
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (SUBMITTED MAR. 2009) 1

Error-resilient and low-complexity onboard lossless
compression of hyperspectral images by means of

distributed source coding
Andrea Abrardo, Mauro Barni, Enrico Magli, Filippo Nencini

Abstract—In this paper we propose a lossless compression
algorithm for hyperspectral images inspired by the distributed
source coding principle. Distributed source coding refers to
separate compression and joint decoding of correlated sources,
which are taken as adjacent bands of a hyperspectral image. This
concept is used to design a compression scheme that provides
error resilience, very low complexity, and good compression
performance. These features are obtained employing scalar coset
codes to encode the current band at a rate that depends on
its correlation with the previous band, without encoding the
prediction error. Iterative decoding employs the decoded version
of the previous band as side information, and uses a cyclic
redundancy code to verify correct reconstruction. We develop
three algorithms based on this paradigm, which provide different
trade-offs between compression performance, error resilience
and complexity. Their performance is evaluated on raw and
calibrated AVIRIS images, and compared with several existing
algorithms. Preliminary results of an FPGA implementation are
also provided, which show that the proposed algorithms can
sustain an extremely high throughput.

Index Terms—Lossless compression; hyperspectral images;
error resilience; distributed source coding.

I. INTRODUCTION

Compression of multispectral and hyperspectral images has
recently received a lot of attention. New sensors are gener-
ating increasing amounts of data, especially in the spectral
dimension, as scenes are imaged at a very fine wavelength
resolution. This is particularly useful in terms of potential
applications, as spectral features allow to extract important
information from the data. However, it also makes the size
of the acquired images extremely large. Since many sensors,
especially spaceborne ones, cannot store all the data but
need to transmit them to a ground station, there is the need
of reducing the data size in order to match the available
bandwidth.

Image compression techniques can be employed to mitigate
this problem, allowing to transmit more scenes in the same
amount of time. Several types of compression are possible.
In lossless compression, the reconstructed image is identical
to the original. In near-lossless compression, the maximum
absolute difference between the reconstructed and original

A. Abrardo, M. Barni and F. Nencini are with the Dip. di Ingegneria
dell’Informazione, Università di Siena, Via Roma 56, 53100 Siena, Italy, e-
mail: (abrardo,barni,nencini)@dii.unisi.it. E. Magli is with
Dip. di Elettronica, Politecnico di Torino, Corso Duca degli Abruzzi 24,
10129 Torino, Italy, Ph.: +39-011-5644195, FAX: +39-011-5644099, e-mail:
enrico.magli@polito.it.

image does not exceed a user-defined value. In lossy com-
pression, given a target bit-rate, the reconstructed image must
be as similar as possible to the original “on average”, i.e.,
typically in mean-squared error sense. Lossless compression is
highly desired to preserve all the information contained in the
image; unfortunately, the state-of-the-art algorithms provide
limited compression ratios. For example, [1], [2] achieve a
compression ratio of about 3.5:1 on 16 bit AVIRIS data. Near-
lossless and lossless techniques yield larger size reductions, at
the expense of some information loss. E.g., in [3] it is shown
that bit-rates of 0.5 and 0.1 bits per pixel (bpp) can be achieved
with little or no impact on image classification performance.

In the past, the vast majority of compression algorithms
have been optimized for maximum coding efficiency, i.e.,
reducing the data size as much as possible, with some con-
straints on the error in case of lossy compression. However,
it should be noted that other features are also important. This
is especially true for on-board compression of hyperspectral
images, which is the subject of this paper. Such features
include:

1) Low encoder complexity. In the design of the on-
board processing unit of an operational system, the
selection of a compression algorithm is not only based
on the compression efficiency, but also, and perhaps
more importantly, on its low complexity.

2) Error resilience. Compression algorithms should be
error resilient, i.e. capable of dealing with “errors”. This
requirement is important because of the way the data are
processed and transmitted to the ground segment.

3) Ability to handle raw data. Compression algorithms
should be able to handle raw data, while most current
algorithms have only been tested on calibrated data.

As for feature 1, small differences in the compression
ratio are usually not very critical, while it is of paramount
importance that the on-board encoder has low complexity, in
order to match the low computational capabilities and the
high sensor data rate, possibly providing real-time operation.
It is a matter of fact that operational systems do not em-
ploy sophisticated state-of-the-art compression algorithms, but
rather simpler suboptimal algorithms. A notable example is the
2D lossy compression algorithm recently standardized by the
CCSDS (Consultative Committee for Space Data Systems) [4],
which is a wavelet-based algorithm similar to JPEG 2000 [5]
in many aspects, but with significantly lower complexity and
reduced performance [6].

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (SUBMITTED MAR. 2009) 2

Regarding feature 2, this requirement is becoming increas-
ingly important as the architecture of on-board processing
systems is undergoing a paradigm shift. In particular, until a
few years ago it was customary to employ radiation-hardened
digital signal processors to perform on-board processing,
including compression. Radiation-hardened components have
the same functionality of an equivalent standard processor,
but they are designed to be insensitive to ionization. Such
processors are extremely expensive to design and manufacture;
as a result, the available devices do not have state-of-the-
art computational capabilities. This has led to a recent trend
of employing off-the-shelf processors, as in [7]. Off-the-shelf
processors are prone to the effect of radiations; e.g., a typical
effect is to occasionally flip some bits in the on-board memory.
Moreover, when the data are transmitted to the ground station,
there is a small probability that the data are corrupted. A
corrupted packet will prevent from decoding other packets that
depend on it, causing significant error propagation unless some
error resilience is provided.

As a consequence, modern compression algorithms should
be able to manage the event of errors in the data. What is
meant by “manage” errors is that the image decoding process
should not break down completely, nor excessively impair the
data, upon occurrence of occasional errors or packet losses.
Traditional compression algorithms such as those in [8], [2]
are unable to recover upon a single bit error in the data,
preventing from decoding the remainder of the compressed file
after the error: i.e., if one of the first bits of the file is corrupted,
the complete scene will be lost. This undesirable behavior is
caused by two aspects of the classical structure of lossless
compression algorithms, which first perform a spatial/spectral
prediction, and then compress the prediction error samples
using an entropy coder. As the entropy coder uses a variable-
length code, a bit error will produce the erroneous decoding
of a symbol, and the loss of synchronization of the entropy
decoder, which generally leads to wrong decoding of all the
following symbols. In general, the better the compression,
the heavier the error propagation, as there is no redundancy
left in the data to resynchronize the decoder; e.g., while a
(memoryless) Huffman coder will occasionally resynchronize
and start yielding correct symbols, an arithmetic coder is very
unlikely to do so, as the encoding process has memory of the
past, and the memory will propagate decoding errors to all
the subsequent symbols. Besides, the prediction process also
has memory, and any error in a prediction error sample will
propagate to more and more samples (e.g., to all the subse-
quent bands) as the inverse predictor is used to reconstruct
the image. To manage the event of errors, the compression
algorithm should be designed so as to be able to withstand
errors, i.e. to limit the scope of error propagation as much
as possible. Moreover, its behavior should be predictable. It
is anticipated here that, as has been said above, this has a
cost in terms of compression efficiency, in that limiting error
propagation is only possible if some redundancy is left in the
data. The payback is that this allows to employ much less
expensive and more powerful on-board processing systems.
The importance of error-resilience is also witnesses by its
inclusion as a selection criterion for the next generation of

lossless and lossy multispectral and hyperspectral compression
standards developed by the CCSDS.

At this point, one may wonder how the existing algorithms
fare in terms of these requirements. Regarding feature 1,
it should be noted that there do exist a few compression
algorithms whose complexity would be suitable for on-board
processing, e.g. those in [1], [2], [9]. Most other algorithms,
including those based on 3D-CALIC [8], [10] and JPEG 2000
[3] have excessive complexity. JPEG-LS [11] is a simple and
effective algorithm, but in its current form it can only handle
2D and not 3D images; therefore, many authors consider a
simple differential JPEG-LS algorithm, in which JPEG-LS
compresses the difference between two adjacent bands, instead
of the original bands. Regarding feature 2, this problem is
almost completely overlooked in the literature, mainly because
it is a very recent requirement. The only algorithm addressing
this issue has been proposed in [12], and performs lossy
compression using trellis-coded quantization; however, this is
out of the scope of this paper, as we consider lossless and
not lossy compression. Out of all the remaining algorithms,
none of them would be consistently able to withstand a single
bit error without impairing the subsequent parts of the data.
Therefore, no existing algorithm is able to provide both low
complexity and error resilience. As for feature 3, while many
compression algorithms, e.g. [2], [9], claim to be suitable for
on-board compression thanks to their low-complexity, they
have only been tested on calibrated and not raw data. In fact,
most lossless and lossy compression papers provide results on
calibrated AVIRIS scenes as these scenes are made publicly
available by the NASA. However, the raw data generated on-
board are known to have rather different characteristics [13],
potentially leading to different compression strategies [14].
Therefore, the best algorithms for compression of raw scenes
are not necessarily going to be the best on the raw data. In
conclusion, there is a strong need of a comparison of different
algorithms on the raw as opposed to the calibrated data.

The objective of this paper is to fill this gap, proposing
new compression algorithms that provide low complexity and
error resilience, and testing them on raw and calibrated data.
The algorithms are inspired by a compression paradigm called
distributed source coding (DSC) [15]. Previous works [16],
[17] have shown the feasibility of DSC for low-complexity
hyperspectral image compression; however, they suffered a
significant loss in compression efficiency with respect to
the state-of-the-art, and did not consider error resilience. In
this paper we present three new algorithms with improved
compression performance and reduced complexity with respect
to [16], [17], which provide various degrees of error-resilience,
allowing to select the best efficiency-resilience trade-off for a
given application.

This paper is organized as follows. In Sect. II we review the
DSC concepts and discuss previous work in this area. In Sect.
III we describe the basic version of the proposed algorithm.
In Sect. IV we describe two algorithms that build on the basic
version by providing increasing degrees of error resilience.
Their performance evaluation is reported in Sect. V. Finally,
conclusions are drawn in Sect. VI.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (SUBMITTED MAR. 2009) 3

II. BACKGROUND

In this section we first describe the fundamentals of DSC,
and then explain them using the simple example of scalar coset
codes.

A. Distributed source coding theory

In recent years, DSC has received an increasing atten-
tion from the signal processing community. DSC considers
a situation in which two (or more) statistically dependent
information sources � and � must be encoded by separate
encoders that are not allowed to talk to each other. Let �
be a discrete independent and identically distributed (i.i.d.)
information source that can assume � different values in the
set � � ��� �� � � � �����. Then the entropy of � is defined as
���� � �

����
��� ��� ���� �

�
� , where ��� � � �� � 	�. The

source � is also defined in the same way using a probability
distribution ��� and an alphabet � � � . The joint entropy of
� and � is defined as ����� � � �

����
���

����
��� � �� �

	� � �
� ���� � �� � 	� � �
�. Information theory shows
[18] that separately encoding � and � requires a minimum
total rate of ���� 	 ��� �. Conversely, joint encoding
(e.g., predicting � from �) requires a total rate equal to
����� � � ���� 	 ��� �; this is because joint encoding
exploits the correlation between � and � . Thus, separate
lossless compression may seem less efficient than joint en-
coding. Somewhat surprisingly, DSC theory proves that, under
certain assumptions, separate encoding is optimal, provided
that the sources are decoded jointly [19]. For example, with
two sources it is possible to perform “standard” encoding of
the first source � (called side information) at a rate equal to
its entropy ��� �, and “conditional” encoding of the second
source � at a rate arbitrarily close to the conditional entropy
��� �� �, which is lower than the entropy ����, with no
information about � available at the second encoder. This is
the scenario considered in this paper.

For completeness, we briefly mention that DSC theory also
encompasses lossy compression [20]; it has been shown that,
under certain conditions, there is no performance loss in using
DSC [20], [21], and that, in the general case, losses are
bounded below 0.5 bit per sample (bps) for quadratic distortion
metric [22]. In practice, lossy DSC is typically implemented
using a quantizer followed by lossless DSC. Lossless and
lossy DSC have several potential applications, e.g., coding for
non co-located sources such as sensor networks, distributed
video coding [23], layered video coding [24], [25], and remote
sensing image compression [16], [26], just to mention a few.

Traditional entropy coding of an information source can be
performed using one out of many available methods, the most
popular being arithmetic coding and Huffman coding. DSC
coders are typically implemented using the “binning” concept.
We let � be the alphabet of � (typically � � ��� �� � � � �
���
�� for unsigned hyperspectral data), and consider a vector
�� of � samples of � taking values in � � . We want to
encode �� using approximately ��� �� � bits per sample
(bps). Binning amounts to partitioning � � into � disjoint sets
��, � � �� � � � � �, called “cosets”, such that ��	 � � �	�� � �� .
A good partitioning is such that the elements in each coset

have maximum distance between each other. Then the encoder
transmits only the label of the coset that the actual observed
vector �� belongs to, using ����

�
��

�
bps. This is clearly an

incomplete description of �� , as the label only describes ��

up to a certain ambiguity level. The decoder receives the coset
label, which specifies a list of candidate reconstruction vectors
(the coset elements). It picks as estimate of �� the element
of the coset that is closest to the side information � (more
precisely, a vector of � samples of �) in mean-squared error
norm. Ideally, � should be chosen such that the bit-rate is
roughly equal to ��� �� �. The interested reader can refer to
[15] for an excellent tutorial on DSC, and to [16] for a longer
introduction to this subject in the context of hyperspectral
image compression.

In practice, coset codes with good geometrical properties
can be obtained using channel codes, by representing the
source using the syndrome or the parity bits of a suitable
code of given rate. The syndrome identifies sets of codewords
(i.e. the cosets) with maximum distance properties, so that
decoding an ambiguous description of a source, given the
side information, incurs minimum error probability. If the
correlation between � and � can be modeled as a “virtual”
channel described as � � � 	
 , with
 an additive noise
process, a good channel code for that transmission problem is
also expected to be a good DSC code [21]. In practice, trellis
channel codes [27], turbo codes [28] and low-density parity-
check codes [29] have been used; distributed arithmetic codes
have also been proposed [30].

B. Scalar coset codes

1) A simple example: Since the channel codes mentioned
above have a relatively high encoder complexity, in this paper
we employ a scalar coset code, i.e. a code with � � �, which
exhibits lower coding performance but significantly lower
complexity. We describe the scalar coset code referring to Fig.
1 by means of an example. We assume that the samples to be
encoded are represented on three bits, assuming values from
0 to 7. We divide the eight values into four cosets, identified
by triangle-up, square, circle and triangle-down. Each coset
contains two values taken at maximum distance between each
other. Compression operates as follows. Let us say for example
that we want to encode the current sample � , which happens
to have value equal to 2. If we did not use the side information
� , we would need 3 bits to specify all possible values of � .
Instead, we label each coset and send to the decoder only the
label of the coset that � belongs to. In this example we have
four cosets, hence we need two bits; compared with the three
bits of the previous case, the rate has been reduced by one
third. The decoder receives the coset label for � , which tells
her that � is in �
� ��. The decoder employs the correlated
side information � to disambiguate between these two values,
by choosing for � the value that is closest to � . For example,
if � � �, then the decoder will reconstruct � �
. Intuitively,
if � is correlated with � , the probability of error, i.e. that �
is closer to another element of the coset other than the true
value of � , is vanishingly small.

This simple example allows to highlight a few important
aspects of DSC. One of them is the relation between the

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (SUBMITTED MAR. 2009) 4

number and size of the cosets. In the example above, instead
of taking four cosets with two elements in each, we could have
taken two cosets with four elements in each, transmitting only
one bit as label for � . The optimal number of coset actually
depends on how much correlated � and � are. The larger the
number of cosets, the larger the minimum distance between
two elements of the same cosets. Therefore, if � and � are
only mildly correlated, we need a large minimum distance to
make sure that the decoder will be able to disambiguate � ,
and hence we will need more bits for the label. Vice versa,
if � and � are very strongly correlated, we can create less
cosets and use less bits. A typical choice is to take the number
of cosets equal to a power of two, i.e.,
�. This choice makes
it easy to derive the coset label, as it can be easily shown that
the label is simply the
 least significant bits of � .

2) Minimum-distance decoding of scalar coset codes:
Since scalar coset codes are employed in the proposed al-
gorithm, we discuss in more detail their decoding procedure,
which constitutes an integral part of the algorithm description.
This also highlights the simplicity and inherent low complexity
of the proposed approach.

In practice, minimum-distance decoding is performed as
follows. Let
� � ���	 be the received coset label, where
�	 is the number of cosets and � denotes the remainder of the
division between two integers, with ���	 � �. Given the side
information � , one identifies the two values of � in the given
coset
� that are closest to � . Since �	 is also the distance
between two consecutive elements of a coset, the first candi-
date can be written as �
 � ��������	��	 	
� � ��	 ,
where � can be 0 or 1 and is chosen so that �
 � � . The
second candidate is �� � �
	�	. The decoder reconstructs
�� � ��������
��� ��� �� �� ��
��. Exact reconstruction

(�� � �) occurs if �� � � � � ������	�
� for �	 odd, and
�� � � � � ��	�
� for �	 even.

3) Choice of number of cosets: Throughout this description
we have made the assumption that the amount of correlation
(i.e., ��� �� �) is known a priori at the encoder. However,
this is generally not true in practical settings. The only viable
way to cope with this is to slightly betray the DSC principle,
and allow communication between the two sources � and �
in order to choose the number of cosets, i.e. the parameter

, to be used for coset coding. One can choose
 such that
the rate is approximately equal to ��� �� �; this minimizes
the bit-rate, but is prone to occasional residual errors, as the
Slepian-Wolf theorem guarantees that the error probability is
vanishingly small, but not exactly zero. Alternatively,
 can be
designed for the worst case, allowing zero-error reconstruction,
i.e., exactly lossless compression.

4) Role of the side information: From the discussion above,
it is clear that the side information � should be as close as
possible to� in mean-squared error sense. Statistically, this al-
lows to employ the smallest number of bits for the coset label,
while still allowing perfect reconstruction. In practice, in many
cases the “simplest” side information is not the most effective
one. We show this with reference to the hyperspectral image
compression scenario. While two adjacent bands � and � are
typically highly correlated, the correlation may have a linear
structure, such that an improved side information � � � �� 	�

X

0 1 2 3 4 5 6 7

Fig. 1. DSC using scalar coset codes.

may be closer to � in mean-squared error sense. With DSC,
it is possible to exploit this kind of structure without explicitly
sending the parameters � and � to the decoder. The encoder can
choose a transmission rate approximately equal to ��� �� ��,
which is smaller than ��� �� �. Along with the coset label,
the encoder also periodically sends a cyclic redundancy check
(CRC) parity string for the decoder perusal. For example,
the encoder can send a 32-bit CRC string computed over a
block of 256 consecutive samples. The decoder, which does
not know the exact value of � �, tries different possible values
for � � for all the samples in the block, e.g. using � as initial
guess, until the decoded samples of the block are such that
their CRC string exactly matches the received string. In this
way, there is a bit-rate saving at the encoder, in that the
parameters of the estimator that relates � and � � do not have
to be transmitted, allowing to employ sophisticated correlation
models.

5) Error resilience: Another important aspect regards error
resilience. One reason why existing algorithms are not error-
resilient is that the predictor of the current sample � is a
specific value that can be computed in a causal way only if
all previous pixels of the image have been decoded without
errors. The decoder reconstructs � as the predictor plus the
prediction error; hence, if this latter is corrupted by errors,
this will yield an erroneous reconstruction of � . With DSC,
this is not the case. In fact, any side information � that is
sufficiently close to � will allow the decoder to reconstruct the
correct value. Let us suppose that the side information � � �
has been corrupted, and a wrong value � � � � is available;
in this example, � � � � will yield � �
. As long as � �

is closer to � than to any other element of the same coset,
the decoder will provide the correct value of � . Therefore,
the DSC approach attenuates error propagation by allowing
to decode a sample from a corrupted predictor, provided that
the label of the sample is not corrupted. Moreover, in terms
of entropy coding, a scalar coset code is a fixed-length code,
as it employs � bits for each sample; therefore, the effect of
a single bit error is ideally limited to the sample affected by
that error.

C. Prior work

For remote sensing image compression, which is addressed
in this paper, the idea is to consider each band � � of a
multispectral or hyperspectral image as an individual source
[16], [17]. Adjacent bands are correlated, and this raises the
problem of exploiting their correlation. Classical algorithms
do so by employing interband prediction, i.e., performing
modeling at the encoder. On the contrary, DSC allows to
perform little or no modeling at the encoder, with lower
encoder complexity and error-resilience, and achieving ideally

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (SUBMITTED MAR. 2009) 5

the same bit-rate as a classical joint encoder. Indeed, in DSC
it is the decoder that is burdened with the modeling task;
however, in remote sensing applications this is not an issue
as the computational constraints at the ground segment are
not nearly as tight as on-board. It should be noted that in
[26] a wavelet-based hyperspectral compression algorithm is
described, which applies a 2D discrete wavelet transform
to each band, and then applies DSC between the wavelet
coefficients of adjacent bands. This algorithm can perform
both lossless and lossy compression, but its complexity is
high. Moreover, a number of papers have been published on
the subject of video compression using DSC; the interesting
reader is referred to [31] for a survey of recent results.

III. PROPOSED ALGORITHM: A1

In order to satisfy the requirements outlined so far and
allow to trade off between compression efficiency and error
resilience, we developed three algorithms: the first algorithm
(hereafter referred to as A1) focuses on coding efficiency,
the third one (A3) on error resilience, while the second (A2)
attempts to trade off between the two requirements. In this
section we describe the A1 algorithm, which achieves the best
coding efficiency, and constitutes the basis for the next two
algorithms.

All algorithms have been designed assuming that the data
are processed band by band. In particular, the algorithms inde-
pendently encode non-overlapped blocks of 16
16 samples in
each band. Therefore, it is assumed that one block of 16
16
samples is available in the current and previous bands. This
is akin to a band-sequential format, with a requirement of
16 lines of data available in memory. This choice has been
made for two reasons. Firstly, it makes it easier to parallelize
the algorithm in hardware implementation, as multiple 16
16
blocks available in memory can be encoded concurrently,
thus highly increasing the sustainable throughput. Secondly,
it allows to achieve a high degree of spatial error resilience
thanks to the block structure, coupled with the DSC built-in
error resilience in the spectral direction.

A. Encoder

1) Overview of encoding and decoding process: The gen-
eral outline of the proposed encoding/decoding strategy is
described in the following. The description refers to a generic
image band �; all bands are treated in the same way, with the
exception of the first one that is either transmitted uncom-
pressed (as is done in the present paper), or coded with any
available 2D lossless compression scheme.

As a first step, in order to account for the spatially varying
nature of the image, the bands are partitioned into non-
overlapping blocks of size 16
16. The first block of the band
is also transmitted uncompressed, for reasons that will be
explained later on. Subsequent blocks are processed as follows.
Let �
���� denote a generic pixel in �-th line, �-th column,
and �-th band. We assume that �
���� can be predicted from
the corresponding pixel of the previous band �
������ as:

�
���� � ���
������� 	 �
�� (1)

where �
�� is the prediction error, whose variance determines
the amount of information between two consecutive bands (the
higher the variance, the lower the correlation, hence resulting
in a lower compression ratio). As in [16] we assume an affine
relationship between �
���� and �
������, that is:

���
������� � �� 	 ���
������ � ������ (2)

where � is a constant to be determined and ���� and �� are
the average pixel values of the current block (� �) and the
co-located block in the previous band (� ���). The encoder
estimates the value of �, �� and ���� by inspecting the �-th
and �����-th bands. Note that � may vary from block to block,
allowing a fine adaptation to the local characteristics of the
image. Then the encoder computes the maximum value of the
prediction error �
�� for all pixels in the current block. Once
such maximum error is known, the encoder can determine
the number of least significant bit-planes to be transmitted to
the decoder (such a number in turns determines the distance
between the elements of a coset as explained in section II-B).
Finally the encoder computes a CRC of the pixels in the block
and sends it to the decoder together with the bit-planes.

The decoder operates as described in section II-B. However,
before coset decoding, it must first predict the pixel values in
the �-th band from those of the ��� ��-th band. The predicted
values, in fact, play the role of the side information and are
needed to correctly reconstruct the actual pixel values. Since
the decoder does not know the particular prediction function
used by the encoder, it tries to guess it. For each guess the
pixels of the block are reconstructed and the CRC computed
again. This process terminates upon occurrence of a CRC that
matches the one included in the compressed file. If the CRC is
long enough, the probability that a wrong guess will produce
a correct CRC is negligible.

2) Detailed encoder description: In the following a detailed
description of the steps outlined above is given.

1) For each ��
 �� block, the first step carried out by the
encoder consists in estimating �
���� from �
������. To
do so, it adopts a Least-Squares estimator assuming the
form

� �

�

�
���
������ � ����� � ��
���� � ����

�
���
������ � ����� � ��
������ � �����

�

(3)
where the sums are taken over all the pixels of the
block. With respect to the scheme adopted in [16], where
the encoder tries to minimize the maximum prediction
error, we opted for a Least-Squares estimator, since it is
much faster to compute and better fits the new encoding
strategy described below (item 4), for which the average
error is more relevant than the maximum one.

2) The value of � found according to equation (3) is
quantized by means of a uniform scalar quantizer with

�� levels in the [�,
] range. Quantization is necessary
to allow the decoder to guess the correct value of � in
a finite and small number of steps. As a consequence,
the predicted values of the pixels within the block are
computed as

��
���� � �� 	 ����
������ � ������ (4)

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (SUBMITTED MAR. 2009) 6

The average values �� and ���� are rounded off to the
nearest integer.

3) A prediction error vector is calculated for each block as

�
�� � �
���� � ��
����� (5)

where we drop the subscript � to emphasize that this
is the error vector for the current block. The maximum
absolute error in �
�� is used to compute the number

 of LSB planes that should be transmitted to ensure
that the distance between the elements of each coset is
larger than twice the maximum error (see section II-B).
In particular we have:

 �
�
�������
�����

�
	
� (6)

where ���� denotes the
� norm, i.e., ���
�� ��
���.
A few words are in order here to explain the above
formula. To assure recovery at the decoder side, the
maximum error of the block has to be strictly lower
than half of the distance among two consecutive cosets,
i.e. ��
���� �
���. This equation should be rewritten
as
 � �������
����� 	 �. If ��
���� is not a power of
two, the lowest integer value that satisfies the equation
is ��������
����� 	 �� � ��������
����� 	 �� 	 � �
��������
������	
 (for example, if ��
���� is �,
 is
equal to �). Otherwise, when ��
���� is a power of two,
the �������
����� 	 � term is an integer value and the

equation is verified with
 �
�
�������
�����	�

�
	� �

�������
����� 	
. These two results are combined in
(6) into a single formula.

4) Only the
 � � LSB planes of each pixel in the block
are transmitted. For the
-th LSB plane the following
map is computed

�
�� �

�
� ��
��� �
���

� ������� �
(7)

and stored for transmission to the decoder. In addition
to the map �
��, the
-th LSB of those pixels for
which �
�� � � is also stored. This step constitutes
a main deviation from the scheme used in [16] and the
general approach outlined in section II-B. To explain the
rationale behind it, we observe that setting the distance
between cosets according to the maximum prediction
error is a rather pessimistic approach. Actually in most
cases the prediction error will be much smaller than
the maximum, thus making it possible to transmit only

��� LSBs. In order to avoid a reconstruction error,
the position of those few pixels with a prediction error
larger than
��� is stored in the �
�� map and the
corresponding
-th LSB transmitted separately. Note
that, since the error distribution is not uniform, the
�
�� map will be highly sparse and hence easily
compressible. To take advantage of this, the positions of
those �
�� entries that are equal to one are coded with
a differential Huffman coding scheme applied to a zig-
zag scanned version of the map. The above arguments
are exemplified in Fig. 2 where a typical distribution of
the prediction error is plotted and compared with the

distance between two consecutive elements of a coset
obtained by fixing
 � � LSBs. As can be seen, the
number of pixels for which the prediction error exceeds
half the distance between two coset elements is very
small. The �
�� map is also depicted in the figure: the
map is highly sparse thus allowing a high compression
gain.

(a)

(b)
Fig. 2. (a) Representation of the prediction error distribution among two
consecutive cosets and (b) an example of the ���� map obtained by the
analysis of a block.

In the decoding process the correct pixel value is recov-
ered from
�� LSBs when the prediction error is lower
than
��� or from
 LSBs when �
�� is equal to 1.

5) In addition to the LSBs and the �
�� map, for each
block the number
 and 32 parity-check bits obtained
by applying a CRC code to the values of the pixels in
the block are stored in the bit-stream.

At the end of the encoding process a codestream formed as
in Fig. 3 is produced.

The CRC code must have good error detection properties, in
order to not hinder the decoding process, and must be simple
to compute to avoid increasing the computational burden of
the encoder and decoder, as the CRC computation represents a
significant part of both. We have attempted to use an extremely
fast error detection algorithm, such as the so-called “Internet
checksum”, i.e. the hash computed from the header bytes of
the Internet protocol, which is the 16 bit one’s complement of
the one’s complement sum of all 16 bit words in the header.
This checksum is extremely fast, but does not have sufficiently
good error detection performance. In our scheme we used a
32-bit CRC with polynomial ���� � �	� 	�	�	�
 	�, [32],
whose complexity is about ��!� instructions per input byte.
This CRC is only about 3.5 times slower than the Internet
checksum, but almost 30 times faster than the CRC employed
in [16], yielding a significant computational saving. An even
faster CRC implementation exists with ��
� instructions/byte;

Fig. 3. Content of a compressed block of the A1 algorithm.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (SUBMITTED MAR. 2009) 7

however, this latter requires large look-up tables. While this
is not an issue on a software implementation, the look-up
table would not fit in the internal memory of a hardware
implementation, leading to reduced throughput.

B. Decoder

The first step the decoder needs to carry out, is the predic-
tion of the pixel values in the �-th band from those of the ���-
th band. However, the decoder does not know the parameters
of the predictor used by the encoder, hence it has to estimate
them. Namely, for each block it has to estimate the values of � �
and �� appearing in (4); the value of � ��� is already available
since the �� �-th band has already been reconstructed.

The value of �� is estimated by resorting to the pixels of
spatially contiguous blocks already decoded, and to those of
the previous band. Let us indicate with ����� and ����� the
average values of the blocks above and on the left of the
current block, and with ������� and ������� the corresponding
values in the previous band. The value of � � is estimated by
the following equation

��� � �

	
�����

�
�	

���� � �������

�������

�
	�����

�
�	

���� � �������

�������

�

�

(8)
The use of the mean value of the left block explains why the
first block of each band is encoded uncompressed. This allows
to compute ��� for the second block, setting ������� and �����
to zero.

For each value of ���, a set of
�� uniform levels from � to

 is used to estimate ��. In turn, all the candidate predictors are
combined with the received LSBs, to reconstruct the correct
pixel values in the current band. Of course the decoder does
not know a priori whether the predictor it is currently using
corresponds to the one employed by the encoder. To under-
stand it, the reconstructed values are validated by checking if
CRC obtained from the reconstructed pixels is identical to the
received CRC.

When this condition is verified, the reconstruction process
of the block is terminated and the decoder proceeds to the
reconstruction of the subsequent block.

IV. IMPROVING ERROR RESILIENCE: A2 AND A3
ALGORITHMS

As outlined in Sect. I, achieving a good compression rate
may not be enough in modern on-board compression systems,
for which low complexity and error resilience are also im-
portant. In this section we present two modifications of the
basic A1 algorithm described so far that aim to improve its
robustness against errors.

Specifically, we introduce two new schemes; the former
achieves a trade-off between coding gain and error resilience,
in that it permits to avoid error propagation in most, but not all,
the cases. The latter permits to always avoid error propagation
in the presence of isolated errors, at the expenses of a more
significant reduction of compression efficiency.

A. Error model

In order to make a sensible design for error resilience, one
has to make some assumptions regarding the error model. In
this paper, we consider two different kinds of errors. The first
class is given by errors in the on-board memory. These errors
can be modeled as an occasional isolated bit-flipping. The
second class consists of errors in the downlink communication
stage. Many systems employ the CCSDS packet telemetry
recommendation [33]. In this recommendation, similarly to
most wireless communication systems, the source packets
are broken down into transfer frames, which are the basic
transmission units. Transfer frames are checked for errors
individually, as they have a CRC. Therefore, the size of a
transfer frame determines the minimum amount of data that
are lost upon occurrence of a single bit error during the
transmission. The maximum size, for the CCSDS standard,
is 16384 bits, and is also constrained by the channel code
employed in a particular mission. Thus, the maximum amount
of data that are lost corresponds to few compressed 16
16
blocks. For the purpose of this paper, this means that, for
transmission errors, it is reasonable to assume that a complete
block has been lost, and that the co-located block in the
previous and next bands is available. Note that the telemetry
standard also provides the syntax necessary to resynchronize
and restart the decoder, after an error, upon reception of a new
set of uncorrupted compressed blocks. Thus, we assume that
the decoder knows what blocks are corrupted, and can restart
decoding upon reception of a new frame or source packet.

B. Algorithm 2

As we have shown in the previous section, if an error is
present in the ��� ��-th band, the A1 algorithm will result in
a reconstruction error in the �-th band, which will propagate
through all the remaining bands. This means that all co-located
blocks in the subsequent bands would be lost, as the decoder
would be unable to reconstruct them. Algorithm A1 does have
some built-in error resilience, in that the block-based approach
will limit the propagation of the reconstruction error to a 16

 16 block. However, the DSC approach can perform even
better, as any side information that is sufficiently close to �
will allow the decoder to correctly reconstruct the bitstream.
The idea, then, is to use the ���
�-th band as a back-up side
information to be used when the ��� ��-th band is corrupted
by errors. In this way spatial error propagation is avoided due
to the block-based nature of the encoding/decoding process,
and spectral error propagation is mitigated.

We now describe how we modified the A1 algorithm so as
to take advantage of the availability of the �� �
�-th band
when the ��� ��-th is not available.

First of all the encoder applies to the ���
�-th band the same
procedure used to predict the �-th band from the �����-th one.
In this way, the encoder computes the predictor parameters
����, ��, the prediction error ��
�� between the �-th and the
�� �
�-th band, the number
 � of LSB planes necessary to
reconstruct the �-th band from the �� �
�-th one, and the
corresponding map � �

��. At this point three different cases
are considered:

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (SUBMITTED MAR. 2009) 8

�
� �
;
�
� �
;
�
� �
.

When
� is lower than
 (a rather rare case indeed, given that
usually the correlation between bands tends to decrease when
the spectral distance increases),
 LSBs are enough to recover
the current band values either from �
������ or �
������, so
nothing has to be done and the encoder goes on as in the
A1 algorithm. When
 � �
 the encoder decides that error
propagation can not be avoided and transmits only the bits that
are required to ensure perfect reconstruction from �
������ as
in algorithm A1. Note however that this situation does not
occur often since with hyperspectral images band � �
 is
typically close to band � � �, and most of the times we will
have
� �
.

When
� �
 (which as we said is by far the most frequent
case), the algorithm A2 continues to transmit the
�� LSBs of
the pixels of the block, however it now builds a new composite
map � �

�� by bit-wise OR-ing �
�� and � �

��:

��

�� � �
����

�

��� (9)

where the symbol “ � ” denotes the bit-wise “OR” operator. As
with A1, the
-th LSB is transmitted for the pixels for which
� �

�� � �.
The new map allows to recover �
���� both from �
������

and �
������, because
 LSBs are transmitted when either
�
�� or ��
�� is greater than
���. In fact, it may happen that
the
-th LSBs are transmitted even for some pixels for which

� � bit would be enough. This is often going to be the case
when decoding is performed by relying on the �����-th band.
While this is clearly not a problem from a reconstruction point
of view, it represents a source of redundancy in the compressed
file that slightly decreases compression performance. In par-
ticular, the � �

�� map obviously contains a larger number of
ones, hence it is less compressible than �
�� (or � �

��), thus
causing a slight reduction of coding efficiency.

The decoder of A2 algorithm is the same used by A1.
If the decoder detects an error in a block of the �-th band,
reconstruction of the corresponding block in band � 	 � is
carried out by using band �� � as side information, limiting
spectral error propagation.

C. Algorithm 3

Algorithm 2 fails to recover �
���� from �
������ if

� �
 because additional LSB-planes would be required.
To overcome this limitation and increase the robustness of
the compressed bitstream at the expense of compression rate,
we introduce a third scheme (A3) that permits to recover the
current band even when
 � �
 	 �. The encoder of the A3
algorithm defines a new map, hereafter referred to as � ��

��:

� ��

�� �

��

� ���
��� �
���

�
��� � ���
��� �
���

 ���
��� �
���
(10)

� ��

�� and �
�� are used to generate a composite map � �

��:

��

�� � �����
����

��

���� (11)

Fig. 4. Content of a compressed block of the A3 algorithm.

where, at each pixel position, the maximum is taken between
the co-located entries of the two maps. At this point two maps
are extracted from � �

��

� ���

�� �

�
� �� � �

�� � �
� ������� �

(12)

����

�� �

�
� �� ��

�� �

� ������� �

� (13)

The two maps are separately coded with a differential Huffman
scheme and are stored in the compressed file with the
-th
LSB when � ���

�� is equal to 1 and with the
-th and �
	��-
th LSBs when � ���

�� is 1 (see Fig. 4). Map � ���

�� allows to

decode from band ��
 as in algorithm A2, while map � ���

��

allows one to use the �
 	 ��-th LSB of band ��
.
The structure of the A3 decoder differs from that of A2 only

when
� �
 	 �. When this condition is verified, the � ���

��

map is uncompressed and the recovered
� �� and
	�� ��
LSBs are used to reconstruct all pixels of the block with the
same procedure described in III-B.

V. RESULTS

A. Dataset description

In our experiments we employed a few scenes acquired by
the AVIRIS sensor; AVIRIS covers the 0.41-2.45 �m spectrum
in 10-nm bands. The instrument consists of four spectrometers
that are flown at 20 km altitude with 17 m resolution. Each
image has 512 lines, 224 bands and 680 lines.

In particular, seven raw images have been employed. These
scenes are referred to as Sc0, Sc3, Sc10, Sc11, Sc18, Hawaii
and Maine. The first five scenes are represented on 16 bits,
and have been acquired in 2006 over Yellowstone, WY,
while the last two ones are on 12 bits. These images are
made publicly available by NASA, and can be downloaded at
http://compression.jpl.nasa.gov/hyperspectral/.
For the 16-bit scenes, the corresponding calibrated images
have also been employed.

Moreover, we have considered the radiance data of four
scenes from the 1997 acquisitions, namely Cuprite, Jasper
Ridge, Moffett Field and Lunar Lake, which are publicly
available on the Internet at aviris.jpl.nasa.gov. These
images are calibrated, and have been used in many papers
addressing hyperspectral image compression; hence their use
facilitates comparisons with other algorithms.

B. Compression efficiency

For the 2006 raw and calibrated images, the proposed
algorithms have been compared with the following algorithms.

� The JPEG-LS standard.
� The look-up table based algorithm (LUT) proposed in

[2].

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (SUBMITTED MAR. 2009) 9

� The locally averaged interband scaling look-up table
(LAIS-LUT) method proposed in [1].

� The FL algorithm proposed in [13], which employs the
previous band for prediction, but adapts the predictor
coefficients using recursive estimation. Note that, for this
method, the last scene of each image is not included.

� The BG block-based compression algorithm proposed
in [34], which employs a simple block-based predictor
followed by an adaptive Golomb code. We have imple-
mented the BG algorithm as described in [34], with the
only difference that we subtract the mean value of the
block in the current and previous band before computing
the prediction gain; this yields slightly better bit-rates
than those reported in [34].

The results are shown in Tab. I (the bit-rates for FL and
LAIS-LUT have been taken from [35]). The average bit-rates
on the raw and calibrated scenes are also reported (note that
the average over the raw scenes does not include the 12-
bpp scenes). JPEG-LS clearly performs poorly, as it does not
exploit the spectral correlation. FL has the highest compression
efficiency, scoring a 2.6 bpp gain with respect to JPEG-LS.
The LUT and LAIS-LUT algorithms do not perform as well
as expected on the raw data, as also reported in [36]. The BG
algorithm is particularly interesting because it has the same
predictor structure than the proposed algorithms, but encodes
the prediction residuals instead of using coset codes. Its
average performance is only 0.14 bpp worse than FL, which is
remarkable, as FL employs a significantly more sophisticated
adaptive predictor. The A1 algorithm, which has the best
compression efficiency among the proposed algorithms, has
a 0.48 performance gap with respect to BG. For the same
predictor structure, this is the price to be paid for using the
coset codes instead of encoding the prediction residuals. As
anticipated, A2 and A3 have a larger gap, up to 0.77 bpp
with respect to BG; however, as will be seen later on, this is
compensated by the additional error resilience. Interestingly,
the algorithm design proposed in this paper is significantly
better than previous DSC algorithms [16], as A1, A2 and A3
have a performance gain of 0.7, 0.62 and 0.41 bpp respectively
with respect to [16] (which does not target error resilience). In
summary, A1 and A2 are better than LUT, and A3 only slightly
worse. The performance gap with respect to a full-featured
algorithm such as FL is between 0.62 and 0.91. This gap is
compensated by the significant degree of error resilience, and
the ability to perform parallel encoding exploiting the block-
based structure. Inspection of the results on calibrated data
shows similar trends. On these data LUT and LAIS-LUT are
only slightly better than on the raw data with respect to the
proposed algorithms, so that LUT and A1 have almost the
same average bit-rate. The performance loss of A1/A2/A3 with
respect to BG is roughly the same as on the raw data, and
BG is 0.26 bpp worse than FL. The performance gain of the
proposed algorithms with respect to [16] ranges between 0.67
and 0.36 bpp.

For the four 1997 calibrated images, the following addi-
tional algorithms have been employed for comparison.

� The SLSQ-HEU prediction-based algorithm proposed in

[9].
� The BH block-based compression algorithm proposed in

[34].
� The C-DPCM algorithm proposed in [37].
� The spectral relaxation labelled prediction (S-RLP) and

spectral fuzzy-matching pursuit (S-FMP) algorithms pro-
posed in [38].

The bit-rates on the 1997 images are shown in Tab. II.
On these scenes, LUT and LAIS-LUT are known to perform
particularly well, with average bit-rates down to 4.61 bpp.
More sophisticated algorithms such as C-DPCM, S-RLP and
S-FMP also achieve similar performance. For comparison, FL
achieves 4.99 bpp, which is similar to SLSQ-HEU. BH and
BG are only slightly worse, with 5.18 and 5.15 bpp. A1, A2
and A3 have a performance loss of respectively 0.41, 0.55 and
0.72 bpp with respect to BG. The gain with respect to [16] is
between 0.67 and 0.36 bpp.

TABLE II
BIT-RATES (BPP) ACHIEVED BY VARIOUS ALGORITHMS FOR LOSSLESS

COMPRESSION ON THE COMPLETE AVIRIS IMAGES.

Jasper Ridge Lunar Lake Cuprite Moffett Average
JPEG-LS 7.67 6.87 7.02 7.41 7.24

SLSQ-HEU 4.97 4.97 4.95 5.00 4.97
C-DPCM 4.62 4.75 4.68 4.62 4.67

LUT 4.95 4.71 4.65 5.05 4.84
LAIS-LUT 4.68 4.53 4.47 4.76 4.61

S-RLP 4.65 4.69 4.69 4.67 4.68
S-FMP 4.63 4.66 4.66 4.63 4.65

FL 5.04 4.97 4.95 4.99 4.99
BH 5.23 5.11 5.11 5.26 5.18
BG 5.18 5.13 5.12 5.18 5.15
A1 5.60 5.51 5.50 5.64 5.56
A2 5.73 5.65 5.65 5.75 5.70
A3 5.93 5.78 5.78 5.99 5.87
[16] 6.27 6.17 6.16 6.32 6.23

In summary, as expected the proposed algorithms suffer a
performance loss with respect to state-of-the-art techniques.
Algorithm A1 has a loss of 0.4-0.5 bpp with respect to BG,
which is the most similar algorithm. The loss with respect
to FL is 0.15-0.25 bpp larger. In return of this loss, A1 and
BG exhibit spatial error resilience, with a containment of an
error inside a 16
16 block, and A1 has some spectral error
resilience, as detailed in Sect. V-C. Moreover, the block-based
structure of the proposed algorithms is amenable to parallel
implementation.

C. Error resilience

Out of all the algorithms that have been used to assess
the compression performance, only BH, BG and the proposed
algorithms would be able to provide some error resilience.
In particular, they spatially confine the effect of an error to
the corrupted 16x16 block, affecting all subsequent bands.
All the other algorithms have not been designed for error
resilience, thus a single bit error or packet loss would render
the subsequent portion of the compressed file undecodable.

The proposed DSC approach also provides different degrees
of spectral error containment. When spectral containment is
successful, only one pixel is going to be missing in the spectral

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (SUBMITTED MAR. 2009) 10

TABLE I
BIT-RATES (BPP) ACHIEVED BY VARIOUS ALGORITHMS FOR LOSSLESS COMPRESSION ON THE 2006 RAW AND CALIBRATED AVIRIS IMAGES.

Algorithm Raw scenes Calibrated scenes
Sc0 Sc3 Sc10 Sc11 Sc18 Hawaii Maine Average Sc0 Sc3 Sc10 Sc11 Sc18 Average

JPEG-LS 9.18 8.87 7.32 8.50 9.30 4.58 4.50 8.63 6.95 6.68 5.19 6.24 7.02 6.42
LUT 7.13 6.91 6.25 6.69 7.20 3.27 3.44 6.84 4.81 4.62 3.95 4.34 4.84 4.51

LAIS-LUT 6.78 6.60 6.00 6.30 6.82 3.05 3.19 6.50 4.48 4.31 3.71 4.02 4.48 4.20
FL 6.23 6.10 5.65 5.86 6.32 2.64 2.72 6.03 3.96 3.83 3.40 3.63 3.94 3.75
BG 6.46 6.31 5.65 6.05 6.40 3.03 3.17 6.17 4.29 4.16 3.49 3.90 4.23 4.01
A1 6.92 6.78 6.10 6.53 6.92 3.49 3.65 6.65 4.81 4.69 4.01 4.41 4.77 4.54
A2 7.01 6.87 6.17 6.61 6.98 3.62 3.76 6.73 4.91 4.78 4.09 4.52 4.86 4.63
A3 7.26 7.11 6.31 6.78 7.22 3.74 3.91 6.94 5.16 5.02 4.24 4.71 5.12 4.85
[16] 7.61 7.48 6.80 7.25 7.61 4.13 4.29 7.35 5.49 5.35 4.65 5.09 5.46 5.21

vectors that have components in the affected block, as the
decoder is able to restart from the next correctly received band.
When it fails, all the subsequent pixels are going to be missing,
as in the case of BH and BG. In other terms, the proposed
algorithms yield a spectral vector which is either almost
perfect, and can hence be used for information extraction, or
is significantly impaired. For BH and BG, the spectral vector
would always be impaired.

As has been seen in Sect. V, whether algorithms A1, A2 and
A3 will be able to contain spectral error propagation depends
on the values of
 and
 �. For A1, containment occurs when

� �
, which is relatively rare. For A2, it occurs when
 � �
,
which is a rather frequent case, while for A3 it occurs when

� �
	�, which almost always occurs. We have evaluated the
occurrence frequency of these conditions over the 16-bit raw
data included in the test set. The results are reported in Tab. III,
and reflect the remarks above, highlighting the effectiveness
of the proposed approach in containing errors in the spectral
direction, besides the spatial error containment.

TABLE III
PERCENTAGE OF SUCCESSFUL SPECTRAL ERROR CONTAINMENTS FOR

16-BIT RAW DATA.

A1 A2 A3
8% 67% 96%

D. Complexity

The complexity of the proposed algorithms has been com-
pared with that of existing schemes. As a global complexity
measure, we have taken the running time of a software
implementation of the encoders, in C language, on a Linux
workstation. All programs have been compiled with gcc,
enabling full optimization. The results are reported in Tab. IV,
and are normalized with respect to the complexity of JPEG-
LS. As can be seen, all proposed algorithms are faster than
JPEG-LS, while providing better compression performance.
The complexity of A1 is significantly smaller, while A2 is still
less complex and more efficient than JPEG-LS, and provides
a significant degree of error resilience. The LUT algorithm is
slightly more complex than JPEG-LS; our results are in line
with those reported in [2]. The BG algorithm is also in the
same order of complexity of the proposed algorithms; however,
it does not provide error resilience.

TABLE IV
COMPLEXITY OF VARIOUS ENCODERS.

Algorithm Complexity
JPEG-LS 1

A1 0.57
A2 0.87
A3 0.89
BG 0.73

LUT 1.14

As has been seen, the A1, A2 and A3 algorithms have
very low complexity. In addition to that, they can be easily
parallelized by having different 16x16 blocks compressed at
the same time. This can be achieved very easily on an FPGA.

Preliminary performance tests have been conducted on an
engineered version of the algorithms run on space-qualified
hardware. We only briefly report on the results, which have
been worked out by Carlo Gavazzi Space SpA, and are fully
described in [39].

First, the C software has been optimized and run on a
TMS320C6701 EVM board. It has been found that algorithm
A1 can sustain a throughput of 440 ksample/s, and algorithm
A2 365 ksample/s, just using a software implementation.

Then, the algorithms have been written in VHDL language,
and tested on a Xilinx Virtex 4 FPGA, using a 9-stage
pipelined architecture. A single instance of the algorithm
achieves a throughput in excess of 80 Msample/s, and as many
instances can be used as fit into the FPGA. As a result of
the pipelined architecture, the performance of the A1 and A2
algorithms is roughly the same. This shows that the proposed
techniques are very effective for on-board compression, as they
can handle very high data rates, providing support for real-time
image compression.

E. Discussion

The results presented above lead to the following remarks.
� In terms of complexity, all the three proposed algorithms

are very competitive. While they do exploit the spectral
correlation, they are faster than JPEG-LS, which is a low-
complexity 2D image compression algorithm. A through-
put as high as 80 Msample/s has been demonstrated on an
FPGA, and this can be increased even further exploiting
parallelism.

� In terms of error resilience, the proposed algorithms
are significantly better than any existing scheme, and

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (SUBMITTED MAR. 2009) 11

provide sevelar possible trade-offs between robustness
and complexity.

� In terms of compression performance, there is a loss with
respect to algorithms based on 3D prediction, which is
the price to be paid for error resilience. On the raw
AVIRIS dataset, the loss ranges from 0.48 to 0.77 bpp
with respect to BG. However, the gain with respect to
a 2D algorithm such as JPEG-LS is still as high as 2
bpp. This shows that the proposed algorithms are still
a convenient choice with respect to a 2D algorithm, in
terms of both compression efficiency and complexity,
while providing error resilience as an added-value.

VI. CONCLUSIONS

We have proposed three compression algorithms which aim
at providing error-resilient lossless compression of hyperspec-
tral images. The algorithm design has been inspired by the
DSC principle and, in particular, the concept of coset codes is
employed to achieve error resilience.

The algorithms prove the effectiveness of the underlying
principle, significantly outperforming previous work in this
area [16] (note that the algorithm in [16] did not provide error
resilience).

Performancewise, the main feature of the proposed algo-
rithms is their low complexity, which is smaller than that
of JPEG-LS. An FPGA implementation has demonstrated a
throughput as high as 80 Msample/s, which can be further in-
creased running multiple instance of the algorithm in parallel.

The three algorithms achieve different trade-offs between
compression efficiency and error resilience. There is still a
limited performance gap with respect to a predictive coder
based on the same structure, which is compensated by the error
resilience. As the high sensor data rates of present and future
hyperspectral missions call for simple and fast compression
techniques, the proposed algorithms represent good options
for on-board compression, with the added benefit of error
resilience.

REFERENCES

[1] B. Huang and Y. Sriraja, “Lossless compression of hyperspectral
imagery via lookup tables with predictor selection,” in Proc. SPIE,
vol. 6365, 2006.

[2] J. Mielikainen, “Lossless compression of hyperspectral images using
lookup tables,” IEEE Signal Processing Letters, vol. 13, no. 3, pp. 157–
160, Mar. 2006.

[3] B. Penna, T. Tillo, E. Magli, and G. Olmo, “Transform coding techniques
for lossy hyperspectral data compression,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 45, no. 5, pp. 1408–1421, May
2007.

[4] Image Data Compression, CCSDS-122.0-B-1 Blue Book, November
2005.

[5] D.S. Taubman and M.W. Marcellin, JPEG2000: Image Compression
Fundamentals, Standards, and Practice, Kluwer, 2001.

[6] Image Data Compression, CCSDS-120.1-G-1 Green Book, June 2007.
[7] K. Anderson, “Low-cost, radiation-tolerant, on-board processing solu-

tion,” in Proc. of IEEE Aerospace Conference, 2005.
[8] X. Wu and N. Memon, “Context-based lossless interband compression

- extending CALIC,” IEEE Transactions on Image Processing, vol. 9,
no. 6, pp. 994–1001, June 2000.

[9] F. Rizzo, B. Carpentieri, G. Motta, and J.A. Storer, “Low-complexity
lossless compression of hyperspectral imagery via linear prediction,”
IEEE Signal Processing Letters, vol. 12, no. 2, pp. 138–141, Feb. 2005.

[10] E. Magli, G. Olmo, and E. Quacchio, “Optimized onboard lossless and
near-lossless compression of hyperspectral data using CALIC,” IEEE
Geoscience and Remote Sensing Letters, vol. 1, no. 1, pp. 21–25, Jan.
2004.

[11] M.J. Weinberger, G. Seroussi, , and G. Sapiro, “The LOCO-I lossless
image compression algorithm: Principles and standardization into JPEG-
LS,” IEEE Transactions on Image Processing, vol. 9, no. 8, pp. 1309–
1324, Aug. 2000.

[12] G.P. Abousleman, T.-T. Lam, and L.J. Karam, “Robust hyperspectral
image coding with channel-optimized trellis-coded quantization,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 40, no. 4, pp.
820–830, Apr. 2002.

[13] M. Klimesh, “Low-complexity lossless compression of hyperspectral
imagery via adaptive filtering,” in The Interplanetary Network Progress
Report, 2005.

[14] A.J. Pinho, “An online preprocessing technique for improving the
lossless compression of images with sparse histograms,” IEEE Signal
Processing Letters, vol. 9, no. 1, pp. 5–7, Jan. 2002.

[15] Z. Xiong, A.D. Liveris, and S. Cheng, “Distributed source coding for
sensor networks,” IEEE Signal Processing Magazine, vol. 21, no. 5, pp.
80–94, Sept. 2004.

[16] E. Magli, M. Barni, A. Abrardo, and M. Grangetto, “Distributed source
coding techniques for lossless compression of hyperspectral images,”
EURASIP Journal on Advances in Signal Processing, vol. 2007, 2007.

[17] E. Baccaglini, M. Barni, L. Capobianco, A. Garzelli, E. Magli,
F. Nencini, and R. Vitulli, “Low-complexity lossless compression of
hyperspectral images using scalar coset codes,” in Proceedings of Picture
Coding Symposium, 2007.

[18] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley,
New York, 1991.

[19] D. Slepian and J.K. Wolf, “Noiseless coding of correlated information
sources,” IEEE Transactions on Information Theory, vol. 19, no. 4, pp.
471–480, July 1973.

[20] A. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Transactions on Information
Theory, vol. 22, no. 1, pp. 1–10, Jan. 1976.

[21] S.S. Pradhan, J. Chou, and K. Ramchandran, “Duality between source
coding and channel coding and its extension to the side information
case,” IEEE Transactions on Information Theory, vol. 49, no. 5, pp.
1181–1203, May 2003.

[22] R. Zamir, “The rate loss in the Wyner-Ziv problem,” IEEE Transactions
on Information Theory, vol. 42, no. 6, pp. 2073–2084, Nov. 1996.

[23] R. Puri and K. Ramchandran, “PRISM: a “reversed” multimedia
coding paradigm,” in Proc. of IEEE International Conference on Image
Processing, 2003, pp. 617–620.

[24] Q. Xu and Z. Xiong, “Layered Wyner-Ziv video coding,” IEEE
Transactions on Image Processing, vol. 15, no. 12, pp. 3791–3803, Dec.
2006.

[25] H. Wang and A. Ortega, “Scalable predictive coding by nested
quantization with layered side information,” in Proceedings of IEEE
International Conference on Image Processing, 2004, pp. 1755–1758.

[26] N.-M. Cheung, C. Tang, A. Ortega, and C.S. Raghavendra, “Effi-
cient wavelet-based predictive Slepian-Wolf coding for hyperspectral
imagery,” Signal Processing, vol. 86, no. 11, pp. 3180–3195, Nov. 2006.

[27] S.S. Pradhan and K. Ramchandran, “Distributed source coding using
syndromes (DISCUS): Design and construction,” IEEE Transactions on
Information Theory, vol. 49, no. 3, pp. 626–643, Mar. 2003.

[28] J. Garcia-Frias and Y. Zhao, “Compression of correlated binary sources
using turbo codes,” IEEE Communications Letters, vol. 5, no. 10, pp.
417–419, Oct. 2001.

[29] A. Liveris, Z. Xiong, and C. Georghiades, “Compression of binary
sources with side information at the decoder using LDPC codes,” IEEE
Communications Letters, vol. 6, no. 10, pp. 440–442, Oct. 2002.

[30] M. Grangetto, E. Magli, and G. Olmo, “Distributed arithmetic coding,”
IEEE Communications Letters, vol. 11, no. 11, pp. 883–885, Nov. 2007.

[31] C. Guillemot, F. Pereira, L. Torres, T. Ebrahimi, R. Leonardi, and
J. Ostermann, “Distributed monoview and multiview video coding,”
IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 67–76, Sept. 2007.

[32] D.C. Feldmeier, “Fast software implementation of error detection codes,”
IEEE/ACM Transactions on Networking, vol. 3, no. 6, pp. 640–651, Dec.
1995.

[33] Packet Telemetry, CCSDS-102.0-B-5 Blue Book, November 2000.
[34] M. Slyz and L. Zhang, “A block-based inter-band lossless hyperspectral

image compressor,” in Proc. of IEEE Data Compression Conference,
2005, pp. 427–436.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (SUBMITTED MAR. 2009) 12

[35] A.B. Kiely and M.A. Klimesh, “Exploiting calibration-induced artifacts
in lossless compression of hyperspectral imagery,” IEEE Transactions
on Geoscience and Remote Sensing, submitted 2008. Available at
compression.jpl.nasa.gov/hyperspectral/.

[36] E. Magli, “Multiband lossless compression of hyperspectral images,”
IEEE Transactions on Geoscience and Remote Sensing, to appear 2009.

[37] J. Mielikainen and P. Toivanen, “Clustered DPCM for the lossless com-
pression of hyperspectral images,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 41, no. 12, pp. 2943–2946, Dec. 2003.

[38] B. Aiazzi, L. Alparone, S. Baronti, and C. Lastri, “Crisp and fuzzy
adaptive spectral predictions for lossless and near-lossless compression
of hyperspectral imagery,” IEEE Geoscience and Remote Sensing
Letters, vol. 4, no. 4, pp. 532–536, Oct. 2007.

[39] A. Bertoli and R. Grimoldi, Implementation and Performace Evaluation
of Parallel Algorithm for Lossless Hyperspectral Image Compression,
2009, Final report of ESA ITI project “PILL”.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

