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Composite Signal Representation for Fast and
Storage-Efficient Processing of Encrypted Signals

Tiziano Bianchi, Alessandro Piva, and Mauro Barni

Abstract—Signal processing tools working directly on encrypted data
could provide an efficient solution to application scenarios where sensitive
signals must be protected from an untrusted processing device. In this
paper, we consider the data expansion required to pass from the plaintext
to the encrypted representation of signals, due to the use of cryptosystems
operating on very large algebraic structures. A general composite signal
representation allowing us to pack together a number of signal samples
and process them as a unique sample is proposed. The proposed repre-
sentation permits us to speed up linear operations on encrypted signals
via parallel processing and to reduce the size of the encrypted signal.
A case study—1-D linear filtering—shows the merits of the proposed
representation and provides some insights regarding the signal processing
algorithms more suited to work on the composite representation.

Index Terms—Homomorphic encryption, secure signal processing, signal
processing in the encrypted domain, signal representation.

I. INTRODUCTION

The possibility of processing encrypted signals directly in the en-
crypted domain (hereafter referred to as s.p.e.d., standing for signal
processing in the encrypted domain) is receiving an increasing atten-
tion as a way to satisfy the security requirements stemming from ap-
plications wherein valuable or sensible signals have to be processed by
a nontrusted party [1]. The list of applications that would benefit from
the availability of s.p.e.d. tools is virtually endless, including access to
a database containing encrypted data or signals [2], [3], database access
by means of encrypted queries [4], remote processing of private data,
like medical recordings or biometric signals, by nontrusted parties [5],
[6], transcoding of encrypted contents [7], buyer—seller watermarking
protocols [8], just to mention some.

Though apparently impossible, processing encrypted signals is in-
deed feasible by relying on probabilistic homomorphic encryption [9],
[10] and secure multiparty computation (MPC) [11]—[13]. In this paper,
we focus on techniques based on homomorphic encryption, since they
constitute the basis for any practical implementation of s.p.e.d. theory.
For an overview of the role of MPC in s.p.e.d. theory, readers may refer
to [14].
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A cryptosystem is said to be homomorphic with respect to an opera-
tion *, if another operation o exists such that, given two plaintexts 1
and ma2, we have

D[E[m] o E[mz]] = m1 * m2 (1)

where D and E indicate, respectively, the decryption and encryption
operators. Additively homomorphic cryptosystems, for which x = +

and o = -, play a central role in s.p.e.d. theory. For such systems we
have
DIEm:]]=c-mq 3)

where ¢ is a constant factor, hence allowing the application of many
basic signal processing tools directly in the encrypted domain. This is
the case of linear operators like the discrete Fourier transform (DFT)
[15], finite impulse response (FIR) filters, correlation, and simple oper-
ations among two or more signals like componentwise signal addition.

A problem with the use of homomorphic encryption is that signals
need to be encrypted sample-wise. Suppose, for instance that a party
P, wants to compute the projection p of a signal z(n) on a direction
u(n) known by another party P>, and assume that neither P, wants to
disclose x(n) to P>, nor P» is willing to reveal u(n) to P;. If z(n) is
encrypted sample-wise by I, and sent to I%, the encrypted projection
E[p] can be computed by P> without knowing the unencrypted values
as E[p] = Hgl Ef2(:)]" with M being the length of the sequence
z(n). At the end, P> will send E[p] to P, that will obtain the result of
the projection by decrypting the received value.

Samplewise encryption of signals poses some severe complexity
problems since it introduces a huge expansion factor between the
original signal sample and the encrypted one. To fix the ideas, let us
assume that the Paillier cryptosystem is used (see [16] for more details
about the Paillier cryptosystem); in this case, each encrypted sample
is an element of Z y 2, i.e., the set of integer numbers modulo N? with
N being at least 1024 bit long, that is each encrypted sample needs
at least 2048 bits to be represented. By considering that plain signal
samples are usually represented by a few bits (e.g., 8 bits for images
or 16 bits for ECG signals [17]), we conclude that due to encryption,
signals are expanded by a factor ranging from 125 to 250.

A straightforward way to avoid the samplewise encryption of signals
is to pack several samples together, and then encrypt them as a unique
message. For instance, this simple idea is used in [18], where R [-bit
messages m1, ..., mp are bundled within a single composite message
x as follows:

r=m .20 + mo .ot +---+mH-2L(H71). “4)

If L is larger than [, samples will remain distinct in the composite
representation; moreover, if L is sufficiently large, adding two com-
posite messages corresponds to the addition of the single messages
composing them, and multiplying the composite message by a constant
factor is equivalent to multiplying each single message by the same
factor. Though already outlined in the scientific literature, the limits and
opportunities offered by the composite representation of signals have
not been thoroughly investigated yet. Despite the apparent simplicity,
in fact, the signal representation suggested in (4) presents a number of
problems that need to be tackled, and offers several opportunities to be
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exploited. In order to do so, in this paper, we first generalize (4), by
allowing any integer value B to be used instead of 2 in the power ex-
pansion of . In this way we gain flexibility in the choice of the number
of samples that can be packed into a single message x. Second, we con-
sider the problems introduced by the necessity of working with signed
numbers. Finally, and most importantly, we show how some of the most
common signal processing operations can be performed very efficiently
by exploiting the intrinsic parallelism of the proposed composite repre-
sentation. Specifically, we discuss the application of block-wise linear
transforms and linear FIR filters to signals whose samples are repre-
sented through a generalized version of (4). In order to substantiate
our discussion, the paper ends with the presentation of a case study in
which a time-domain and a frequency-domain implementation of an
FIR filter are compared, showing that due to the particular structure of
the composite representation of signals, a time-domain implementation
may be preferable to a standard frequency-domain implementation.

The rest of this paper is organized as follows. In Section II, a brief re-
view of the Paillier cryptosystem is given. In Section III, the proposed
composite representation is introduced and discussed. Section IV con-
siders the application of block-wise transforms, and linear (FIR) fil-
ters to composite signals. In Section V, the case study regarding 1-D
linear filtering is presented. Finally, some conclusions are drawn in
Section VL.

II. PROBABILISTIC HOMOMORPHIC ENCRYPTION: THE PAILLIER
CRYPTOSYSTEM

As we said, a homomorphic cryptosystem allows us to carry out
some basic algebraic operations on encrypted data by translating them
into corresponding operations in the plaintext domain. The concept of
privacy homomorphism was first introduced by Rivest et al. [9], who
defined privacy homomorphisms as encryption functions which permit
encrypted data to be operated on without preliminary decryption of the
operands.

According to the correspondence between the operation in the ci-
phertext domain and the operation in the plaintext domain, a cryp-
tosystem can be additively homomorphic or multiplicatively homomor-
phic: in this paper, we are interested in the former. Additively homo-
morphic cryptosystems allow us, in fact, to perform additions, subtrac-
tions, and multiplications with a known (nonencrypted) factor in the
encrypted domain.

Another crucial concept for the s.p.e.d. framework is probabilistic en-
cryption. As a matter of fact, many of the most popular cryptosystems
are deterministic, that is, given an encryption key, and given a plaintext,
the ciphertext is univocally determined. The main drawback of these
schemes for s.p.e.d. applications is that it is easy for an attacker to detect
if the same plaintext message is encrypted twice: indeed, since usually
signal samples assume only a limited range of values, an attacker will
be easily able to decrypt the ciphertexts, or at least to derive meaningful
information about them. In [10], the concept of probabilistic or seman-
tically secure cryptosystem has been proposed. In such schemes, the
encryption function E is a function of both the secret message m and
a random parameter r that is changed at any new encryption. Specifi-
cally, two subsequent encryptions of the same message m result in two
different encrypted messages ¢; = E(m,r1) and co = E(m,7r2). Of
course, for a correct behavior, the scheme has to be designed in such a
way that D(c1) = D(c2) = m, that is the decryption phase is deter-
ministic, and does not depend on the random parameter 7.

Encryption schemes that satisfy both the homomorphic and proba-
bilistic properties detailed above do exist. One of the most known ho-
momorphic and probabilistic schemes is the one presented by Paillier
in [16], and later modified by Damgérd and Jurik in [19]. Both Paillier
and Damgard and Jurik cryptosystems are additively homomorphic.

More extensive processing would be allowed by the availability of
a fully (or algebraically) homomorphic encryption scheme, that is a
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ao(k) a1 (k)
K_JH/_JH

ac(0)

>
R

ac(1) ac(M —1)

Fig. 1. Graphical representation of an M -polyphase composite representation
of order R. The values inside the small boxes indicate the indexes of the sam-
ples of a(n). Identically shaded boxes indicate values belonging to the same
composite word.

scheme that is additive and multiplicative homomorphic. For instance,
a fully homomorphic cryptosystem would allow to compute several
useful statistics, like the energy of a signal, without requiring inter-
active protocols. Very recently, a fully homomorphic scheme has been
proposed in [20], thus showing that secure and fully homomorphic en-
cryption is indeed possible; however, the complexity of the system pro-
posed in [20] is by far too complex for any practical application.

III. COMPOSITE REPRESENTATION OF SIGNALS

In this section, we generalize the composite representation expressed
by (4), and discuss the conditions that allow us to recover the original
samples starting from the composite representation. We also consider
the problems associated to the transformation from the sample-wise to
the composite domain and vice versa.

Let us consider an integer valued signal a(n) € Z, satisfying
la(n)| < @, where @ is a positive integer. Given a pair of positive
integers B, R, we define the composite representation of a(n) of order
R and base B as

R—1
ac(k) = zai(k)Bi, E=0,1,...,M -1 )

=0
where a;(k),7 = 0,1,..., R — 1 indicate R disjoint subsequences of

the signal a(n).

The kth element of the composite signal ac (%), represents a word
where we can pack R samples of the original signal, chosen by par-
titioning the original signal samples a(n) into M sets of I? samples
each.

Several choices can be made to partition the original signal. In the
following, we will consider the choice a;(k) = a(i} + k). In this
case, each composite word will contain R samples which are spaced M
samples apart in the original sequence, i.e., belonging to one of the M th
order polyphase components of signal a(n): this representation will
be referred to as M -polyphase composite representation (M -PCR). A
graphical interpretation of M -PCR is provided in Fig. 1. As it will be
shown in the following, such a representation allows several common
processing tasks to be performed on composite signals.

While the composite representation may seem a trivial one, its use
for the parallel processing of an encrypted signal is not straightforward,
especially if we want to represent and process negative values. To do
so, we must first establish some properties. These are given by the fol-
lowing theorem:
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Theorem 1: Let us assume that

la(n)| <Q Vn 6)
B >2Q 7
B <N ®)

where IV is a positive integer, and let ac (k) be defined as in (5). Then,
the following holds:

0< ay(;(k) +wy <N )

where wg = QY11 B' = Q(B® —1)/(B - 1). Moreover, the
original samples can be obtained from the composite representation as

a;(k) = {[(ac(k)+wQ)+Bi] modB} - Q. (10)

Proof: Let us express

R—1

ac(k)+wo =Y [a;(

=0

k)+ Q] B’. an

Thanks to (6) and (7), we have 0 < a;(k) + Q < 2Q < B - 1.
Hence, ac (k) + wq can be considered as a positive base-B integer
whose digits are given by a; (k) + Q. Moreover, since ac (k) + wq has
R digits, it is bounded by

R—1
ac(k)+we < Y (B-1)B =B"—1<N 12)
j=0
where the last inequality comes from (8).
As to the second part of the theorem, for each ¢ we have
R—1 S il »
ac(k)+wg =B [a;(k)+ Q1B "+ [a;(k)+QIB’. (13)
j=i Jj=0
Thanks to the properties of a; (k) +@), we havez tlaj (k) +Q]B7 <
B' — 1. Hence
(k) + ol +
Z a;(k)+ QB ™"
i=
R—
= Z () + QB+ ai(k)+Q

from which (10) follows hence completing the proof.

A. Packing and Unpacking Operations

Let us now analyze how it is possible to go from the samplewise
representation to the composite one and back both when the plain signal
and when the encrypted signal is available. We assume that the signal
belongs to a party PP, who owns the decryption key, and it is processed
by a second, nontrusted, party P.

When working on plain data, the analysis carried out so far ensures
that given the original signal samples a(n), it is possible to compute
the composite representation according to (5), and vice versa that the
original signal values can be correctly computed from the composite
representation according to (10).

When dealing with encrypted data, the first part of the previous the-
orem demonstrates, first of all, that the composite representation can
be safely encrypted by using a homomorphic cryptosystem defined on
modulo NV arithmetic: in fact, as long as the hypotheses of the theorem

hold, the composite data ac: (k) takes no more than N distinct values,
so the values of the composite signal can be represented modulo N
without loss of information.

Concerning the security of the composite signal encryption, if we
work with a semantically secure cryptosystem, the security is automat-
ically achieved. The Paillier cryptosystem can be proved to be semanti-
cally secure under the assumption that deciding NV -residuosity classes
in Z%;» is hard [16]. In [21], it is also shown that the Paillier cryp-
tosystem hides the log, N — b least significant bits of the plaintext if
one assumes that computing N -residuosity classes remains hard even
when we are told that the size of the plaintext is less than 2. In order to
apply the result in [21] to the security of the composite representation,
one has to avoid encoding the signal samples in the b most significant
bits of the plaintext.

Let us now consider the case where the original signal samples a(n )
have been encrypted samplewise by I, by using an additive (semanti-
cally secure) homomorphic cryptosystem; the encryption of the com-
posite representation can be performed directly in the encrypted do-
main by I through (5) and by exploiting the homomorphic properties
of the cryptosystem.

Going from the composite to the samplewise representation, how-
ever, is not possible in the encrypted domain by means of homomor-
phic computations only, since such a conversion requires rounding and
division. Then unpacking has to be carried out by the data owner P,
or performed by means of a properly designed interactive protocol! in-
volving P; and P>,.

IV. PROCESSING ENCRYPTED COMPOSITE SIGNALS

In addition to allowing huge memory saving, in many cases of prac-
tical interest, the composite representation permits the parallel pro-
cessing of several signal samples thus leading to computational savings
as well. In this section, we illustrate the above possibility by focusing
on two cases of great practical interest: block-wise linear transforms
and linear filtering.

A. Block-Wise Linear Transforms

Given a finite length signal having size W, a linear transform can be
defined by the following relationship:

Ww—1

Z T(n,r)a(n),

n=0

y(r) r=0,1,.... W -1 (14)

where T'(n, r) are a set of coefficients defining the particular transform.

In the following, we will assume that the transform coefficients have
been quantized according to some rule, i.e., T(n,7) € Z, and that
|T(n,7)] < Qr.

If the transform is implemented according to (14), the transformed
signal can be bounded as |y(r)| < WQ7 Q. However, several practical
transforms can be factorized by relying on the properties of T'(n,r)’s
(see, for example, the DFT). Such factorizations usually lead to a faster
implementation, permitting us to compute the whole transform as a se-
ries of smaller and very simple elementary transforms linked together
by suitable scaling factors. Depending on the quantization of the in-
termediate steps, the final bound on the transformed signal is usually
larger than that obtained for the direct implementation. Hence, in the
following we will assume |y(r)| < Qs, where s is an upper bound
that should be computed according to the particular implementation of
the transform.

'When B is a power of two, the unpacking could be performed using the
protocol in [22]. However, since the above protocol has to extract every bit of
the composite representation, it leads to an inefficient solution.
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Usually, a transform is applied to the whole signal. However, when
the size of a signal is not specified a priori or it is very large, it is cus-
tomary to partition the signal into adjacent blocks having some prede-
termined size and apply the transform to each block separately. This is
the case, for example, of audio and image coding.

In our case, the signal a(n) is first partitioned into adjacent blocks;
then each block is transformed separately as

M—1

ZTkI

(GM+k), r=01,....M—-1 (5)

where ¢ indicates the ¢th block being transformed. Since the same pro-
cessing is applied to all the blocks, it is suitable for a parallel imple-
mentation relying on the composite representation of a(n).

To be specific, we define the equivalent parallel blockwise transform
as

M—1

ue(r) = Z T(k,r)ac(k), r=0,1,...,M —1. (16)
k=0

where ac: (k) is the M -PCR of a(n). In the following, we will assume
that the length of a(n) is a multiple of R}, so that the length of the
corresponding M -PCR is a multiple of } .
Proposition 2: If B > 2Qg, then u;(r),7 = 0,1,...,R — 1, can
be exactly computed from the modulo N representation of wc (7).
Proof: Let us consider the following equalities:

M—1 R—1
uoe(r) = Z T(k,r Z a(iM + k)B

k=0 =0
R—1 [M—1 v

=Y | > T(k,r)a(iM + k)| B’
=0 k=0
R—1 ‘

=3 wi(r)B. (17
=0

Then, it suffices to note that |u;(r)| < Qs and replace @ with Qs in
the proof of Theorem 1.

B. Convolution and Linear Filtering

The output of a linear filter having impulse response h(n) when
the input is the sequence a(n) is given by the convolution of two se-
quences, defined as

oo

y(n) = Z hr)a(n—r).

r=—o0

(18)

In practical applications, the convolution algorithm is useful when the
impulse response of the filter is finite. In our application, we consider an
FIR filter of length L and we will assume that the input sequence a(n)
has length P = RM . Hence, we will consider the finite convolution

u(n) = Z h(r)a(n —1r),

where we assume h(r) € Z,and a(n) = 0 forn > P.Due to the prop-
erties of a(n), we can bound the output as |u(n)] < Q S |h(r)| =
Qr. The proposed block convolution is defined as

L—1
=S h(ryic(k - 1),

n=01,....,.P+L—-2 (19)

uc (k) E=0,1,....,M+L—-2 (20

AT™
| 0 M 2M | 3M
| Bac(0) = ac(0)
: Bao(1) = ac(1)
o I
Moo ! [ !
] 1
[ i I |
[ ' I '
o I
| L Bac(M —1) = ac(M—1)
| M—1pM-13M—14M—1] c c
A
0 M 2M | 3M |
I ac(0) = ac(M)
L-1f ([
: ac(L-2) = ao(M+L-2)
v _
«—>

R

Fig. 2. Graphical representation of dc (k) as in (21). The values inside the
boxes indicate the index of the samples within the composite representation: for
0 < k < M, each sample of a (k) is shifted one position to the right, whereas
forM <k < M+ L —1itisacopyof ac(k — M).

where we define

Bac(k), 0<k<M
ac(k)=R ac(k—M), M<k<M+L-1 (21)
0, elsewhere

and ac (k) is the M-PCR of a(n). A graphical representation of the
disposition of the elements of a(n) within dc (k) is given in Fig. 2.
As it can be seen, the particular concatenation of the composite words
(rows) properly extends each of the R parallel subsequences (columns)
at the boundaries.

Proposition 3: If B > 2Q and B*t' < N, then u(n) can be
exactly computed from the modulo V representation of u¢;(k), L—1 <
k< M+L—-1,as

w(iM + k) = {[(uc(k) +wop) + BHI] IIlOdB} -Qr Q2

where wg,, = Qr Z?:o B,
Proof: Letus consider uc (k). For L — 1 < k < M, we have

3
uc(k) = Z (k— s)Bac(s)
s—=k—L+1
k R—1
= > hk—s) Y a((M+sB . (23
s=k—L+1 j=0
By lettingi = j 4+ 1 and r = k — s, we obtain
k R v
wc(k)= > h(k=s)) a(iM - M+ s)B’
s=k—L+1 i=1
R [IL—1 '
= Z Z h(rya(iM — M +k—r)| B’
=1 Lr=0
=Y w(iM - M+k)B' (24)

=1
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Fig.3. Graphical representation of u - (k). The values inside the boxes indicate
the index of the samples within the composite representation. Blank boxes indi-
cate valid convolution output values. Shaded boxes indicate convolution outputs
at the boundaries. Crossed boxes indicate values that have to be discarded.

whereas for M < k < M + L — 1, we have

M—1

> h(k—s)Bac(s)

s=k—L+1

uc(k) =

k
+ Z h(k — s)ac(s— M)

s=M
M—-1 R—1 _
= > hlk—s) > a(jM+s)B"
s=k—L+1 7=0

k R—1
+ > h(k—s)Y aliM — M+ s)B'. (25
1=0

s=M

By letting ¢ = j 4 1, we obtain (26), shown at the bottom of the
page. We have | S2F_ h(k — s)a(—=M + s)| < QF and |uc (k)| <
@ r . Hence, the demonstration follows from the proof of Theorem 1 by
replacing (@ with @ and R with R + 1.

Fig. 3 shows the organization of the output values within uc (k).
Note that the first L — 1 composite words must be discarded since they
are affected by boundary effects.

1) Overlap-Add and Overlap-Save Implementations: The
overlap-add and overlap-save methods are well-known techniques
for efficiently implementing convolutions of long signals through the
fast Fourier transform (FFT) [23]. For the sake of brevity, we will
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consider only the overlap-add method: similar results can be derived in
a straightforward manner for the overlap-save method. Let us consider
the signal a(n) and an FIR filter 2(n) of length L. The overlap-add
method partitions the input signal into nonoverlapping blocks of M
samples and appends L — 1 zeros to each block. The /th input block
is then obtained as
a(IM+n), 0<n<M
a(n) = {0, M<n<M+L-1 %P
Usually, M is chosen so that f = M + L — 1 is a power of two.
Thanks to the properties of the FFT, the circular convolution between
a;(n) and h(n) can be obtained as

yi(n) = fgl{ij{cz‘l(n)} - Fr{h(n)}} (28)

where Fr {} denotes the K -point FFT of a sequence.

Finally, the linear convolution between a(n) and h(n) is obtained by
adding the last L — 1 samples of each block to the first L — 1 samples
of the following block, that is

yi(n) + yi—1(n+ M),
yi(n),

0<n<L-1

L—-1<n< M. 29

y(IM 4+ n) = {

The overlap-add technique can be easily adapted to the proposed
composite representation, by using the previously described block-wise
version of the FFT. Let us consider ac(k), the M-PCR of a(n). A
parallel overlap-add implementation can be obtained by considering
the following blocks of composite words:

ac(k), 0<k<M

~VL? =
do (k) {o, M<k<M+L-1. 30

Note that the above structure is equivalent to [? consecutive blocks ex-
tended with a tail of L — 1 zeros, since a composite word having zero
value contains all zero samples. Hence, we can compute R circular
convolutions in parallel by applying the following processing:

jo(k) = BF ' {BFg{ac(k)}- Fr{h(n)}} (31)
where BF i denotes a block-wise K -point FFT. Finally, we can obtain
the M -PCR representation of the linear convolution by using a parallel
overlap-add step, which is implemented as follows:

(k) = jo(k)+ Bjo(k+ M), 0<k<L-1
YT = e (k). L—1<k< M.

A graphical representation of the data structures involved in the parallel
overlap-add method is given in Fig. 4.

Note that in this case the composite representation has order R + 1,
due to the multiplication by B. Hence, similar to the block convolution
case, the proposed scheme can be safely used with modulo IV arith-
metic if BT < N.

(32)

M—1 R
wo(k)y=Y_ h(k—s)> a(iM —M+s)B' +
s=k—L—+1 =1
k R
= > hk—s)a(-M+s)+ Y
s=M =1
k R

s=M =1

> bk —s)a(=M+s)+ Y u(iM — M+ k)B’

R—1 ]
> a(iM — M + 5)B’

=0

P
Z hik —s)

s=M
k .
> h(k—s)a(iM — M+ )| B'

s=k—L+1

(26)
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Fig. 4. Graphical representation of parallel overlap-add data structures. From left to right: input block @ (k); intermediate circular convolution g (k); final
linear convolution y¢ (k). Shaded boxes indicate convolution outputs at the boundaries.

C. Practical Considerations

The proposed composite representation permits us to reduce both
the computational complexity and the bandwidth usage in s.p.e.d. ap-
plications. With reference to blockwise transforms, the composite rep-
resentation allows us to process I? samples in parallel by using a single
s.p.e.d. operation. As to the block convolution, by computing a single
output of (23) we obtain R output values of the original convolution.
Therefore, the complexity of a block operation is reduced by a factor
R with respect to that of the corresponding operation implemented
sample-by-sample. Also the bandwidth usage is reduced by the same
factor, since in all cases we pack R signal samples into a single cipher-
text.

It is important to note that the constraints deriving from different
applications usually lead to different choices of R. Let us consider an
estimate of the number of samples that can be safely packed into a
single word. A safe implementation requires at least B = 2Q)7 + 1,
where ()~ is a bound on the output of the computation. Since we must
have B < W, this leads to

R — { log, N J ~ \‘ |log, V|
log, (2Qz +1) log, @z +1

J =Ruz. (33)

Moreover, the block convolution imposes a smaller B with respect to
the other applications: since R 4 1 samples must be packed in a single
composite word, we have Ry’ = Ru,z — 1.

V. LINEAR FILTERING OF 1-D SIGNALS

In this section, we describe a case study showing the impact that the
composite signal representation has on linear (FIR) filtering of 1-D sig-
nals. The choice of FIR filtering as a case study has a twofold motiva-
tion. First of all, linear filtering is one of the most common processing
tools applied to 1-D signals. Second, as we have shown in Section IV,
the application of an FIR filter to a composite signal is not straightfor-
ward, and the choice of the most efficient filter implementation depends
on several factors, such as the order R of the composite representation,
the length of the impulse response of the filter, and the required accu-
racy.

In the considered scenario, I, owns the signal to be filtered and the
decryption key, while I”> owns the coefficients of the filter. At the end
of the processing, P» will have the encrypted and filtered signal in com-
posite form. As outlined in Section III-A, at this point, we have two pos-
sibilities: 1) the encrypted and composite result is sent to P;, who can
decrypt the composite data and extract the samples from the composite
representation, whose parameters B and R, as well as the final @,
are assumed to be public; 2) the encrypted and composite results is the

input of another secure protocol that requires a samplewise representa-
tion and the intermediate plaintext samples cannot be disclosed, so that
we need a suitable protocol to extract the encrypted samples from the
encrypted composite representation. In the proposed example, we will
concentrate on the filtering of the encrypted signal samples only. The
analysis of a suitable unpacking protocol is left for future research.

To be specific, the proposed case study concerns the comparison be-
tween a time-domain and a frequency-domain implementation of an
FIR filter when the inputs are represented as composite words. For the
time-domain implementation, we consider the parallel implementation
of convolution described in Section I'V-B, while for the frequency-do-
main implementation, we will consider the parallel implementation of
the overlap-add method depicted in Section IV-BI. An M -PCR signal
representation is assumed in both cases.

In traditional frequency-domain implementations, a careful choice
of the FFT size usually yields a significative complexity reduction with
respect to a time-domain implementation. However, when using the
composite representation for an implementation in the encrypted do-
main, we must take into account that the FFT, due to its multistage
structure, will cause an expansion of the magnitude of the output values
and, consequently, a reduction of the number of samples that can be
packed together. Hence, it is possible that for some choices of the pa-
rameters, a parallel time-domain implementation will be more conve-
nient than a frequency-domain one.

The complexity of the different implementations will be evaluated
in terms of the number of multiplications required. In fact, in s.p.e.d.
applications based on homomorphic encryption, multiplications are
usually implemented through modular exponentiations, whose cost is
much higher than that of other modular operations.

The block convolution requires L multiplications for each composite
word, where L is the filter length. If each composite word contains
Ry ,conv output samples, this leads to a complexity of

L mult

Ru,conv sample ’

Cconv = (34)
As to the parallel overlap-add, it requires a K -point FFT, a K -point
inverse FFT (IFFT), and K complex multiplications for a block of
M Ry ora output samples, where X' = M + L —1 and Ry,ora is the
number of samples that can be packed in a single word. The complexity
of s.p.e.d. FFT and IFFT is the same and has been derived in [15] both
for radix-2 and radix-4 algorithms. We assume that the complexity of
a complex multiplication is equal to four real multiplications. When
using the radix-2 algorithm, the complexity of the frequency-domain
implementation can be seen to be
_ 6Klog, K — 8K
oA = MRy ona

mult

(35)

sample’
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Fig. 5. Complexity of block convolution versus parallel overlap-add. 8-bit
input values () = 27) and 8-bit implementation (Qr = 27) have been as-
sumed. The upper bound on convolution outputs has been assumed @ = 214,
We have assumed |log, N| = 1023. (a) L = 256; (b) L = 2048.

In order to compare the two implementations, we consider the fil-
tering of an 8-bit signal, i.e., = 27. An 8-bit quantization of the
filter coefficients is assumed, i.e., Q7 = 27. The same precision is
assumed for quantizing the FFT coefficients. Finally, we assume that
Zf;é [h(n)| < 27, so that the upper bound on the convolution output
is Qr = 2'*. As to the upper bound on the output of the overlap-add
implementation, we can exploit the results in [15]. The upper bound on
the output of a radix-2 FFT/IFFT can be expressed as

by 1 >V*2
Qrz = tde (207 + —
r2 = Q1Q7% 61( T NG3
v—3

2V—l—l 1 l
+3 ! <2QT+—,> (36)
; V2 ’ V2

where v = log, K, Q1 is the scale factor multiplying the input values,
and €; is an upper bound on the quantization error. The final upper
bound can be found by recursively using the aforementioned result.
Once the corresponding upper bounds have been found, they can be
inserted into (33) to find both Rr7,conv and R ot .

TABLE 1
NUMBER OF SAMPLES 2 THAT CAN BE PACKED INTO A SINGLE WORD
WHEN USING A BLOCK CONVOLUTION AND A PARALLEL OVERLAP-ADD
IMPLEMENTATION WITH A K -POINT FFT. 8-bit INPUT VALUES (@ = 27)
AND 8-bit IMPLEMENTATION (Qr = 27) HAVE BEEN ASSUMED. THE UPPER
BOUND ON CONVOLUTION OUTPUTS HAS BEEN ASSUMED Q@ = 2%, WE
HAVE ASSUMED [log, N| = 1023

convolution overlap-add
K - 29 210 211 212 213 214 215
R 68 7 6 6 5 5 4 4

The complexities of the two implementations are compared in Fig. 5,
considering two filter lengths, L = 256 and L = 2048. As it can
be seen, with the shorter filter the block time-domain implementation
is more convenient than the frequency-domain one, irrespective of the
size of the FFT. In order to have some gain from the overlap-add imple-
mentation, we have to consider quite a long filter. Such a behavior can
be explained by looking at Table I, in which the value of I? for different
implementations and different FFT sizes is shown. It is evident that the
use of the s.p.e.d. FFT greatly reduces the number of samples that can
be packed in a single encrypted word, so the computational saving of
the overlap-add method in terms of number of multiplications is coun-
terbalanced by the reduced efficiency of the composite representation.

VI. CONCLUSIONS

In this paper, we have analyzed the possibility of reducing the ex-
pansion factor required in s.p.e.d. applications based on homomorphic
encryption by packing together several signal samples into a unique
composite word. To do so, we provided a general framework extending
an idea put forward in [18] and derived precise conditions that permit
us to process the underlying signal by operating directly on the com-
posite words, thus achieving a significant gain from a computational
complexity perspective. The advantage brought by the composite rep-
resentation is, therefore, twofold: on the one hand, it permits us to speed
up computation via parallel processing; on the other hand, it reduces the
size of the encrypted signals, having beneficial effects on both storage
and bandwidth usage.

We illustrated several ways of exploiting the composite representa-
tion to perform s.p.e.d. operations, like linear transforms and convo-
lutions. The proposed implementations scale the computational com-
plexity by a factor R, where R is the number of samples that are safely
packed into a single word. The encrypted signal size is reduced by the
same factor.

A case study has been proposed, where we investigated the use of the
composite representation for linear filtering of 1-D sequences. The re-
sults show that the composite representation can be a viable solution to
the problems of both data expansion and increased complexity arising
from the processing of encrypted data. Interestingly, when resorting to
the composite representation it can be more convenient to use a sim-
pler processing algorithm—Iike filtering through convolution—since
they allow packing together more samples than the corresponding fast
versions.

Throughout the paper, we have focused on 1-D signals; however,
all the arguments can be easily extended to 2-D or multidimensional
signals.

An open problem that is left for future research is the development
of an efficient protocol that permits us to pass from the composite to the
sample-wise representation without the parties involved in the protocol
sharing any secret information. Existing schemes, in fact, are either
computationally inefficient or can only be applied to the particular case
of B = 2 (see [22] for an example in this sense).
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Reversible Image Watermarking Using Interpolation
Technique

Lixin Luo, Zhenyong Chen, Ming Chen, Xiao Zeng, and
Zhang Xiong

Abstract—Watermarking embeds information into a digital signal like
audio, image, or video. Reversible image watermarking can restore the
original image without any distortion after the hidden data is extracted.
In this paper, we present a novel reversible watermarking scheme using
an interpolation technique, which can embed a large amount of covert
data into images with imperceptible modification. Different from previous
watermarking schemes, we utilize the interpolation-error, the difference
between interpolation value and corresponding pixel value, to embed bit
“1” or “0” by expanding it additively or leaving it unchanged. Due to
the slight modification of pixels, high image quality is preserved. Exper-
imental results also demonstrate that the proposed scheme can provide
greater payload capacity and higher image fidelity compared with other
state-of-the-art schemes.

Index Terms—Additive interpolation-error expansion, data hiding, inter-
polation-error, reversible watermarking.

1. INTRODUCTION

Digital watermarking is a kind of data hiding technology. Its
basic idea is to embed covert information into a digital signal, like
digital audio, image, or video, to trace ownership or protect privacy.
Among different kinds of digital watermarking schemes, reversible
watermarking has become a research hotspot recently. Compared
with traditional watermarking, it can restore the original cover media
through the watermark extracting process; thus, reversible water-
marking is very useful, especially in applications dictating high
fidelity of multimedia content, such as military aerial intelligence
gathering, medical records, and management of multimedia informa-
tion.

Since the earliest reversible watermarking scheme was invented by
Barton [1] in 1997, dozens of reversible watermarking methods have
been reported in the literature and classified into three categories by
Feng et al. [2]: reversible watermarking using data compression, re-
versible watermarking using difference expansion (DE), and reversible
watermarking using histogram operation. In these categories, the first
kind has complex computation and limited capacity, whereas the latter
two are better in both of two criteria.

DE, also known as a kind of integer wavelet transform, was first pro-
posed by Tian [3]. By expanding the difference between the two neigh-
boring pixels of pixel pairs, Tian explored the redundancy in digital
images to achieve a high-capacity and low-distortion reversible water-
marking. Later on, Alattar [4] extended Tian’s scheme by a general-
ized DE method which hid several bits in the DE of vectors of adjacent
pixels. Then, Kim et al. [5] proposed a novel scheme devoted to re-
duce the size of the location map. Furthermore, Lin ef al. [6] proposed
another DE scheme, where the location map was removed completely.
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