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Abstract—We present a general method to improve watermark
robustness by exploiting the masking effect of surface roughness
on watermark visibility. Our idea is to adapt watermark strength
to local surface roughness based on the knowledge that human
eyes are less sensitive to changes on a rougher surface patch than
those on a smoother surface. In order to quantify human sensi-
tivity to surface roughness of polygonal meshes, we conducted a
rigorous psychovisual experiment to obtain human watermark
detection thresholds as a function of surface roughness. The
results were used for adaptively selecting watermark strength
according to local surface roughness during the watermark
embedding process. To test our general idea, we applied it to
the modified versions of two popular 3D watermarking methods,
one proposed by Benedens [1] and one by Cayre & Macq
[2]. Experimental results showed that our approach improves
watermark robustness as compared to the original algorithms.
Further analyses indicated that the average watermark strength
allowed by our roughness-adaptive method was larger than that
by the original Benedens’s and Cayre & Macq’s methods while
ensuring watermark imperceptibility. This was the main reason
for the improved robustness observed in our experiments. We
conclude that exploiting the masking property of human vision
is a viable way to improve the robustness of 3D watermarks,
and can potentially be applied to other 3D digital watermarking
techniques.

Index Terms—Roughness-adaptive 3D watermarking, robust-
ness, masking effect, polygonal mesh, surface roughness

I. INTRODUCTION

W ITH advances of computer graphics technology, 3D
digital contents have become increasingly popular in

many applications such as video games, CAD (computer-aided
design), VR (virtual reality), TV broadcasting, and medical
imaging. Through the internet access, 3D digital contents
are getting widely distributed or manipulated, often without
copyright protection. For this reason, developing watermark-
ing algorithms for 3D polygonal meshes has received more
interests than before. Compared to 2D digital watermark-
ing, however, 3D watermarking is more difficult due to the
increased complexity associated with arbitrary shapes. 3D
watermarks are more fragile due to the various ways that
embedded watermarks can be destroyed by simply altering
the meshes making up the 3D objects. Therefore, existing
2D watermarking techniques cannot be directly applied to
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3D models, thereby necessitating new approaches that are
specifically designed for 3D objects.

The challenge is to design 3D digital watermarks that are
unobtrusive (transparent), robust, and space efficient (capac-
ity)[3]. The unobtrusive requirement means that the embedded
watermark should not interfere with the intended use of a
model, which may imply imperceptibility. Robustness refers to
the ability for the watermark to survive various intentional and
unintentional attacks to the watermarked 3D model. This is a
very challenging requirement as no algorithm has been shown
to be perfectly robust. However, constant improvements are
being made that result in more robust watermarking schemes
as compared to previous methods. The last requirement is
about having enough space for watermark embedding. To meet
all three requirements at the same time is not trivial.

Of the three requirements, unobtrusiveness and robustness
conflict with each other. From an unobtrusiveness perspective,
watermark strength should be smaller in order to be imper-
ceptible. From a robustness perspective, however, watermark
strength should be larger so that the watermark can not be
easily destroyed. It is a trade-off to satisfy both requirements
at the same time.

In an effort to improve watermark robustness while main-
taining its imperceptibility, researchers have developed percep-
tual coding techniques, that exploit human visual perception,
and in particular the masking effect typical of the human visual
system, specifically the masking effect. Masking refers to our
decreased ability to perceive a stimulus (e.g., a watermark)
in the presence of other signals (e.g., polygonal mesh). In the
areas of image and video watermarking, various attempts have
been made by utilizing luminance and frequency sensitivity,
and contrast masking to improve the imperceptibility and
robustness of watermarks [4], [5], [6], [7], [8], [9]. 2D Wa-
termarking techniques taking into account human sensitivity
to luminance, frequency and contrast are more effective at
improving both robustness and unobtrusiveness as compared
to classic 2D watermarking schemes. It suggests that the same
approach can be applied to 3D watermarking with similar
expected improvements. Doing so requires that we have a way
to specify human sensitivity to surface variations as a function
of local geometric properties, such as 3D surface roughness.

In the present study, we introduce a new approach for adap-
tively adjusting 3D watermark strengths based on local surface
roughness. Our work takes advantage of a recent study by
Corsini et al. [10] who introduced a method to estimate surface
roughness of polygonal meshes for assessing visual distortions
introduced by watermarking. The present study makes several
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contributions. First, we quantify human sensitivity to surface
variations as a function of estimated local roughness by
conducting psychovisual experiments. The result is a precise
functional relationship between local roughness and the Just
Noticeable Difference (JND). Our approach is therefore more
perception based as compared to previous attempts [11] that
used the local characteristics of 3D models to adapt watermark
strengths without employing human sensitivity functions.

Second, using the experimentally-derived JND vs. lo-
cal roughness relationship, we propose a roughness-adaptive
method for selecting 3D watermark strength that ensures
locally maximal watermark strength (to improve watermark ro-
bustness) while maintaining the watermark’s imperceptibility.
Third, we evaluate our roughness-adaptive 3D watermarking
approach by applying it to two existing 3D watermarking
techniques, one proposed by Benedens [1] and the other
by Cayre & Macq [2], and demonstrate the effectiveness of
our approach. We also introduced several modifications and
improvements to Benedens’s and Cayre & Macq’s methods
in order to improve the methods themselves and to make
them receptive to our roughness-adaptive 3D watermarking
approach.

The remainder of this paper is organized as follows. In the
next section, we present previous work, including a review
of the two existing methods used for the evaluation of our
roughness-adaptive watermarking scheme. In Section III, we
describe the psychovisual experiment for estimating JND as a
function of local surface roughness. Section IV describes our
modifications to Cayre & Macq’s method. Section V presents
our roughness-adaptive watermarking approach. Evaluation
results appear in Section VI. Finally, we conclude the paper
in Section VII.

II. PREVIOUS WORK

In this section we review previous approaches to satisfying
the invisibility requirement in 3D watermarking applications.

In image and video watermarking, it is well known that
visual masking effect can be utilized in order to minimize
visual distortion introduced by watermarks while maximizing
watermark strengths and hence improve robustness[4], [6], [9],
[7], [5]. As an extension to polygonal meshes, Ferwerda et al.
[12] analyzed how the presence of one visual pattern affects
the detectability of another. They demonstrated that the pattern
of 3D textures can be flexibly selected and used to mask
faceting artifacts caused by polygonal tessellation of a curved
surface. This fact has encouraged researchers working in 3D
watermarking to exploit the masking effect in several ways.

Kanai et al. [13] exploited the fact that the human vision
system (HVS) is less sensitive to changes in high frequency
areas of polygonal meshes. They analyzed an input mesh
with a wavelet transform and modulated the high frequency
components to embed the watermarks. Similarly, Bors et al.
[14] used human detection thresholds on local mesh variations
to choose the surface regions where the human eye is less
sensitive to changes. Only those chosen vertices were then
modified by the watermarks.

The key differences between our method and the above two
methods are that both Bors et al. and Kanai et al. used a

constant watermark strength in surface areas where humans
are less sensitive to watermark embedding, and neither method
embedded watermarks in surface areas where humans are
more sensitive to changes. These methods therefore adapted
watermark strengths in a coarse way (either on or off) without
fully exploiting the way the HVS perceives watermarks. On
the contrary, our method allows a continuous optimization of
watermark strengths on a vertex by vertex basis.

In a study that somewhat resembles our approach, Uccheddu
et al.[11] applied masking effect of surface roughness to
a wavelet-based 3D watermarking method, which was pre-
viously developed by the same authors [15], to diminish
the degradation of the host mesh. In the beginning stage
of watermark embedding process, the host signal is decom-
posed in a multiresolution framework with wavelet coeffi-
cients representing surface details by means of the algorithm
proposed by Lounsbery et al. [16]. Subjective experiments
were conducted to estimate watermark detection threshold
as a function of local roughness values. Watermarks were
embedded by modifying the wavelet coefficients at a given
level of resolution. Triangles to be modified were selected by
using the experimentally-derived roughness-based threshold;
only those vertices for which the local roughness was greater
than the threshold were watermarked.

Despite the apparent similarity between our present study
and that of [11], there are several important differences,
concerning how watermark strength is selected and which
surface areas are chosen for watermarking. In our approach,
the watermark strength is selected automatically based on a
human perception curve determined by psychovisual experi-
ments, while in [11] the strength was adjusted manually. In
addition, our method [17] allows watermark strength to be
adjusted on a continuous scale on a vertex by vertex basis,
while in [11] each vertex was either modified with a fixed-
strength watermark or it was not altered at all.

The present study extends and generalizes the approach
described in our previous research[17]. In the previous study,
the basic idea was to adjust watermark strength according
to the local surface roughness. The idea was then applied to
Benedens’s watermarking method [1], showing improvements
in terms of roughness and invisibility. The novelties introduced
in the present study includes: i) refinement of the psychovisual
experiments to take into account several types of watermarking
disturbances; ii) a more rigorous definition of the functional
relationship between admissible watermark strength and sur-
face roughness; iii) application of roughness-adaptive water-
marking to Cayre & Macq’s method whose characteristics are
somewhat complementary to those of Benedens’s algorithm;
and iv) evaluation of the results on a larger number of 3D
models.

A. Overview of two watermarking schemes

Throughout our research we considered two different 3D
watermarking schemes with complementary characteristics:
one developed by Benedens [1] and the other proposed by
Cayre & Macq [2]. As it will become evident in this paper,
these two schemes introduce quite different disturbances to



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 3

the original meshes, hence permitting us to evaluate the
performance of roughness-based watermarking scheme under
different conditions. In the remainder of this section, give
a brief overview of these two watermarking schemes, and
describe a few modifications we introduced in order to make
the two methods more receptive to roughness-based adaptation
of watermark strength.

Figure 1: (left) Transformation of 3D coordinates into 2D
coordinates. (right) Embedding a bit ‘0’ by pushing normals
into the kernel area. Modified from [1].

1) Benedens’s method: Benedens’s non-blind, geometry-
based 3D watermarking method [1] uses the distribution of
face normals on polygonal meshes for watermark embedding.
In Benedens’s method, the watermark is embedded by mod-
ifying any of the following three features: (i) the mean of
normals, (ii) the mean angle of normals to a Bin Center (BC)
normal, or (iii) the amount of normals in a bin. In this work we
considered the third feature since it provides the most straight-
forward way to adjust watermark strength. Considering only
the third feature, the embedding process of Benedens’s method
is summarized below:

1) Create a unit sphere, and then tessellate the surface of
the unit sphere to generate bins defined by a Bin Center
(BC) normal and a bin angle (ϕR) (also referred to as
bin radius). The same bin radius is used for all the bins.
Bins are cone-shaped as illustrated in the left image of
Figure 1.

2) Randomly choose a set of bins for embedding watermark
bits and for sampling face normals. A face normal is
assigned to a bin if the angle formed between the face
normal (BP) and the BC normal (Figure 1, left image)
is smaller than that formed between the cone’s axis
(i.e.,BC) and any line on the face of the cone that passes
through its apex.

3) For each bin, compute the ratio of normals (nki) inside
the bin kernel pre-defined by a kernel angle ϕk over all
normals inside the bin. The 2D projected kernel area
is shown as the gray inner circle in the right image of
Figure 1.

4) Transform the 3D face normals in each bin into 2D
coordinates in the X1 and X2 plane (see the left image
of Figure 1) and perform the core embedding process as
described below.

During the core watermark embedding process, watermark
bits are inserted by changing the number of normals inside

the kernel area in each bin. For instance, to embed a bit
‘0’, all the normals outside the kernel are moved inside the
kernel as depicted in the right image of Figure 1. It means
that nki (the ratio of normals inside the kernel) becomes
1.0, which is the maximum for any bin. Conversely, a bit
‘1’ is embedded by taking all the normals inside the kernel
out of the kernel so that nki goes to 0.0, the minimum for
any bin. Finding the best normal direction for embedding is
performed by an optimization algorithm called the Downhill
simplex method which is also called the Nelder-Mead method
[18]. The Downhill simplex method is a nonlinear optimization
technique using a simplex to approximate a local optimum
of a problem with n variables. According to the optimizing
process, an initial watermark strength value, flexibly chosen
by the object size (see [1]), is optimized.

The two cost functions, defined in Eqns. 1 and 2 for bit 1
and 0, respectively, are used as an objective function for the
optimization.

costs1f,v→v′ = cos
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cos−1(< BP
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ϕR
i

, Si = 0

(2)
In order to minimize the distortions of the surface of the

input model, the following constraints are imposed during the
watermark embedding process:
• The normal of a face adjacent to a vertex v in the bin is

not allowed to change by an angle that is larger than or
equal to α;

• The normal of a face adjacent to a vertex v that is not
in the bin is not allowed to change by an angle that is
larger than or equal to β;

• No normal is allowed to leave its bin.
For watermarks retrieval, the information about bins (bin
radius, kernel radius, the ratio of normals in each bin, and
the chosen bins used in the embedding process) need to be
delivered to the extraction stage. With the watermarked polyg-
onal mesh, repeat the same steps (1 to 4) of the embedding
process are repeated. Then the ratio of normals nki in each
bin is compared with the original value of nki. If nki of the
watermarked mesh is larger than the nki value of the original
model, then the embedded watermark bit is a ‘0’. Otherwise,
it’s a ‘1’.

Watermarks embedded by Benedens’s method are especially
robust against mesh-simplification and vertex randomization,
because the distribution of face normals is approximately
invariant to these kinds of modifications of the polygonal
meshes.

Two drawbacks of Benedens’s watermarking algorithms
exist: 1) the need to carry the original nki values to the
retrieval stage, and 2) the intrinsic weakness of the “1” bits. In
the present study, we used a modified version of Benedens’s
scheme introduced in our earlier study [17], which is briefly
summarized below.
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a) A blind version of Benedens’s method: Retrieval of
the watermarks embedded by Benedens’s method requires the
availability of a priori knowledge including bin radius, number
of bins, and the original ratio of normals (nk) in the kernel of
each bin. This information constitutes the secret key needed
for retrieval of the watermark. Since the original values of nk
depend on the polygonal mesh of the 3D object, Benedens’s
method may not be considered a truly blind watermarking
technique. To eliminate the need to carry the original nk values
to the watermark extracting stage, in [17] we proposed to use
the probability distribution of normals in the kernel area of
each bin. The main idea was to choose the kernel radius
in such a way that, on average, the ratio of face normals
inside the kernel was a fixed value. This was based on the
assumption that normals are uniformly distributed over the
object’s surface and hence the probabilities associated with
the distribution of normals correspond to area ratios. Then,
the retrieved watermark bit was 0 if the nk value of the
watermarked mesh is greater than the fixed ratio used by the
embedder. Otherwise, it is 1. Therefore, all we had to do was to
compute the exact kernel radius ϕk that satisfies the constraint
that the ratio of normals inside the kernel area was fixed. A
ratio of 0.5 was chosen so that there were equal number of
face normals inside and outside the kernel.

(a)

(b)

Figure 2: (a) Two views of a bin with sampled normals. The
dark area (inner circle) is the kernel area defined by ϕk, which
is used for embedding ‘0’ bits. The bin area excluding the
dark area is used for embedding ‘1’ bits. The dashed circle
represents the new zone for embedding ‘1’ bits. (b) A sphere
cap (a bin) defined by ϕR. R and H represent radius of the
sphere and height from the top of the cap to the bottom of the
base circle, respectively.

Given a spherical cap defined by a sphere of radius R and
a height H (measured from the top of the spherical cap to the
bottom of the base circle, see Figure 2 (b)), its surface area

can be calculated as Aspherical cap = 2πRH . Since H = R-
RcosϕR for a bin defined by ϕR, the surface area of the bin
becomes

Aspherical cap of bin = 2πR2(1− cosϕR) (3)

The surface area of the kernel defined by ϕk can be calculated
similarly as

Aspherical cap of kernel = 2πR2(1− cosϕk) (4)

We require that

Aspherical cap of kernel

Aspherical cap of bin
= 0.5. (5)

Therefore the size of the kernel, ϕk, can be computed from
Eqns. 3, 4, and 5 as:

ϕk = cos−1(1− 1

2
(1− cosϕR)). (6)

With this modification, the original nk values no longer need to
be carried to the extraction stage. We have therefore achieved
a blind version of Benedens’s method.

b) Improvement to bit ’1’ robustness: In the original
Benedens’s method, during the embedding process, the nor-
mals are moved in two opposite directions. When embedding
a bit ‘0’, all normals in the bin are moved inside the kernel
area (the dark inner circle shown in Figure 2a). For better
robustness, the normals should be enforced to be as close to
the BC line (bin center normal) as possible. When embedding
a bit ‘1’, however, the normals are moved towards the border
of the bin and are pushed as closed to the rim of the bin as
possible. There are therefore two imaginary embedding zones:
one around the BC and the other around the rim of the bin.
Ideally, all normals should be placed at either the BC (for
bit ‘0’) or on the rim of the bin (for bit ‘1’). The problem,
however, is that the normals located on the rim of the bin can
be easily pushed out of the bin. As a result, the embedded
watermark on the bin cannot be recovered correctly at the
extraction stage. This problem does not occur with the normals
located at the BC. Therefore, bit 1 is less robust than bit 0 in
the original Benedens’s method.

To improve the robustness of bit ‘1’, the ideal embedding
zone has to be moved away from the bin rim, as shown by
the dashed circle in the right image of Figure 2a. The new
embedding zone defined by the dashed circle was defined by
a new radius ϕk1 such that the surface area of the spherical
cap is 3/4 of that of the bin. Following Eqns. 4 to 5, we have:

ϕk1 = cos−1(1− 3

4
(1− cosϕR)) (7)

With this new embedding zone for bit ‘1’, the robustness
of ‘1’ bits is significantly improved. Overall, the robustness
of ’0’ bits is still expected to be superior to that of ‘1’ bits,
because the new embedding zone for bit ‘1’ is still closer to
the rim of the bin than that for ‘0’ bits.
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2) Cayre and Macq’s method: Cayre and Macq’s method
builds upon the basic idea of TSPS (Triangle Strip Peeling
Sequence) that encodes a payload by moving over a triangular
surface mesh. With this method, each triangle always has one
entry edge and two possible exit edges as seen in Figure
3a. The watermarking algorithm requires two main steps as
described below.

(a)

(b)

Figure 3: (a)A triangle to be traversed for watermarking by
Cayre and Macq’s method. (b) An example of a list of triangles
generated by a secrete key. The TSPS (Triangle Strip Peeling
Sequence) path is in gray and the cell to be processed is in
black. From Figure 2 in [2].

1) Generate a list of triangles of the mesh: The list of
triangles is established as seen in Figure 3b. The list
of triangles is stored as a secret key to be carried to the
extractor. The length of the key must be the same as that
of the list of admissible triangles required to convey the
payload.

2) Construct a Macro Embedding Procedure (MEP): Each
triangle has two states defined by the position P(C) of
the orthogonal projection of the triangle summit C on
the entry edge AB. The entry edge AB is divided into
two subsets S1 (“1”) and S0 (“0”) as seen in Figure 4b.
If P(C)∈ S0, then the triangle is in a “0” state; otherwise,
P(C) ∈ S1, and the triangle is in a “1” state. For every
triangle, there are two possible cases: (1) P(C)∈ Si, and
no modification is needed; or (2) P(C) /∈ Si, then C is
move to C’ so that P(C’)∈ Si(see Figure 4b), where i is
0 or 1.

The value of λ(seen in Figure 4b) has to be small enough
to avoid visual degradation of the mesh, but large enough to
allow accurate payload detection. The parameter n (see Figure

(a)

(b)

Figure 4: (a) Decomposition of the entry edge AB into two
interleaved subsets with the 2n binary values. (b) An example
of the first-order MEP (Macro Embedding Procedure, n=1)
encoding. Modified from Figure 4 [2].

4a) represents the smoothness of the algorithm. As n increases,
λ decreases and the amount of distortion to be introduced gets
smaller. On the other hand, as n increases, bit retrieval errors
also increase due to the decrease in the interval size. This leads
to reduced robustness.

III. WATERMARK PERCEPTIBILITY AS A FUNCTION OF
SURFACE ROUGHNESS

In this section, we present the psychovisual experiment that
we designed and carried out to derive the functional relation-
ship between local surface roughness and the maximum water-
mark strength that can be used while maintaining watermark
invisibility. Specifically, human detection thresholds for the
perceptibility of geometrical surface distortions were estimated
for three watermarking techniques: Benedens’s method, Cayre
& Macq’s method, and watermarks consisting of the additive
Gaussian noise to vertex positions. It was conceivable that
the threshold curves for the three methods would be quite
different since the strategies to embed watermarks are all
different. If this turned out to be the case, then a different
rule should be used to adjust watermark strength according to
the watermarking method. On the other hand, if the threshold
curves were similar for the three watermarking techniques,
then the same adaptation rule could be used regardless of the
watermarking technique.

The three different methods were selected because they
differ in the directions along which vertices are modified with
respect to the normals of surface mesh. Benedens’s method
perturbs vertex normals by changing the locations of the
vertices that belong to a bin with a radius φ (see Figure 5a).
The direction of the vertex change is the same as the direction
of normal change. The range of allowable changes is limited
by the size of the bin radius φ. The distortion made by Cayre
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& Macq’s method, on the contrary, is made in a direction
perpendicular to the normal of a triangular mesh (see Figure
5 b). The new vertex C lies on a line parallel to the triangle
edge AB. In this case, the normal N is always preserved during
the perturbation. Using additive Gaussian noise, a vertex is
changed in a randomized direction (see Figure 5 c).

In summary, both Benedens’s method and additive Gaussian
noise alter the normals of triangular meshes whereas Cayre
& Macq’s method does not. Additive Gaussian noise can
also result in larger distortions than Benedens’s method since
changes to the vertex (C in Figure 5) is unlimited in its
direction. Therefore, we were interested in comparing human
threshold curves for Benedens’s method and additive Gaussian
noise, as well as comparing the curves for these two methods
to that of Cayre & Macq’s method.

(a)

(b)

(c)

Figure 5: Three different strategies for watermark embedding
on a triangle. N are N’ are normals before and after distortion.
(a) Geometrical change of a triangle by Benedens’s method
with a bin radiusφ. (b) In plane vertex distorted by Cayre
& Macq’s method. (c) Watermarking with additive Gaussian
noise. The dashed circle around the vertex C represents the
projection of a sphere for the range of allowable changes.

A. Methods

The psychovisual experiment was designed to estimate
the relation between visual watermark detection threshold
(in terms of watermark strength δ) and local roughness of

spherical surfaces. The watermark strength δ is controlled
differently in the three watermarking methods since the ge-
ometrical properties used for watermarking are different. For
instance, in Benedens’s method control of watermark strength
is obtained by restricting the search space in the Downhill
Simplex optimization method based on the minimum of four
parameters including δ. In Cayre & Macq’s method, watermark
strength is not easily modifiable since it is affected by the
partition size determined by the order of MEP. We therefore
modified the original Cayre & Macq’s method to make the
watermark strength easily modifiable for our experiments (See
details in Section IV). The watermark strength δ for additive
Gaussian noise method corresponds to the amount by which
a vertex is altered in a randomized direction. In the present
study, δ is expressed as a normalized value over the diagonal
length of the bounding box of a 3D object.

B. Participants

Ten participants (five males and five females) took part in
the experiment. None of the participants reported any visual
deficiencies.

C. Stimuli

The visual display consisted of a spherical surface rendered
with 3752 vertices and 7500 faces. The image of the sphere
occupied a visual angle of roughly 30 degrees. Five reference
spherical surfaces with different roughness levels were created.
Roughness was controlled by perturbing the vertices with
additive Gaussian noise. Specifically, the roughness level was
specified by the variance of a Gaussian probability distribution
function N(0,σ) that generated the additive noise. The direction
of the additive noise was chosen randomly. Figure 6 shows
the five reference stimuli with increasing surface roughness.
The left-most sphere has a smooth surface with no additive
noise. The roughness level of each spherical surface was
estimated with a 1-ring roughness measure based on the multi-
scale roughness estimation method proposed by Corsini et al.
[10]. The estimated roughness for the five reference surfaces
were 0.000082, 0.001704, 0.003139, 0.010937 and 0.025304,
respectively.

Figure 6: . The five reference spherical surfaces used in the
present psychovisual experiments. The estimated roughness
values were, from left to right, 0.000082, 0.001704, 0.003139,
0.010937, and 0.025304, respectively. The five surfaces con-
tained the same number of vertices (3752) and faces (7500).

Each of the three watermarking schemes was applied to
each of the five reference surfaces to obtain human detection
thresholds for visual watermarks. Due to the time required to
generate watermarked surface using Benedens’s method, the
stimuli for Benedens’s method were pre-computed. The stimuli
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for the other two watermarking methods were computed in real
time.

The parameters used for the Benedens’s method were ϕR =
10 degrees, 10 bins, and no β. For Cayre & Macq’s method,
a list of triangles was randomly generated for embedding
the watermark and the vertices of the list of triangles were
altered by the modified version of Cayre & Macq’s method
for roughness adaptation (see also section IV).

For the watermarking method using additive noise, Gaussian
noise was used to randomly alter chosen vertices of the
spherical surface in a random direction, as specified below:

−→v new(i) = −→v (i) + δ ∗ −→nr(i)

where −→v new(i) is the modified vector of the i-th vertex −→v (i),
δ denotes the watermark strength that varied according to the
correctness of participant’s responses, and −→nr(i) is a random
unit normal vector.

D. Procedures

A three-interval forced-choice (3IFC) one-up one-down
adaptive procedure [19] was used to measure watermark detec-
tion thresholds as a function of surface roughness. The thresh-
old so obtained corresponded to the 50 percentile point on the
psychometric function. On each trial, the participant looked
at three spherical surfaces, two reference surfaces (without
watermarks) and a test surface (with watermarks), presented on
a computer monitor. The position of the watermarked surface
was randomly chosen to be on the left, middle, or right of the
monitor on each trial. The participant’s task was to indicate
which spherical surface looked different (i.e., contained the
watermark). According to the one-up one-down adaptive rule
(see Figure 7), the stimulus intensity (δ) was increased after an
incorrect response and decreased after a correct response. The
initial δ value was chosen to be large enough so that the test
surface looked clearly different from the reference surface.
The value of δ then decreased or increased by a fixed step
size (6dB), depending on the participant’s responses. After
three initial reversals (a reversal occurred when the value of
δ decreased after increasing, or vice versa), the value of δ
changed by a smaller step size (2dB). The initial larger change
in δ was necessary for faster convergence of the δ values,
whereas the later smaller change in δ improved the resolution
of threshold estimates. The adaptive series was terminated
after 12 reversals at the smaller step size. The detection
threshold was computed by taking the average of the δ values
from the last 12 reversals. Each participant was tested once per
combination of reference surface roughness and watermarking
method, resulting in a total of 15 adaptive series (5 references
× 3 watermarking techniques) per participant. It took about
one and a half hours for each participant to finish all the 15
series.

E. Results

The average detection thresholds for the ten participants are
shown in Figure 8. For each watermarking method, thresholds
followed a monotonically increasing trend as surface rough-
ness increased. The thresholds with Cayre & Macq’s method

Figure 7: 1U1D(One Up One Down) Representative data plot
the one-up one-down adaptive procedure. The data converge
around the threshold indicated by the dashed line.

are much larger than those with Benedens’s method and
additive Gaussian noise, indicating that stronger watermarks
can be embedded with Cayre & Macq’s method. The results
suggest that humans are more sensitive to changes in the
direction of normals than to changes of vertices in a plane
that is perpendicular to face normals. It is also apparent that
the thresholds for Benedens’s method and additive Gaussian
noise were very similar, suggesting that the range of directions
along which vertex C can be altered (see Figure 5) does not
have a strong effect on the perceptibility of watermarks.

The data shown in Figure 8 were fit by power regression
models with R2values 1 of 0.9665, 0.9841 and 0.982 for Cayre
& Macq’s method (CAY), additive Gaussian noise (AGN), and
Benedens’s method (BEN), respectively. The three best-fitting
power functions are as follows:

δCAY = 0.0195 ∗ S0.1814 (8)

δAGN = 0.0313 ∗ S0.4499 (9)

δBEN = 0.3851 ∗ S0.3851 (10)

where δCAY , δAGN , and δBEN denote watermark strengths for
the respective watermarking techniques, and S denotes local
surface roughness.

These results suggested that the same regression model can be
used for Benedens’s method and the additive Gaussian noise
methods, as the best-fitting curves are quite similar in Figure 8.
In the present study, we used Eqn. 10 for both the Benedens’s
method and the additive Gaussian method, and used Eqn. 8
for Cayre’s and Macq’s method. In section V, we show how
the regression models shown in Eqns. (8) and (10) can be used
to devise a roughness adaptive embedding rule.

1The R2 value indicates how well a regression model approximates
data points, where R2=1.0 means a perfect fit. It is calculated by R2 =
Cov(X,Y )/{StdDev(X) ∗ StdDev(Y )}
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Figure 8: Power regression models of human sensitivity to
watermarks for the three watermarking scheme. See texts for
details.

IV. MODIFICATIONS TO CAYRE & MACQ’S METHOD

In the original watermarking algorithm proposed by Cayre
& Macq, the watermark strength can not be easily controlled.
The watermark strength depends on the number of intervals
into which the entry edge of the triangle is split, and the
derivation from the number of intervals to watermark strength
is not straightforward. For this reason, we modified Cayre and
Macq’s method to make it suitable for the incorporation of
our roughness-based watermark-strength adaptation scheme.
The rest of this section describes the modifications in details.

A. New partition of the entry edge AB

The limited freedom in handling the size of watermark
strength with the original entry-edge decomposition described
in Figure 9a motivated us to propose a new decomposition of
the entry edge AB that makes it possible to control watermark
strength (see Figure 9b). The key difference from the original
Cayre & Macq’s method was that two infinite sized intervals
(I0 and I3) were added to increase watermark strength, thereby
guaranteeing improved watermark robustness. The entry edge
AB is extended in both directions into infinitely and divided
into four intervals by D0, D1 and D2 (see Eqn. 11) as seen
in Figure 9b.

Ik+1 = DkDk+1, for k = 0, 1
|I0 or 3| =∞ & |I1 or 2| = 1

2 |AB|
(11)

B. Embedding

With our modified decomposition method, the position of
the vertex C’ (see Figure 4) was changed for both cases of
P (C) /∈ Si and P (C) ∈ Si. Recall that the original Cayre and
Macq’s method allows a symmetrical reflection of vertex C to
C’ only when P (C) /∈ Si. Eqn. 12 shows how the new position
of the vertex C’ was calculated in our modified method:

C ′ = C + δest ·
−→
N (12)

where C and C’ were the current and new vertices, δest
determines the watermark strength (see Eqn. 15 later in Section
V), and −→N = C ′−C is a unit vector parallel to the AB edge.

(a) The original structure (n=1), edited from [2]

(b) Our modified structure

Figure 9: A comparison of entry edge decomposition using the
original Cayre & Macq’s method and our modified version.

Figure 10 further illustrates how vertex C should be modi-
fied in both cases P (C) /∈ Si and P (C) ∈ Si. For simplicity,
we discuss the embedding of bit ’1’, since the extension to bit
’0’ is trivial. Watermarks can be embedded in two different
ways, hereafter called method (1) and method (2), respectively.
By referring to Figure 10, method (1) enforces C to move
toward a position C’ which belongs to B0 of infinite size,
whereas method (2) moves C toward a position C’ in B2 of a
limited size.

(a) when P(C) /∈ Si

(b) when P(C) ∈ Si

Figure 10: Two examples of embedding. For each example,
two candidate directions exist for the modification.

Although a modification can occur by either method (1) or
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(2) depending on the value of δest (see Figure 10), method
(1) is more desirable. This is because B1 and B2 are of equal
sizes and divide the length of AB evenly, whereas B0 and B3

are of infinite size and extend from A and B towards infinity,
respectively. If C can move further in B0 towards infinity,
then a superior robustness is obtained since it becomes much
harder for an attack to push C’ out of B0. Watermark strength
δest is determined according to the results of the psychovisual
experiments. More specifically, the modified version of Cayre
and Macq’s method can be summarized as follows.

1) Generate a list of triangles of the mesh: The list of
triangles is established as seen in Figure 3b. The list of
triangles is stored as a secret key to the extractor. The
length of the key must be the same as that of the list of
admissible triangles required to convey the payload.

2) Create a new edge decomposition as seen in Figure 9b.
3) Perform the core embedding process as follows: (1)

when P (C) ∈ Si, the position of vertex C is modified,
and it either remains in the same interval or it moves
into the other interval belonging to the same Si set. (2)
When P (C) /∈ Si, the vertex C is moved into one of two
intervals that do not belong to the Si set (see Figure 11).
Further details of this core embedding step are explained
below.

4) Repeat step 3 until all the triangles on the list have been
traversed.

(a) when P(C) falls into I0,P (C) /∈ Si

(b) when P(C) falls into I1,P (C) ∈ Si

(c) when P(C) falls into I2,P (C) /∈ Si

(d) when P(C) falls into I3,P (C) ∈ Si

Figure 11: Examples of core embedding process when Si = 0.
Only relevant S and R are marked.

Figure 11 illustrates further details of the aforementioned
step 3. For each interval defining I0, I1, I2 and I3, safe (S)
and risky (R) zones are defined as depicted in Figure 11. The
size of these zones are as follows:

S = 1
3 |Ik|, for k = 1 or 2

R = 1
2 |Ik|, for k = 1 or 2

(13)

An S zone is always located at the center of I1 or I2,
whereas a R zone is located at the (non-infinite) border of
I0 or I3. When the embedder has to decide the new position
for vertex C, it prefers S zones and tries to avoid R zones.
Specifically, let us consider again the case of a ’0’ bit, i.e.
Si = 0. Four possible cases can occur during watermark
embedding.

In the first case. P(C) falls in I0 (see Figure 11a). In this
case, the embedder determines whether C moves to I1 or I3
since P (C) /∈ Si. With a given watermark strength δest, the
embedder tries to reach I3 while avoiding R. If this is not
possible, the embedder moves C’ into I1, possibly by using
a δ that is lower than the originally estimated one (δest).
Note that when C is moved into I3, C’ can be moved as far
away from C as possible within I3. On the contrary, when C’
is moved into I1, its optimum position is to be as close to
the center of I1 as possible (i.e., the S zone). However, the
allowable distortion (δest) may prevent C’ from being moved
into the S zone. move C into the safe zone S. In an even worse
situation, it may be impossible to move C outside of I0 if δest
is very small (e.g., zero roughness). This issue was resolved
by adding a correction function which moves C into I0 or I3
by recomputing δest when the value of roughness is zero. The
correction function assigns a value of δest in order to allow
C be moved into I0 or I3 while avoiding the R zone. Note
that the magnitude of δest can be any value since perturbation
occurs on a flat surface (see Figure 5b ).

In the second case, P (C) ∈ Si and P(C) falls into I1 (see
Figure 11b). The embedder tries to move to C to I3 first
by avoiding R. If it is successful, embedding is complete,
otherwise the embedder tries to move C as close as possible
to the center of I1.

In the third case, P (C) /∈ Si and P(C) falls into I2 (see
Figure 11). In this case the embedder first tries to move C
toward B3, if it fails, it tries to move C into the S region of I1.
Both are failed, the vertex C chooses the closest one of two
intervals to move in by comparing two euclidean distances,
from C to I1 and to I3, respectively.

In the last and simplest case, there is only one direction
for the vertex C to move within the interval I3 to improve
robustness (see Figure 11d).

As explained above, it is sometimes necessary to reduce
watermark strength during the embedding process in order for
C’ to be in an S region. As a result, there is a discontinuity
in the way the embedder can control the watermark strength
as a function of local surface roughness.

V. ROUGHNESS ADAPTIVE WATERMARKING

By relying on the results of the psychovisual experiment
described earlier, we now propose an adaptive approach to
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select watermark strength based on local surface roughness
measures. Our algorithm takes advantage of the fact that the
human eyes are more sensitive to distortions of smoother
surface patches than to distortions of rougher surface patches.
Indeed, the results of the psychovisual experiment indicated
that a stronger watermark can be hidden into a bumpier surface
area with a higher roughness level. Specifically, the watermark
detection threshold for watermarks increases monotonically
with the local surface roughness as shown in Eqn.8, 9, and 10.
Our goal is to use an adaptive watermark strength determined
by the local surface roughness instead of the constant water-
mark strength used in Benedens’s method and Cayre & Macq’s
method. While satisfying the imperceptibility constraint, our
method will result in a higher average watermark strength, that
will lead to an improved robustness. Our proposed algorithm
works as follows. The embedder first estimates the roughness
level at each vertex. It then chooses the maximum impercep-
tible watermark strength using Eqns. 14 and 15:

δBEN =
0.3851 ∗ S0.3851 for S ≥ 0.000082
0.0001 for S < 0.000082

(14)

δCAY =
0.0195 ∗ S0.184 for S ≥ 0.000082
0.001 for S < 0.000082

(15)

where S denotes surface roughness. Recall that the surface
roughness of the smoothest spherical surface used in the
psychovisual study (See Figure6) was 0.000082. For smoother
surface with roughness values lower than 0.000082, we have
heuristically set the watermark strength to a constant. In
practice, however, we rarely expect to encounter a surface
roughness value as low as 0.000082 for most 3D surfaces.

To estimate the local surface roughness around a to-be-
modified vertex, the embedder estimates the roughness of all
adjacent faces around the vertex using the 1-ring roughness
estimation method described in Corsini et al. [10]. The value
of δ is then determined by Eqn. 14 or 15 for the modified
Benedens’s method or the modified Cayre & Macq’s method,
respectively.

VI. PERFORMANCE EVALUATION OF ROUGHNESS-BASED
ADAPTIVE WATERMARKING

To evaluate the validity of the roughness-adaptive 3D wa-
termarking approach, we applied it to the modified versions
of Benedens’s method and Cayre & Macq’s method. We
focused on investigating how robustness was improved by
our roughness-adaptive strategy. Attacks were simulated by
additive noises generated with a Gaussian distribution and
all of the surface vertices were altered by the noise. The
performance levels of our improved methods and those of the
original methods were compared in terms of robustness against
additive noises. Note that imperceptibility was ensured for all
3D models used and all watermarking methods considered.

A. 3D Models

Six 3D models, “Angel (M1)”, “Bunny1 (M2)”, “Bunny2
(M3)”, “Dragon (M4)”, “Gorilla (M5)” and “Happy Buddha

(M6)”, were used for the evaluation experiments. The key
characteristics of the six models are summarized in Table I.
As it can be seen, the models differ in terms of resolution
and surface roughness. It is expected that models with larger
variations in roughness values will benefit more from our
roughness-adaptive watermarking approach. The watermarked
models after roughness-adaptive watermarking are shown in
Figure 12.

Table I: Key parameters of the six 3D models used in the
present study

Model # of Vert. # of Faces Avg. Roughness Std. Dev.
M1 5002 10000 6.51E-08 4.64E-08
M2 5050 9999 1.89E-07 1.75E-07
M3 7525 14999 7.34E-08 8.50E-08
M4 3512 6999 1.33E-06 8.84E-07
M5 7521 14999 2.97E-08 2.84E-08
M6 4952 9932 7.52E-07 4.48E-07

Figure 12: Watermarked models resulting from by our
roughness-adaptive approach: Angel and Dragon (first row),
Bunny2 and Bunny1 (second row), and Gorilla and Happy
Buddha (third row).

B. Roughness adaptive watermarking of the 3D models

Table II: Experimental Conditions

Experimental
Condition

Watermarking
Method Watermark Strength δ

I Modified Benedens constant
II Modified Benedens adaptive
III Cayre & Macq variant but not adaptive
IV Cayre & Macq adaptive
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The evaluation experiments were considered with four con-
ditions as seen in Table II. For Condition I, the modified
Benedens’s method with improved robustness of ’1’ bit and
blindness was used with a constant watermark strength δ.
The constant δ value was chosen from a pilot test where
the maximum δ value averaged from five repetitions was
selected for imperceptible watermarking with each 3D model.
Condition II used the same modified version of Benedens’s
method with our roughness adaptive scheme. In this condition,
δ was adaptively selected based on local surface roughness
during the embedding process. Condition III used Cayre &
Macq’s method where watermark strength was determined by
the type of triangles and by the order of MEP (n=2). In other
words, δ size varied with each of the triangles on the list of
triangles to be modified and was not optimized during the
embedding process. In Condition III, the δ value for each
triangle was recorded and averaged to be compared with the
δ values by our roughness-adaptive approach (i.e., Condition
IV). Condition IV was the roughness-adaptive version of
the modified Cayre & Macq’s method, where δ values were
adaptively selected according to local surface roughness ( see
also Section IV).

For Conditions I and II, the relevant parameters were set as
follows: ϕR = 10 degrees, α = 10 (heuristically chosen), 20
bins (i.e., 20 watermark bits), no β, and the entire embedding
process was reiterated twice in order to get a refined δ
value during the embedding process. The difference between
Condition I and II was related to the need of the initial
watermark strength δ before starting the embedding process.
For Condition I, the initial δ value was chosen by a pilot
study ensuring imperceptibility. For Condition II where our
roughness-adaptive approach was employed, the δ value was
adaptively selected by applying Eqn. 14 to the measured local
surface roughness value.

To test robustness, Gaussian random noise (N(0, σ=0.0005))
was added to the watermarked model in order to randomly
alter the locations of all vertices in the model. The bits of
the embedded watermarks were then extracted and compared
with the original ones. Error rate was computed in terms of
the percentage of mismatched bits. The experiment with each
method was repeated ten times. With each iteration, a new set
of Gaussian noise, watermark bits and bins to be watermarked
was selected randomly.

For Conditions III and IV, a list of about three hundred
triangles was randomly generated for each model. The order
of MEP was experimentally chosen over all six models for
Condition III because the MEP’s order determined the interval
size for the decomposition of each triangle, which affected
the amount of actual visual distortions. During the embedding
process for both Conditions III and IV, the magnitudes of the
modification introduced by the watermarking process for each
triangle were recorded and averaged for each 3D model. The
robustness evaluation was conducted in the same way as with
the modified Benedens’s method. The experiments were also
repeated ten times for each 3D model.

C. Procedures

Watermarking methods were implemented using C++ with
CGAL and OpenGL libraries for PCs running the Windows
environment. Five PCs with processing speed from 2.4 GHz
to 3 GHz were used. Each PC was equipped with a 17”
TFT PC monitor. The 3D models were graphically displayed
using the Gouraud shading technique [20]. On each PC,
watermarks were embedded to one of the models under all
four conditions. The robustness of the watermarks was then
evaluated with respect to the addition of Gaussian random
noises. The procedure was then repeated for all six models.

D. Results

Table III: A comparison of watermark decoding errors due
to additive-noise attacks for the modified Benedens’s method
(Condition I and II). The average and the standard deviation
of the error rate for each model are shown for each condition.
The improvement is shown as the reduction in error rate in
percentage.

Model Condition I (%) Condition II (%) Improvement (%)
M1 10± 3.16 4.5± 3.69 55.0
M2 9.5± 3.50 4± 2.11 57.9
M3 9± 3.74 4± 3.16 55.5
M4 10± 3.47 2.5± 2.64 75.0
M5 9.5± 2.69 4.5± 2.84 52.6
M6 9.5± 4.15 3.5± 2.42 63.2

Table IV: A comparison of watermark decoding errors due to
additive-noise attacks for Cayre and Macq’s method (Condi-
tions III and IV). The average and the standard deviation of
the error rate for each model are shown for each condition.
The improvement is shown as the reduction in error rate in
percentage.

Model Condition III (%) Condition IV (%) Improvement (%)
M1 42.9± 1.49 23.3± 3.49 45.6
M2 48.3± 4.58 22.8± 3.41 52.6
M3 47.4± 2.85 24.5± 4.52 48.8
M4 46.8± 4.67 18.0± 1.93 61.6
M5 45.5± 2.48 24.1± 2.58 46.9
M6 44.0± 3.15 19.6± 3.67 55.5

Table V: A comparison of watermark strengths for the modi-
fied Benedens’s method and (Conditions I and II). All values
are scaled down by 1000.

Model Condition I Condition II Improvement (%)
M1 1.14± 0.13 2.06± 0.48 80.4
M2 1.05± 0.066 2.65± 0.57 151.7
M3 1.06± 0.022 1.98± 0.65 85.45
M4 1.29± 0.098 8.21± 0.79 534.8
M5 1.09± 0.086 1.94± 0.88 77.5
M6 1.03± 0.014 4.79± 0.64 364.9

The results of the evaluation experiments are shown in
Tables III (for Conditions I and II) and IV (for Conditions
III and IV). It is clear that watermarks embedded by using
our adaptive δ method (Conditions II and IV) are more robust
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Table VI: A comparison of watermark strengths for Cayre and
Macq’s method (Conditions III and IV). All values are scaled
down by 1000.

Model Condition III Condition IV Improvement (%)
M1 1.15± 0.21 4.64± 0.35 300.2
M2 1.17± 0.71 4.88± 0.48 318.9
M3 1.17± 0.10 4.78± 0.49 309.2
M4 1.16± 0.59 5.90± 0.97 409.6
M5 1.12± 0.27 4.49± 0.37 302.4
M6 1.20± 0.26 5.73± 0.39 357.1

against additive-noise attacks for all the six models. The
robustness improvements achieved by our method (Condition
II) from the modified version of Benedens’s method ranged
from 52.6% with the Gorilla (M5) to 75% with the Dragon
model (M4). The improvements in robustness over Cayre &
Macq’s method ranged from 45.6% with the Angel model
(M1) to 61.6% with the Dragon model (M4) (see Table IV). As
expected, the largest improvement occurred with the Dragon
model because the standard deviation of surface roughness for
the Dragon model (M4) was the largest among the six models
tested (see Table I).

It was also found that the average value of δ was larger
with our roughness-adaptive methods (Conditions II and IV)
than with the modified Benedens’s method (Condition I) and
Cayre’s & Macq’s method (Condition III). The increase in
δ was greater with the Dragon model (M4) and the Happy
Buddha model (M6) than that with the other models (see Table
V and Table VI). Therefore, as we expected, the models with
the larger variations in surface roughness (the Dragon model)
benefited more from our roughness-adaptive method.

E. Discussions

We focused our assessment by comparing the watermark
strengths between the non-adaptive and adaptive methods
(Condition I vs. II, and Condition III vs. IV, respectively).
From our results (Tables III, V, IV and VI), it can be clearly
stated that roughness adaptive watermarking employing human
sensitivity to local surface roughness significantly improves
overall watermark strength, leading to superior robustness
against attacks. The results with both Benedens’s method
and Cayre and Macq’s method strongly support the statement
although the impact of the roughness-adaptive watermarking
approach varies with the characteristics of input models, with
models having larger surface roughness variations benefiting
more from this approach.

As seen in Tables V and VI, overall δ was increased
more with Cayre & Macq’s method than with Benedens’s
method. One reason for this difference is that people are
more sensitive to perturbations with Benedens’s method (hence
a lower watermark detection threshold) than with Cayre &
Macq’s method (see Figure 8). As a result, the watermark
embedder was able to increase watermark strength more with
Cayre & Macq’s method when utilizing the roughness-adaptive
approach. Another reason is that the maximized δ values in the
case of zero surface roughness with Cayre & Macq’s method
contributed to a further increase of the overall watermark

strength as compared to Benedens’s method. An exception
to this general trend is found in the forth row (M4: Dragon
model) of Tables V and VI, where the increase in watermark
strength with Benedens’s method is larger than that with
Cayre and Macq’s method. The reason is that the constraint
of the modified Cayre and Macq’s method (discontinuity of
watermark strength described at the end of Section IV) resulted
in a reduction of the maximized watermark strength that could
be achieved with the modified Benedens’s method (Condition
II).

VII. CONCLUSIONS

Developing robust 3D digital watermarking techniques is an
ongoing challenging research topic in the field of information
hiding. In this paper, we have presented a general way to
improve watermark robustness by exploiting masking effects
of human visual perception. Our method is based on a measure
of human sensitivity to surface variations as a function of
surface roughness of input meshes.

The evaluation experiments in which we applied our
roughness-adaptive scheme to two existing 3D watermarking
methods by Benedens and by Cayre and Macq confirmed that
the overall watermark robustness is improved significantly as
a result of increased watermark strengths through roughness-
adaptive watermark embedding. As expected, these experi-
ments demonstrated that the roughness-adaptive watermarking
technique brings about more benefits to data models with
larger standard deviations of surface roughness levels. We
showed that, on average, stronger watermarks can be embed-
ded with roughness-adaptive watermark strengths than could
be achieved with a constant watermark strength as used by
most watermarking methods.

By combining our results with the results of Uccheddu
et al. [11], we can make a general statement that utiliz-
ing masking effect due to surface roughness of polygonal
meshes is an effective way to improve watermark robustness
while maintaining watermark imperceptibility. Therefore, our
approach suggests promising new directions for improving
the performance of 3D digital watermarking schemes. In the
future, we will continue to evaluate our roughness-adaptive
scheme with additional 3D models. We also plan to investigate
masking effects characterized by other geometric properties
such as 3D curvatures. Our ultimate goal is to explore the
masking property of human visual system as a general strategy
for improving 3D digital watermarking techniques.
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