is either strictly larger than 1 and monotonically increasing (in
the former case), or it is equal to 1 (in the latter case). In either
case, it is monotonically nondecreasing. Considering the fact
that the function is monotonically increasing for ,
the target function in (29) is monotonically nondecreasing for

. Thus, as , this function has a limit (finite or
infinite) for any fixed . The same applies to
the behavior of (29) as goes to infinity. As (29) is known to be
upper bounded by for any , its limit must be finite.

7If � � �, or if � � � and � � �: � ���
�
��� � �, for any � � � .

If � � �, or if � � � and � � �: � � � �
�
� � � is monotonically

increasing for any � � � .

Let us first assume that there are arbitrarily large values of
for which the solution to (29) satisfies . Then, by the
definition of . On the other
hand

(30)

where we have taken into account that both and are
bounded by . Therefore, the right argument of the

operator in (29) would grow without bound as ,
yielding an unbounded value of (29) when goes to infinity.
However, (29) is upper bounded by irrespectively of ,
which is a contradiction. Thus, for all sufficiently large , the
solution to (29) must satisfy . We can then rewrite
(29) as (31)–(33), shown at the bottom of the page, whose solu-
tion has , independently of and , and
whenever , or whenever .
From an intuitive point of view, this result shows that having

or in (13) is too expensive, in the sense of pro-
ducing a large increase in the cost function (as is arbitrarily
small), but not significantly modifying (14).

Summarizing, in this part we have proven that for any embed-
ding strategy belonging to , the false-negative error expo-
nent is lower bounded by .

This asymptotic lower bound of the error exponent coincides
with the upper bound previously derived, thus proving that this
is the false-negative error exponent in the high-SNR scenario,
and showing also the optimality of the embedding strategies de-
scribed by in the high-SNR scenario. This completes the
proof of Theorem 2.

B. Optimum Watermark Embedding for Small
False-Negative Error Exponents

In Section V-A, we have characterized a family of embed-
ding strategies that yields the optimum false-negative error
exponent in the high-SNR scenario. A natural question that
may arise is whether there is a particular embedding strategy in
this family, which exhibits good performance not only in the

(31)

(32)

(33)
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high-SNR regime, but in more general situations. In this short
subsection, we focus on the case where the false-negative error
exponent is very small. From (13), we see that a necessary
condition for to vanish is that . This brings
us back to the problem

(34)

that was studied in the derivation of the upper bound in the
proof of Theorem 2, for . For a general , the solution
is , and . In the next
sections, we will see that this embedding rule has a nice geomet-
rical interpretation, and most of all, it guarantees fairly good per-
formance even when the high-SNR assumption does not hold.

C. Discussion

First, we will look at the false-negative error exponent in the
high-SNR regime of the embedding strategies in as a
function of the false-positive error exponent . For the embed-
ding strategies in , one can see that
is equivalent to (35), shown at the bottom of the page. In view of
(35), it is interesting to note that as long as
for any . In fact, under these conditions, the asymptotic value
of when is

(36)

coinciding with the result of [15, Corollary 1].
On the other hand, when another interesting point

which reflects the goodness of the class of optimum strategies
for the high-SNR regime is the computation of the range of
values of for which can be achieved. In this case,
the condition to be verified is

(37)

implying that

for (38)

whereas for the sign embedder [15], the values of for which
are those such that

(39)

or, equivalently

for all (40)

Fig. 1. Comparison of the error exponents obtained by the sign embedder de-
scribed by Merhav and Sabbag [15], its improved version, and the technique
presented in this work. � � � and � � �.

Given that , larger values of false-positive error expo-
nents are allowed (while still keeping ) by the embed-
ding rules in . In Fig. 1, we compare the bounds on the
false-negative exponent for the attack-free case found in [15],
with the real value derived here. As can be seen, the improve-
ment brought by the optimum embedding strategies is signifi-
cant, especially for small .

As we already saw in the general case, even in the high-SNR
and the small false-negative error exponent regimes the op-
timum watermarking displacement signal , and therefore
the watermarked sequence , lies in the plane spanned by the
watermark and the host signal . This allows us to express
the optimum watermarking displacement signal, as well as the
watermarked sequence as a combination of the host signal and
the watermark, leading to the following result.

Corollary 1: Whenever , the optimum wa-
termarked signal resulting from the embedding rule derived in
Section V-B is given by , with

Proof: From Theorem 2 and the result in Section V-B, we
have

(41)

if

elsewhere.
(35)
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On the other hand, , and so, we can conclude
that . To find , we use
which when combined with (41), gives the value of which is
asserted in Corollary 1. This completes the proof of Corollary
1.

More importantly the optimum embedding strategy derived
in Section V-B depends neither on nor on , that is the
optimum embedding rule for the high-SNR regime (and the
low scenario) defines a universally optimum embedding
rule. Furthermore, in the two asymptotic cases analyzed in
Sections V-A and V-B, both and go to zero, so in (14)
is just reduced to Miller et al.’s [13] measure of robustness,
geometrically interpreted by Furon and Bas [18].

The geometrical interpretation of the embedding strategy de-
rived in Section V-B is the following: the embedder devotes part
of the allowed distortion budget to scale down the host signal,
thus reducing its interference, and then injects the remaining
energy in the direction of the watermark. Concretely, the wa-
termarking displacement signal is orthogonal to the detection
boundary until the watermarked signal is in the detection region,
and then it is parallel to the detection region hypercone axis; due
to this geometrical interpretation, we will denote the embedding
strategy derived in Section V-B as orthogonal to the boundary,
and then parallel to the axis (OBPA). This geometrical interpre-
tation explains why, whenever the watermarked signal is within
the detection region, only its component in the direction of the
watermark (i.e., ) depends on . For illustration, we compare
OBPA strategy derived in this work, and the sign embedder in-
troduced in [15]. For the sign embedder, the watermarked signal
is given by , so the watermarking
displacement signal can be written as .
The two strategies are compared in Fig. 2, where it is easy to
see that the OBPA strategy is that of minimizing the embed-
ding distortion necessary for obtaining a watermarked signal.
It is also interesting to observe that the new embedding tech-
nique we have introduced could not be described by [17], as in
that case the watermarking displacement signal direction is just
a function of the host signal, and it is scaled for obtaining the
desired distortion.

Another way to look at Section V-B is by evaluating a joint
condition on the embedding distortion and the false-positive ex-
ponent (or, equivalently, on ) that allows to obtain a positive
false-negative error exponent: if , then the optimization on

in (13) is performed on the region , so any
pair , even with , will be in the allowed region,
yielding a vanishing error exponent. The condition that permits
to avoid this situation is . Indeed, when ,
the watermarked signal is the intersection of the boundary of the
detection region and the perpendicular vector to that boundary
that goes through . On the other hand, when ,
even in the high-SNR regime case, one cannot ensure that the
embedding distortion constraint allows to produce a signal in the
detection region, so the embedding function in that case will not
be so important. In fact, regardless of the embedding function
we choose, the false-negative error exponent would vanish.

This last consideration also establishes a connection with the
high-SNR analysis. Due to the absence of noise, the only source
of false-negative errors is that the embedding distortion is not
enough for moving the host signal into the detection region,

Fig. 2. Geometrical interpretation of the optimum embedding problem, and
comparison between the sign embedder and the OBPA embedder. �
and � denote the minimum norm watermarking displacement signals
that produce signals in the detection region, for both the OBPA embedder
and the sign embedder, respectively. The corresponding watermarked signals
are � and � . � and � denote the first two basis vectors obtained
by the Gram–Schmidt procedure described in Section IV, with � being
proportional to �. Furthermore, one can see the watermarked signals for the
OBPA embedder and the sign embedder when part of the embedding distortion
can be used to gain some robustness to noise (denoted by � and � ), and
the composition of � as �� � ��.

i.e., . Nevertheless, whenever , a
set of equally optimal embedding strategies exists; indeed, all
the embedding strategies able to move the host signal into the
detection region with a minimum-normed distorting vector, i.e.,
moving the host signal to the detection boundary with distortion

, yield the same false-negative error exponent, regard-
less of the exact point where the watermarked signal lies inside
the detection region. This explains why Theorem 2 describes
a set of equally optimal embedding strategies. It is worth re-
marking that the OBPA embedding strategy belongs to the class
of optimum embedding functions defined by Theorem 2; never-
theless, it is not the only example in the literature belonging to
such class. For example, both the embedding strategy proposed
by Merhav and Sabbag [15], and that proposed by Furon and
Bas [18] when just one double hypercone is considered, satisfy
the condition set by Theorem 2.

VI. PERFORMANCE EVALUATION

Given a particular embedding strategy, (8) allows to numeri-
cally evaluate the corresponding false-negative error exponent.
In fact, the optimization problem expressed in (8) is rather easy
to solve numerically given that it implies an optimization over
three parameters only, namely, , and , as the minimiza-
tion over is equivalent to compute . Similarly,
the computation of the false-negative error exponent for the op-
timum embedder in the general case, that, as it was mentioned
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Fig. 3. Comparison of the errors exponents obtained by the sign embedder de-
scribed by Merhav and Sabbag [15], the broken arrows strategy proposed by
Furon and Bas [18] when just a secret direction is considered, the solution of
(13), and the OBPA embedding technique. � � �� � � �� and � � �.

above, will not yield a universal embedder (as it requires the
knowledge of both and ) is obtained as the solution of the
optimization problem described in (13). In that case, the number
of involved parameters is four, namely, , and , since
the maximum over is achieved for .

In the following, we show the results that we obtained by
computing numerically the optimum (nonuniversal) false-neg-
ative error exponent, and compare them against the false-neg-
ative error exponent obtained with the OBPA embedding rule,
and against those of two popular embedding rules, namely, the
sign embedder rule introduced in [15] and the broken arrows
strategy introduced in [18]. For the latter method, and through
the rest of the paper, we will focus on the particular case where
just one double hypercone is considered.

In order to be able to clearly see the differences among the
various embedding strategies, the values of should be large
enough, or equivalently, the values of should be small, as for
small values of all the considered strategies are asymptotically
equivalent. Therefore, trying to analyze the behavior of the var-
ious schemes for large values of , Fig. 3 shows the false-neg-
ative error exponents when the host variance takes a very small
value, concretely , for and . In this plot,
one can see that although the broken arrows strategy is slightly
better than the OBPA embedding strategy for small , the situ-
ation completely changes for large values of . In effect, when

is increased, and consequently is decreased, the optimal
performance of the OBPA embedding strategy in that scenario
is clearly observed. In fact, one can see that the OBPA strategy
is asymptotically optimal for large values of (in the sense of
those values yielding close to zero). It is also remarkable
the good behavior of the new embedding strategy in the full
range of considered values of , not only for the large values.
Finally, as expected, the values of obtained for the optimal
(nonuniversal) embedding strategy are always the largest ones.

The scenario considered in Fig. 3 and described in the pre-
vious paragraph is not a realistic one. Typically, and

. In order to assess the performance of OBPA in more

Fig. 4. Comparison of the errors exponents obtained by the sign embedder de-
scribed by Merhav and Sabbag [15], the broken arrows strategy proposed by
Furon and Bas [18] when just a secret direction is considered, the solution of
(13), and the OBPA embedding technique. � � �� � � ���� and � � ���.

practical setups, in Fig. 4, the false-negative error exponent is
plotted as a function of when , and .
As mentioned earlier and as intuition suggests, the maximum
value of providing positive false-negative error exponent is
much smaller in this case, implying that the angle of the double
hypercone defining the detection region is much larger. There-
fore, the differences among the embedding strategies are min-
imal, and as a consequence, the obtained error exponents are
virtually the same for broken arrows, OBPA, and the optimal
embedder described by (13).

VII. CONCLUSION

In this paper, we considered the derivation of a
Neyman–Pearson asymptotically optimum zero-bit water-
marking scheme in a Gaussian setting, when the detector
is limited to base its decisions on second-order empirical
statistics only. In particular, we extended previous works in
this direction by considering the presence of noise. The main
contributions of the paper can be summarized as follows: 1) we
derived the false-negative error exponent for any embedding
strategy; 2) we derived a min-max-min expression for the
optimal embedding strategy in a general context; 3) we derived
a class of universally optimum embedding strategies in the high
SNR; 4) we proposed a new embedding rule, chosen among the
optimal embedding rules for the high-SNR regime, which is
particularly suited to the case of low values; 5) we derived
the false-negative error exponent of the new embedding rule
and that of some previously proposed methods; 6) finally, we
have shown the good (though not optimal) behavior of the new
scheme in a wide range of setups including those most relevant
from a practical point of view. Interestingly, the new embedding
strategy we introduced is very simple thus opening the door to
practical implementations. This work can be extended in many
interesting directions, including non-Gaussian settings, more
complicated attacks, like desynchronization attacks [25], [26],
more detailed empirical statistics gathered by the detector, and
the introduction of security considerations in the picture [27].
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