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Abstract

The broad availability of tools for the acquisition and processing of multimedia signals has recently

led to the concern that images and videos cannot be considered a trustworthy evidence, since they can be

altered rather easily. This possibility raises the need to verify whether a multimedia content, which can

be downloaded from the internet, acquired by a video surveillance system, or received by a digital TV

broadcaster, is original or not. To cope with these issues, signal processing experts have been investigating

effective video forensic strategies aimed at reconstructing the processing history of the video data under

investigation and validating their origins. The key assumption of these techniques is that most alterations

are not reversible and leave in the reconstructed signal some “footprints”, which can be analyzed in order

to identify the previous processing steps.

This paper presents an overview of the video forensic techniques that have been proposed in the

literature, focusing on the acquisition, compression, and editing operations, trying to highlight strengths

and weaknesses of each solution. It also provides a review of simple processing chains that combine

different operations. Anti-forensic techniques are also considered to outline the current limitations and

highlight the open research issues.

Index Terms

video forensics, image forensics, forgery detection, double compression, processing history estima-

tion.
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I. INTRODUCTION

In the recent years the availability of inexpensive, portable, and highly-usable digital multimedia devices

(such as cameras, mobile-phones, digital recorders, etc.) has increased the possibility of generating digital

audiovisual data without any time, location, and network-related constraints. In addition, the versatility

of the digital support allows copying, editing, and distributing the multimedia data with little effort.

As a consequence, the authentication and validation of a given content have become more and more

difficult, due to the possible diverse origins and the potential alterations that could have been operated.

This difficulty has severe implications when the digital content is used to support legal evidences. Digital

videos and photographs can be no longer considered “proof of evidence/occurrence” since their origin

and integrity cannot be trusted [1]. Moreover, the detection of copyright infringements and the validation

of the legal property of multimedia data may be difficult since there is no way to identify the original

owner.

From these premises, a significant research effort has been recently devoted to the forensic analysis

of multimedia data. A large part of the research activities in this field are devoted to the analysis of still

images, since digital photographs are largely used to provide objective evidence in legal, medical, and

surveillance applications [2]. In particular several approaches target the possibility of validating, detecting

alterations, and recovering the chain of processing steps operated on digital images. As a result, nowadays

digital image forensic techniques enable to determine: whether an image is original or artificially created

via cut and paste operations from different photos; which source generated an image (camera model,

vendors); whether the whole image or parts of it have been artificially modified and how; what was the

processing history of an image. These solutions rely on the consideration that many processing steps are

not reversible and leave some traces in the resulting signal (hereby called “footprints”). Detecting and

analyzing these footprints allow the reconstruction of the chain of processing steps. In other words, the

detection of these footprints allows a sort of reverse engineering of digital content, in order to identify

the type and order of the processing steps that a digital content has undergone, from its first generation

to its actual form.

Despite the significant available literature on digital image forensics, video forensics still presents many

unexplored research issues, because of the peculiarities of video signals with respect to images and the

wider range of possible alterations that can be applied on this type of digital content. In fact, all the

potential modifications concerning digital images can be operated both on the single frames of a video

sequence and along the temporal dimension. This might be aimed at hiding or erasing details from the
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recorded scene, concealing the originating source, redistributing the original signal without the owner’s

permission or pretending on its characteristics (e.g., low-quality contents re-encoded at high quality) [3],

[4]. Moreover, forensic analysis of video content proves to be harder with respect to the analysis of still

images since video data is practically always available in compressed formats and several times a high

compression factor is used to store it. Strong compression ratios may cancel or fatally compromise the

existing footprints so that the processing history is, entirely or in part, no longer recoverable.

On top of that, forensic analysts must now face the problem of anti-forensic techniques, which consist

in modifying the forging process in order to make the unauthorized alterations transparent to forgery

detection algorithms. Since each of these techniques is usually targeted to erase one specific trace left

during the manipulation, anti-forensic methods are very heterogeneous. Nevertheless, all of them should

satisfy two basic principles: do not hinder significantly the quality of the forged content that is produced;

do not introduce artifacts that are easily detectable, so that anti-forensic techniques could be countered

by the content owner. Although most of the anti-forensic strategies presented in literature have been

developed for still images only, there are some techniques concerning video data.

The original contribution of this paper relies in providing an overview of the main forensic techniques

that have been designed so far in the video content analysis. Previous overview papers in the literature

mainly address image forensics and just a few details are provided about video content analysis. We

believe that video forensic analysis has been maturely developed so that a review of the proposed

techniques is widely justified.

In the following, we outline the structure of the paper. Section II provides the necessary background on

digital image forensics, as it provides the foundations for analogous techniques targeting video content.

The remaining sections deal with various aspects related to video forensics. We start addressing video

acquisition in Section III, presenting several strategies to identify the device that captured a given video

content. Then, in Section IV we consider the traces left by video coding, which are used to determine, e.g.,

the coding parameters, the coding standard or the number of multiple compression steps. Video doctoring

is addressed in Section V, which presents forensic analysis methods based on detecting inconsistencies

in acquisition and coding based footprints, as well as methods that reveal traces left by the forgery itself.

Section VI concludes the survey, indicating open issues in the field of video forensics that might be

tackled by future research efforts.
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II. A QUICK OVERVIEW OF THE STATE-OF-THE-ART IN IMAGE FORENSICS

As mentioned in the previous section, image forensic tools have been widely studied in the past years

due to the many applications of digital images that require some kind of validation. Many of them can

be applied to video signals as well by considering each frame as single images, while others can be

extended including the temporal dimension as well.

For this reason, a preliminary review of the state-of-the-art on image forensics is necessary in order to

outline the baseline scenario from where video forensics departs. Many detailed overviews can be found

in literature on digital image forensics (for example, see [5] and [6]). Here, we just outline some of the

most important works that offered a sort of common background for the current and future video forensic

techniques. In particular, we will discuss methods dealing with camera artifacts, compression footprints,

and geometric inconsistencies.

The methods that follow enable to perform image authentication and, in some cases, tampering

localization, without resorting to additional side information explicitly computed by the content owner.

This is in contrast with other approaches based on, e.g., digital watermarking [7][8] or multimedia

hashing [9][10][11][12][13], or a combination of both [14].

A. Camera Artifacts

Studies on camera artifacts that are left during the acquisition pipeline have laid the basis for image

forensics. The far more studied artifact is the multiplicative noise introduced by CCD/CMOS sensors,

named Photo Response Non Uniformity (PRNU) noise. PRNU has been exploited both for digital camera

identification [15] and for image integrity verification [16], and it proves to be a reliable trace also when

an image is compressed using the JPEG codec.

Since common digital cameras are equipped with just one sensor, color images are obtained by

overlaying a Color Filter Array (CFA) to it, and using a demosaicing algorithm for interpolating missing

values. The specific correlation pattern introduced during this phase allows to perform device model

identification and tampering detection [17], provided that images are not (or very little) compressed.

The last artifact that we mention is chromatic aberration, that is due to the camera lens shape;

inconsistencies in this effect can be searched on to identify tampered regions in the image, as explained

in [18] and [19].
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B. Image compression

A significant investigation activity has been carried on image coding forensics since the lossy nature

of many compression strategies leaves peculiar traces on the resulting images. These footprints allow the

forensic analyst to infer whether an image has been compressed, which encoder and which parameters

have been used, and if the image has undergone multiple compression steps [20]. In order to understand if

an image has been compressed, in [21] the authors show how to exploit a statistic model called Benford’s

law. Alternatively, in [22], the authors focus on identifying if an image has been block-wise processed,

also estimating the horizontal and vertical block dimensions. If the image has been compressed, in [23]

the authors propose a method capable of identifying the used encoder, which is useful, for example,

to differentiate between DCT- and DWT-based coding architectures. A method to infer the quantization

step used for a JPEG compressed image is shown in [24] and [25]. Finally, [26] [27] [28] and [29] [30]

propose some methods to expose double JPEG compression based on the analysis of the histograms of

DCT coefficients.

C. Geometric/Physics inconsistencies

Since human brain is notoriously not good in calculating projections and perspectives, most forged

images contain inconsistencies at the “scene” level (e.g. in lighting, shadows, perspective, etc.). Although

being very difficult to perform in a fully automatic fashion, this kind of analysis is a powerful instrument

for image integrity verification. One of the main advantages of this approach is that, being fairly

independent on low-level characteristics of images, it is well suited also for strongly compressed or

low-quality images.

Johnson and Farid proposed a technique allowing to detect inconsistencies in scene illumination [31]

and another one which reveals inconsistencies in spotlight reflection in human eyes [32]. Zhang et

al. introduced methods for revealing anomalous behavior of shadows geometry and color [33]. Also,

inconsistencies in the perspective of an image have been exploited, for example, in the work from

Conotter et al. [34], which detects anomalies in the perspective of signs and billboards writings.

III. FORENSIC TOOLS FOR VIDEO ACQUISITION ANALYSIS

The analysis of image acquisition is one of the earliest problems that emerged in multimedia forensics,

being very similar to the “classical” forensic technique of ballistic fingerprinting. Its basic goal is to

understand the very first steps of the history of a content, namely identifying the originating device.

The source identification problem has been approached from several standpoints. We may be interested

June 6, 2012 DRAFT



6

in understanding: i) which kind of device/technique generated the content (e.g., camera, scanner, photo

realistic computer graphics, etc.), ii) which model of a device was used or, more specifically, iii) which

device generated the content.

Different techniques address each of these problems in image forensics, and some of them have naturally

laid the basis for the corresponding video forensic approaches. However, Section III-A will show that

source identification has not yet reached a mature state in the case of videos.

Another interesting application that recently emerged in the field of video forensics is the detection

of illegal reproductions, noticeably bootlegs videos and captured screeenshots. This problem will be

separately discussed in Section III-B.

Before deepening the discussion, we introduce in Figure 1 a simplified model of the acquisition chain,

when a standard camcorder is adopted. First, the sensed scene is distorted by optical lenses and then

mosaiced by an RGB Color Filter Array (CFA). Pixel values are stored on the internal CCD/CMOS array,

and then further processed by the in-camera software. The last step usually consists in lossy encoding

the resulting frames, typically using MPEG-x or H.26x codecs for cameras and 3GP codecs for mobile

phones (see Section IV). The captured images are then either displayed/projected on screen or printed,

and can be potentially recaptured with another camera.

A. Identification of acquisition device

In the field of image forensics, many approaches have been developed to investigate each of the

aforementioned questions about the acquisition process. Conversely, the works on video forensics assume

that the content has been recorded using a camcorder, or a modern cell phone. To the best of our

knowledge, no video-specific approaches have been developed to distinguish between computer graphics

and real scenes. Instead, all the works in this field focus on identifying the specific device that originated

a given content.

Kurosawa et al. [35] were the first to introduce the problem of camcorder fingerprinting. They proposed

a method to identify individual video cameras or video camera models by analyzing videotaped images.

They observed that dark-current noise of CCD chips, that is determined during the manufacturing process,

creates a fixed pattern noise, which is practically unique for each device, and they also proposed a way to

estimate this fixed pattern. Due to very strong hypotheses on the pattern extraction procedure (hundreds

of frames recording a black screen were needed) this work did not allow to understand if a given video

came from a specific camera. Nevertheless, it can be considered as one of the pioneering works in video

forensics. Later, research in image forensics demonstrated that Photo Response Non Uniformity (PRNU)
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Fig. 1: Typical acquisition pipeline: light enters the camera through the lens, is filtered by the Color Filter Array

and converted to a digital signal by the sensor. Usually, this is followed by some in-camera post processing and

compression. In some cases, the video can be projected/displayed and re-acquired with another camera, usually

undergoing lighting and spatial distortions.

noise could provide a much more strong and reliable fingerprint of a CCD array and, consequently, more

recent works targeting source identification for video are based on this kind of feature.

1) PRNU based source identification: Many source identification techniques in image forensics exploit

the PRNU noise introduced by the sensor. Although not being the only kind of sensor noise [36], PRNU

has proven to be the most robust feature. Indeed, being a multiplicative noise, it is difficult for device

manufacturers to remove it. First, we describe how this method works in the case of images. Then, we

discuss its extension to videos, highlighting the challenging issues that arise.

Given a noise free image I0, the image I acquired by the sensor is modeled as:

I = I0 + γI0K +N, (1)

where γ is a multiplicative factor, K is the PRNU noise and N models all the other additive noise sources

(see [36] for details). Note that all operations are intended element-wise.

If we could perfectly separate I from I0, it would be easy to compute a good estimate of K from a

single image. Unfortunately, this cannot be done in general: separating content from noise is a challenging

task, as demonstrated by several works on image denoising. Consequently, the common approach is to

estimate K from a group of authentic images Ij , j = 1, . . . , N . Each image Ij is first denoised using an

appropriate filter. Then, the denoised version Īj is subtracted from Ij , yielding:

Wj = Ij − Īj, (2)

where Wj is the residual noise for the j-th image. The PRNU is then estimated as

K =

∑n
j=1

WjIj
∑n

j=1
I2j

. (3)
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From a technical point of view, two factors are of primary importance to obtain a good estimate of K:

1) using a group of flat, well illuminated images, e.g. pictures of a wall, of the sky, etc. Few tens of

images usually suffice;

2) choosing an appropriate denoising filter (see [37]).

Once K is obtained for a device, checking if a query image S has been generated from that device

reduces to evaluating the correlation between the noise component of the query image and the reference

noise of the device. Formally, S is denoised with the same filter and subtracted from itself, yielding WS .

Then, the correlation between the query image and the PRNU mask is obtained as:

ρ = SK ⊗WS , (4)

where the operator ⊗ denotes normalized correlation. The value of ρ is usually low (e.g., ρ ≃ 0.2)

even for images that were actually acquired with the device that originated the mask. However, ρ is

sufficiently discriminative, since correlation values with extraneous images is smaller by two or three

orders of magnitude. Furthermore, experiments demonstrated that this kind of analysis is robust to JPEG

compression at large quality factors (e.g. > 80%).

Having provided the background for PRNU-based source identification in the case of still images, we

move the scope of the discussion to the case of videos. At a first glance, it may seem that estimating

the PRNU of a camcorder from a video sequence should be easier, due to the usually large amount of

frames available. However, this is not true for two main reasons. First, typical spatial resolution of videos

is much lower than that of images. Second, frames usually undergo strong quantization and aggressive

coding that introduce more artifacts than those affecting JPEG-compressed images.

The first work about camcorder identification was proposed by Chen et al. [38]. They rely on the

method described above for extracting the PRNU mask. However, a significant effort is devoted to the

proper choice the denoising filter, which led to the selection of a wavelet-based filter designed to remove

Gaussian noise [39]. In addition, a pre-processing step is included to mitigate quantization artifacts

introduced by lossy coding. More specifically, the authors observe that blocking artifacts and ringing

artifacts at frame boundaries (introduced to adjust the size of the frame to a multiple of the block size)

introduce a noise pattern that strongly depends on the compression algorithm rather than on the acquisition

hardware. They propose a method to identify the frequencies of the DFT transform where such noise

contribution is located and suppress them, thus increasing noticeably the performance of the estimation.

The experiments in [38] showed that a tradeoff exists between video quality (in terms of bitrate) and

length to achieve successful detection. If the video is compressed at high quality (e.g. 4-6 Mb/s), then
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a relatively short sequence (40 sec.) suffices for a good estimation of the mask. Conversely, for low

quality videos (e.g. 150 Kb/s) the length of the training sequence must be doubled to obtain comparable

performance.

The challenging problem of video source identification from low quality videos has been deeply

explored by van Houten et al. in several works [40] [41] [42]. The authors recorded videos using several

different cameras, with various resolutions and bitrates. Then, they uploaded these videos on YouTube and

downloaded them. Since YouTube re-encodes video during uploading, frames underwent at least double

compression. After a large set of experiments, the authors came to the final conclusion that PRNU based

source identification is still possible for very low quality videos, provided that the forensic analyst can

extract the PRNU mask from a flat field video and that the aspect ratio of the video is not (automatically)

changed during uploading.

In all the aforementioned works, video compression is considered to be a factor significantly hindering

the identification of the PRNU-related footprints. However, digital video content mainly exists in com-

pressed format, and the first compression step is operated by the camera itself using a proprietary codec.

Therefore, the identification of the acquisition device could also be based on the identification the codec,

leveraging the techniques described in Section IV

B. Detection of (illegal) reproduction of videos

An important problem in copyright protection is the proliferation of bootleg videos: many illegal copies

of movies are made available on the Internet even before their official release. A great deal of these fake

copies are produced by recording films with camcorders in cinemas (the last steps reported in Figure 1).

Video forensics contributes to facing these problems by: i) detecting re-projected videos, as described

in Section III-B1; ii) providing video retrieval technique based on device fingerprinting described in

Section III-B2.

1) Detection of Re-acquisition : Re-acquisition occurs when a video sequence that is reproduced on

a display or projected on a screen is recaptured. In the literature, some approaches were proposed based

on active watermarking to perform both the identification of bootleg video [43] and to locate pirate’s

position in cinemas [44]. Recently, blind techniques are also emerging. Wang et al. [3] developed the most

significant work in this field, exploiting the principles of multiple view geometry. They observed that

re-acquisition captures a scene that is constrained to belong to a planar surface (e.g., the screen), whereas

the original acquisition of the video was taken projecting objects from the real world to the camera

plane. The authors show both mathematically and experimentally that re-projection usually causes non-
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zero skew1 in the intrinsic matrix of the global projection. Assuming that the skew of the camera used

for the first acquisition was zero, significant deviations of this parameter in the estimated intrinsic matrix

can be used as evidence that a video has been re-projected. Although very promising, this approach

suffers from some limitations. Specifically, the original acquisition is modeled under several simplifying

hypotheses, and skew estimation on real world video is difficult to perform without supervision. In [3],

many experiments are conducted in a synthetic setting, yielding good performance (re-projected videos

are detected with 88% accuracy and with 0.4% false alarm probability). However, only one experiment

is based on real-world video content, presumably because of the complexity of skew estimation in this

setting.

Lee et al. [45] addressed the problem of detecting if an image might be a screenshot re-captured from

an interlaced video. In an interlaced video, half of the lines are recorded at time t in the field f(x, y, t),

and the other half are recorded at time t+ 1 in the field f(x, y, t+ 1). There are several possible ways

to obtain the full (spatial) resolution frame, i.e., F (x, y, t), and one of the simplest is to weave fields

together, as in Figure 2. Therefore, lines of the full resolution frame are acquired at different, though very

near, time instants. If the video contains rapidly moving objects (or, equivalently, the camera is moving

rapidly), this will introduce artifacts that are referred to as “combing”. In [45], the authors exploit the

directional property of combing artifacts to devise six discriminative features. These features are extracted

from wavelet transform subbands (since combing artifacts are most evident near edges) and from vertical

and horizontal differential histograms (which will expose strong differences in presence of such artifacts).

Experimental results show an average accuracy higher than 97%.

2) Detection of Copying: The most common approach in video copy detection is to extract salient

features from visual content that do not depend on the device used to capture the video. However, in [46],

Bayram et al. pointed out that robust content-based signatures may hinder the capability of distinguishing

between videos which are similar, although they are not copies of each other. This issue might arise, e.g.,

in the case of videos taken by two different users of the same scene. For this reason, they proposed to

use source device characteristics extracted from videos to construct a copy detection technique. In [46], a

video signature is obtained by estimating the PRNU fingerprints of camcorders involved in the generation

of the video. The authors suggest to compute the PRNU fingerprint in the classical way. In the case of

professional content, video is usually acquired using more than one device. As a consequence, this

automatically yields a weighted mean of the different PRNU patterns, in which more frames taken with

1Camera skew accounts for the inclination of pixels: if pixels are assumed to be rectangular, camera skew is zero.
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Fig. 2: A simple field weaving algorithm for video de-interlacing. This scheme uses T fields to produce a de-

interlaced video of T/2 frames.

the same camera will result in a stronger weight assigned to it. Furthermore, it was observed that PRNU

signatures are not totally insensible to the underlying frame content. Therefore, the weighted mean will

also implicitly carry information about the content of the video. Notice that this method aims at obtaining a

fingerprint for the content rather than for the device. Although it reuses PRNU fingerprinting techniques

described in Section III-A1, it does so with a completely different objective. The authors also show

that the fingerprint is robust against a set of common processing operations, i.e., contrast enhancement,

blurring, frame dropping, subtitles, brightness adjustment, compression. Experiments performed on video

downloaded from YouTube show a 96% detection rate for a 5% false alarm probability. However, slight

rotation or resizing, not mentioned in [46], are likely to completely destroy the fingerprint.

IV. FORENSIC TOOLS FOR VIDEO COMPRESSION

Video content is typically available in a lossy compression format due to the large bit rate that is

necessary to represent motion pictures either in an uncompressed or lossless format. Lossy compression

leaves characteristic footprints, which might be detected by the forensic analyst. At the same time,

the study of effective forensic tools dealing with compressed videos is a challenging task since coding

operations have the potential effect of erasing the footprints left by previous manipulations. In this way,

the processing history cannot be recovered anymore. Moreover, the wide set of video coding architectures

that have been standardized during the last two decades introduces several degrees of freedom in the way

different compression steps can be composed. As such, the codec adopted to compress a video sequence

represents a distinctive connotative element. Therefore, if detected, it can be useful for the identification

of the acquisition device, as well as for revealing possible manipulations.
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Most of the existing video coding architectures build on top of coding tools originally designed for

images. The JPEG standard is, by far, the most widely adopted coding technique for still images and

many of its principles are reused for the compression of video signals [47]. A JPEG codec converts color

images into a suitable color space (e.g. YCbCr), and processes each color component independently. The

encoder operates according to three main steps:

• The image is divided into non-overlapping 8× 8 pixel blocks X = [X(i, j)], i, j = 0, . . . , 7, which

are transformed using a Discrete Cosine Transform (DCT) into coefficients Y (i, j) (grouped into

8× 8 blocks Y).

• The DCT coefficients Y (i, j) are uniformly quantized into levels Yq(i, j) with quantization steps

∆(i, j), which depend on the desired distortion and the spatial frequency (i, j), i.e.:

Yq(i, j) = sign(Y (i, j))round

(

|Y (i, j)|

∆(i, j)

)

. (5)

At the decoder, the reconstructed DCT coefficients Yr(i, j) are obtained by multiplying the quanti-

zation levels, i.e., Yr(i, j) = Yq(i, j) ·∆(i, j).

• The quantization levels Yq(i, j) are lossless coded into a binary bitstream by means of Huffman

coding tables.

Video coding architectures are more complex than those adopted for still images. Most of the widely-

used coding standards (e.g. those of MPEG-x or H.26x families) inherit the use of block-wise transform

coding from the JPEG standard. However, the architecture is complicated by several additional coding

tools, e.g., spatial and temporal prediction, in-loop filtering, image interpolation, etc. Moreover, different

transforms might be adopted within the same coding standard.

Fig. 3 illustrates a simplified block diagram representing the main steps in a conventional video coding

architecture. First, the encoder splits the video sequence into frames, and each frame is divided into blocks

of pixels X. Each block is subtracted to a prediction generated by P exploiting either spatial and/or

temporal correlation. Then, the prediction residual is encoded following a sequence of steps similar to

those adopted by the JPEG standard. In this case, though, the values of the quantization steps and the

characteristics of transform might change according to the specific standard.

Quantization is a non-invertible operation and it is the main source for information loss. Thus, it

leaves characteristic footprints, which depend on the chosen quantization steps and quantization strategy.

Therefore, the analysis of coding-based footprints might be leveraged to: i) infer details about the encoder

(e.g. coding standard, coding parameters, non-normative tools); ii) assess the quality of a sequence in a

no-reference framework; or iii) study the characteristics of the channel used to transmit the sequence.
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Fig. 3: Simplified block diagram of a conventional video codec. P computes the prediction, T the orthonormal

transform, Q is the quantizer, and F is responsible of rounding and in-loop filtering.

In addition, block-wise processing introduces an artificial partition of the coded frame, which is further

enhanced by the following processing steps. Unlike JPEG, the actual partitioning strategy is not fixed,

as it depends on the specifications of coding standard and on the adopted rate-distortion optimization

policy. Therefore, blockiness artifacts can be used to infer information about the adopted codec.

Finally, different codec implementations may adopt diverse spatial or temporal prediction strategies,

according to rate-distortion requirements and computational constraints. The identification of the adopted

motion vectors and coding modes provides relevant footprints that can be exploited by the forensic analyst,

e.g. to validate the originating devices.

When each frame is considered as a single image, it is possible to apply image-based forensic

analysis techniques. However, to enable a more thorough analysis, it is necessary to consider coding

operations along the temporal dimension. In the following, we provide a survey of forensic tools aimed at

reconstructing the coding history of video content. Whenever applicable, we start by briefly illustrating the

techniques adopted for still images. Then, we show how they can be modified, extended and generalized

to the case of video.

A. Video coding parameter identification

In image and video coding architectures, the choice of the coding parameters is driven by non-normative

tools, which depend on the specific implementation of the codec and on the characteristics of the coded

signal. In JPEG compression, the user-defined coding parameters are limited to the selection of the

quantization matrices, which are adopted to improve the coding efficiency based on the psycho-visual

analysis of human perception. Conversely, in the case of video compression, the number of coding

parameters that can be adjusted is significantly wider. As a consequence, the forensic analyst needs to

take into account a larger number of degrees of freedom when detecting the codec identity. This piece

of information might enable the identification of vendor-dependent implementations of video codecs. As

such, it could be potentially used to: i) verify intellectual property infringements; ii) identify the codec that
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(a) original (b) compressed

Fig. 4: Original (a) and compressed (b) frames of a standard video sequence. The high compression rate is responsible

for blocking artifacts.

generated the video content; iii) estimate the quality of the reconstructed video without the availability

of the original source. In the literature, the methods aiming at estimating different coding parameters

and syntax elements characterizing the adopted codec can be grouped into three main categories, which

are further described below: i) approaches detecting block boundaries; ii) approaches estimating the

quantization parameters, and; iii) approaches estimating the motion vectors.

1) Block detection: Most video coding architectures encode frames on a block-by-block basis. For

this reason, artifacts at block boundaries can be exploited to reveal traces of previous compression steps.

Typical blocking artifacts are shown in Fig 4. Identifying block boundaries allows also estimating the

block size. It is possible to detect block-wise coding operations by checking local pixel consistency, as

shown in [24], [25]. There, the authors evaluate whether the statistics of pixel differences across blocks

differ from those of pixels within the same block. In this case, the image is supposed to be the result of

block-wise compression.

In [48], the block size in a compressed video sequence is estimated by analyzing the reconstructed

picture in the frequency domain and detecting those peaks that are related to discontinuities at block

boundaries, rather than intrinsic features of the underlying image.

However, some modern video coding architectures (including, e.g., H.264/AVC as well as the recent

HEVC standard under development) enable to use a deblocking filter to smooth artifacts at block

boundaries, in addition to variable block sizes (also with non-square blocks). In these situations, traditional

block detection methods fail, leaving this as an open issue for further investigations.

2) Quantization step detection: Scalar quantization in the transform domain leaves a very common

footprint in the histogram of transform coefficients. Indeed, the histogram of each coefficient Yr(i, j)
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Fig. 5: Histograms of DCT coefficients (c1, c2, c3) before (first row) and after (second row) quantization. The

quantization step ∆(i, j) can be estimated by the gaps between consecutive peaks.

shows a typical comb-like distribution, in which the peaks are spaced apart by ∆(i, j), instead of a

continuous distribution (Fig. 5). Ideally, the distribution can be expressed as follows:

p(Yr;∆) =
∑

k

wkδ(Yr − k∆), (6)

where δ is the Dirac delta function and wk are weights that depend on the original distribution (note that

indexes (i, j) are omitted for the sake of clarity). For this reason, the quantization step ∆(i, j) can be

recovered by studying the distance between peaks of these histograms.

To this end, the work in [24] and [25] proposes to exploit this footprint to estimate the quality factor of

JPEG compression. Specifically, the envelope of the comb-shaped histogram is approximated by means

of a Gaussian distribution for DC coefficients, and a Laplacian distribution for AC coefficients. Then, the

quality factor is estimated with a maximum likelihood (ML) approach, where the quantized coefficients

are used as observations, and data coming from uniform and saturated blocks is discarded to make the

estimation more robust.

In [49] the authors propose a method for estimating the elements of the whole quantization table.

Separate histograms are computed for each DCT coefficient subband (i, j). Analyzing the periodicity of

the power spectrum, it is possible to extract the quantization step ∆(i, j) for each subband. Periodicity

is detected with a method based on the second order derivative applied to the histograms.
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In [23], another method based on the histograms of DCT coefficients is proposed. There, the authors

estimate the quantization table as a linear combination of existing quantization tables. A first estimate of

the quantization step size for each DCT band is obtained from the distance between adjacent peaks of the

histogram of transformed coefficients. However, in most cases, high-frequency coefficients do not contain

enough information. For this reason some elements of the quantization matrix cannot be reconstructed,

and they are estimated as a linear combination (preserving the already obtained quantization steps) of

other existing quantization tables collected into a database.

A similar argument can be used to estimate the quantization parameter in video coding, when the

same quantization matrix is used for all blocks in a frame. In [50] and [51], the authors consider the case

of MPEG-2 and H.264/AVC coded video, respectively. There, the histograms are computed from DCT

coefficients of prediction residuals. To this end, motion estimation is performed at the decoder side to

recover an approximation of the motion-compensated prediction residuals available at the encoder.

Based on the proposed method for quantization step estimation a possible future line of investigation

could be the inference of the rate-control algorithm applied at the encoder side, by tracking how quan-

tization parameters vary over time. This could be an important hint to identify vendor-specific codec

implementations.

3) Identification of Motion vectors: A significant difference between image and video coding is

the use of predictors exploiting temporal correlation between consecutive frames. The idea is that of

reducing temporal redundancy by exploiting similarities among neighboring video frames. This is achieved

constructing a predictor of the current video frame by means of motion estimation and compensation.

In most video coding architectures, a block-based motion model is adopted. Therefore, for each block,

a motion vector (MV) is estimated, in such a way to generate a motion-compensated predictor. In [52],

it is shown how to estimate, at the decoder, the motion vectors originally adopted by the encoder, also

when the bitstream is missing. The key tenet is to perform motion estimation by maximizing, for each

block, an objective function that measures the comb-like shape of the resulting prediction residuals in

the DCT domain.

Although the estimation of coding parameters has been investigated, mainly focusing on block detection

and quantization parameter estimation, there are still many unexplored areas due to the wide variety of

coding options that can be enabled and the presence of a significant number of non-normative aspects in

the standard definition (i.e., rate distortion optimization, motion estimation algorithm, etc.). These coding

tools offer a significant amount of degrees of freedom to the video codec designer, who can implement

in different ways an encoder producing a bitstream compliant with the target coding standard. On the
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other hand, the task of forensic analyst becomes more and more difficult, when it comes to characterize

and detect the different footprints left by each operation.

B. Video re-encoding

Every time a video sequence that has already been compressed is edited (e.g., scaling, cropping,

brightness/contrast enhancement, local manipulation, etc.), it has to be re-compressed. Studying processing

chains consisting of multiple compression steps is useful, e.g., for tampering detection or to identify the

original encoder being used. This is a typical situation that arises, e.g., when video content is downloaded

from video-sharing websites.

Of course, it is straightforward to obtain the parameters used in the last compression stage, as they

can be read directly from the bitstream. However, it is much more challenging to extract information

about the previous coding steps. For this reason, some authors have studied the footprints left by double

video compression. The solutions proposed so far in the literature are mainly focused on MPEG video,

and they exploit the same ideas originally used for JPEG double-compression.

1) Double compression: Double JPEG compression can be approximated by double quantization of

transform coefficients Y (i, j), such that

YQ1,Q2
= ∆2 · sign(Y ) · round

(

∆1

∆2

round

(

|Y |

∆1

))

, (7)

where indexes (i, j) have been omitted for the sake of clarity. Re-quantizing already quantized coefficients

with different quantization step sizes affects the histogram of DCT coefficients. For this reason, most

solutions are based on the statistical footprints extracted from such histograms.

In [26], Lukáš and Fridrich show how double compression introduces characteristic peaks in the his-

togram, which alter the original statistics and assume different configurations according to the relationship

between the quantization step sizes of consecutive compression operations, i.e., respectively, ∆1 and ∆2.

More precisely, the authors highlight how peaks can be more or less evident depending on the relationship

between the two step sizes, and propose a strategy to identify double compression. Special attention is

paid to the presence of double peaks and missing centroids (i.e., those peaks with very small probability)

in the DCT coefficient histograms, as they are identified to be robust features providing information

about the primary quantization. Their approach relies on cropping the reconstructed image (in order to

disrupt the structure of JPEG blocks) and compressing it with a set of candidate quantization tables.

The image is then compressed using ∆2(i, j) and the histogram of DCT coefficients is computed. The

proposed method chooses the quantization table such that the resulting histogram is as close as possible
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to that obtained from the reconstructed image. This method is further explored in [53], providing a

way to automatically detect and locate regions that have gone through a second JPEG compression

stage. A similar solution is proposed in [54], which considers only the histograms related to the nine

most significant DCT subbands, which are not quantized to zero. The corresponding quantization steps,

i.e. those employed in the first compression stage, are computed via a Support Vector Machine (SVM)

classifier. The remaining quantization steps are computed via a Maximum Likelihood estimator.

A widely-adopted strategy for the detection of double compression relies on the so-called Benford’s

law or first digit law [21]. In a nutshell, it relies on the analysis of the distribution of the most significant

decimal digit m (also called “first digit”) of the absolute value of quantized transformed coefficients.

Indeed, in the case of an original uncompressed image, the distribution is closely related to the Benford’s

equation or its generalized version, i.e.,

p(m) = N log10

(

1 +
1

m

)

or p(m) = N log10

(

1 +
1

α+mβ

)

, (8)

respectively (where N is a normalizing constant). Whenever the empirical distribution deviates signif-

icantly from the interpolated logarithmic curve, it is possible to infer that the image was compressed

twice. Then, it is also possible to estimate the compression parameters of the first coding stage. Many

double compression detection approaches based on Benford’s law have been designed focusing on still

images [21], giving detection accuracy higher than 90%. These solutions have also been extended to

the case of video signals, but the prediction units (spatial or temporal) that are part of the compression

scheme reduce the efficiency of the detector, leading to an accuracy higher than 70%. More recently, this

approach has also been extended to the case of multiple JPEG compression steps since in many practical

cases images and videos are compressed more than twice [20].

In [4], the authors address the problem of estimating the traces of double compression of an MPEG

coded video. Two scenarios are considered, depending on whether the Group of Pictures (GOP) structure

used in the first compression is preserved or not. In the former situation, every frame is re-encoded

in a frame of the same kind, so that I,B, or P frames remain, respectively, I,B, or P. Since encoding I-

frames is not dissimilar from JPEG compression, when an I-frame is re-encoded at a different bitrate, DCT

coefficients are subject to two levels of quantization. Therefore, the histograms of DCT coefficients assume

a characteristic shape that deviates from the original distribution. In particular, when the quantization

step size decreases from the first to the second compression, some bins in the histogram are left empty.

Conversely, when the step size increases, the histogram is affected in a characteristic way. Instead, the

latter situation typically arises in the case of frame removal or insertion attacks. Since the GOP structure
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is changed, I-frames can be re-encoded into another kind of frame. However, this gives rise to larger

prediction residuals after motion-compensation. The authors show that by looking at the Fourier transform

of the energy of the displaced frame difference over time, the presence of spikes reveals a change in the

GOP structure, which is a clue of double-compression.

In [55], the authors propose another method for detecting MPEG double compression based on blocking

artifacts. A metric for computing the Block Artifact Strength (BAS) for each frame is defined. This score

is inspired to the method in [25] and relies on the difference of pixel values across a grid. The mean BAS

is computed for sequences obtained removing from one to eleven frames, obtaining a feature vector of

BAS values. If the sequence has been previously tampered with by frame removal and re-compression,

the feature vector presents a characteristic behavior.

In [56], MPEG double quantization detection is addressed on a macroblock-by-macroblock basis.

In particular, a probability distribution model for DCT coefficients of a macroblock in an I-frame is

discussed. With an Estimation-Maximization (EM) technique, the probability distribution that would arise

if a macroblock were double-quantized is estimated. Then, such distribution is compared with the actual

distribution of the coefficients. From this comparison, the authors extract the probability that a block

has been double-compressed. These solutions can be extended to enable the detection of double video

compression even in a realistic scenario in which different codecs are employed in each compression

stage.

The approach in [57] presents an effective codec identification strategy that allows to determine the

codec used in the first compression stage in the case of double video compression (note that the codec used

in the second compression stage is known since the bitstream is usually available). The proposed algorithm

relies on the assumption that quantization is an idempotent operator, i.e., whenever a quantizer is applied

to a value that has already been previously quantized and reconstructed by the same quantizer, the output

value is highly correlated with the input value. As a matter of fact, it is possible to identify the adopted

codec and its configuration by re-encoding the analyzed sequence a third time, with different codecs and

parameter settings. Whenever the output sequence presents the highest correlation with the input video,

it is possible to infer that the adopted coding set-up corresponds to that of the first compression.

Although the detection of double compression for images is a widely-investigated issue, double video

compression still proves to be an open research problem, because of the complexity and diversity of video

coding architectures. Whenever two different codecs are involved with similar parameters, the detection

of double video compression becomes significantly more difficult [57]. Moreover, multiple compression

is a current and poorly-explored topic despite the fact that multimedia content available on the internet
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has been often coded more than twice [20].

C. Network footprints identification

Video transmission over a noisy channel leaves characteristic footprints in the reconstructed video

content. Indeed, packet losses and errors might affect the received bitstream. As a consequence, some of

the coded data will be missing or corrupted. Error concealment is designed to take care of this, trying

to recover the correct information and mitigate the channel-induced distortion. However, this operation

introduces some artifacts in the reconstructed video, which can be detected to infer the underlying loss

(or error) pattern. The specific loss pattern permits the identification of the characteristics of the channel

that was employed during the transmission of the coded video. More precisely, it is possible to analyze

the loss (error) probability, the burstiness, and other statistics related to the distribution of errors in order

to identify, e.g., the transmission protocol or the streaming infrastructure.

Most of the approaches targeting the identification of network footprints are intended for no-reference

quality monitoring, i.e., the estimation of the quality of the video sequence without having access to the

original source as a reference signal. These solutions are designed to provide network devices and client

terminals with effective tools that measure the Quality-of-Experience (QoE) offered to the end user. The

proposed approaches can be divided into two main groups.

The first class of network footprint identification algorithms takes into consideration transmission

statistics to estimate the channel distortion on the reconstructed sequence. In [58], the authors present

an algorithm based on several quality assessment metrics to estimate the packet loss impairment in the

reconstructed video. However, the proposed solution adopts full-reference quality metrics that require the

availability of the original uncompressed video stream. A different approach is presented in [59], where

the channel distortion affecting the received video sequence is computed according to three different

strategies. A first solution computes the final video quality from the network statistics; a second solution

employs the packet loss statistics and evaluates the spatial and temporal impact of losses on the final

sequence; the third one evaluates the effects of error propagation on the sequence. These solutions target

control systems employed by network service providers, which need to monitor the quality of the final

video sequences without having access to the original signal. Another no-reference PSNR estimation

strategy is proposed in [60]. The proposed solution evaluates the effects of temporal and spatial error

concealment without having access to the original video sequence, and the output values present a good

correlation with MOS scores. As a matter of fact, it is possible to consider this approach as a hybrid

solution, in that it exploits both the received bitstream and the reconstructed pixel values.
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A second class of strategies assumes that the transmitted video sequence has been decoded and that

only the reconstructed pixels are available. This situation is representative of all those cases in which

the video analyst does not have access to the bitstream. The solution proposed in [61] builds on top of

the metrics proposed in [60], but no-reference quality estimation is carried out without considering the

availability of the bitstream. Therefore, the proposed solution processes only pixel values, identifying

which video slices were lost, and producing as output a quality value that presents good correlation with

the MSE value obtained in full reference fashion. The method assumes that slices correspond to rows

of macroblocks. However, modern video coding standard enable more flexible slicing schemes. Hence,

the method has been recently extended in [62], in which a maximum a-posteriori approach is devised to

take into account a spatial prior on the distribution of lost slices.

D. Video compression anti-forensics

The design of novel forensic strategies aimed at characterizing image and video compression is

paralleled by the investigation of corresponding anti-forensic methods. That is, a malicious adversary

might tamper with video content in such a way to disguise its traces.

An anti-forensic approach for JPEG compression has been recently proposed in [63]. There, the traces

of compression are hidden by adding a dithering noise signal. Dithering is devised to reshape the histogram

of DCT coefficients in such a way that the original Laplacian distribution is restored. In a following work

by the same authors [64], a similar strategy is proposed to erase the traces of tampering from an image

and hide double JPEG compression. This is achieved by a combined strategy, i.e., removing blocking

artifacts by means of median filtering and restoring the original distribution of DCT coefficients with the

same method as in [63]. In this way, the forensic analyst is not able to identify the tampered region by

inspecting the distribution of DCT coefficients. However, it has been recently shown that anti-forensic

methods are prone to leave their own footprints. In [65], [66], the authors study the distortion which is

inevitably introduced by the anti-forensic method in [63] and propose an effective algorithm to counter

it.

The aforementioned anti-forensic methods might be potentially applied to videos on a frame-by-frame

basis. To the authors’ knowledge, the only work that addresses an anti-forensic method specifically

tailored to video compression is [67]. There, the authors propose a method to fool the state-of-the-art

frame deletion and detection technique in [4], which is based on the analysis of the motion-compensated

prediction error sequence. However, this is achieved by paying a cost in terms of coding efficiency, since

some of the frames of the video sequence need to be re-encoded at a bitrate higher than the one originally
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used. However, this research field is quite recent and just a few works can be found on the subject.

V. FORENSIC TOOLS FOR VIDEO DOCTORING DETECTION

Although being more complicated than for images, creating a forged video is now easier than before,

due to the availability of video editing suites. At the same time, videos are extensively used for surveil-

lance, and they are usually considered a much stronger proof than a single shot. There are many different

ways of tampering with a video, and some of them are not complicated at all: one may be interested

in replacing or removing some frames ( e.g., from a video-surveillance recording), replicating a set of

frames, introducing, duplicating or removing some objects from the scene.

It is possible to classify both video forgery and video forensic techniques as intra-frame (attack/analysis

is performed frame-wise, considering one frame at a time), or inter-frame (relationships between adjacent

frames are considered). Although it would be possible to analyze the integrity of a video by simply

applying image forensic tools to each separate frame, this approach is considered unpractical, mainly for

these reasons:

• complexity: tools for detecting forgeries in images are usually computationally demanding;

• reliability: replication/deletion of frames would not be detected by any image forensic tools;

• convenience: creating doctored videos that are temporally consistent is very difficult, so these kinds

of inter-frame relationships are a valuable asset for forgery identification.

In the following subsections we survey existing techniques for video doctoring detection. We group

them according to the type of analysis they rely on. Section V-A covers camera-based techniques. Section

V-B covers coding-based techniques and Section V-C discusses some pioneering works that exploit

geometrical/physical inconsistencies to detect tampering. In Section V-D, we analyze the problem of

identifying frames, or portion of frames, copy-move forgeries. In Section V-E, we discuss anti-forensic

strategies. Finally, in Section V-F we present a solution to the problem of understanding the relationships

between objects in large multimedia collections (phylogeny).

A. Camera based editing detection

As discussed in Section III, camcorders usually leave a characteristic fingerprint in recorded videos.

Although these kinds of artifacts are usually exploited just for device identification, some works leverage

on them also for tampering detection. The main contributions in this field are from Mondaini et al. [68],

Hsu et al. [69] and Kobayashi et al. [70].
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Mondaini et al. [68] proposed a direct application of the PRNU fingerprinting technique (see Section

III-A1) to video sequences: the characteristic pattern of the camcorder is estimated on the first frames of

the video, and is used to detect several kinds of attacks. Specifically, authors evaluate three correlations

coefficient (see Equation 4): i) the one between each frame noise and the reference noise, ii) the one

between the noise of two consecutive frames, iii) the one between frames (without noise extraction). Each

of these correlation coefficients is thresholded to obtain a binary event, and different combinations of

events allow to detect different kind of doctoring, among which: frame insertion, object insertion within

a frame (cut-and-paste attack), frame replication. Experiments are carried both on uncompressed and on

MPEG compressed videos: results show that the method is reliable (only some case-studies are reported,

not averaged values) on uncompressed videos, while MPEG encoding afflicts performances significantly.

Hsu et al. [69] adopt a technique based on temporal correlation of noise residues, where the “noise

residue” of a frame is defined as what remains after subtracting from the frame its denoised version

(the filtering technique proposed in [39] is used). Each frame is divided into blocks, and the correlation

between the noise residue of temporally neighboring blocks (i.e. blocks in the same position belonging

to two adjacent frames) are evaluated. When a region is forged, the correlation value between temporal

noise residues will be radically changed: it will be decreased if pixels of the blocks are pasted from

another frame/region (or automatically generated through inpainting), while it will be raised to 1 if a

frame replication occurs. Authors propose a two-step detection approach to lower the complexity of the

scheme: first a rough threshold decision is applied to correlations and, if the frame contains a significant

number of suspect blocks, a more deep statistical analysis is performed, modeling the behavior of noise

residue correlation through a Gaussian mixture and estimating its parameters. Performances are far from

ideal: when working on copy-paste attacked videos, on average only 55% of forged blocks are detected

(false positive rate being 3.3%); when working on synthetically inpainted frames, detection raises to 74%

but also false positive rate increases to 7% on average. Furthermore, when the video is lossy encoded,

performances drop rapidly with the quantization strength. Nevertheless, despite authors do not provide

experiments in this direction, this method should be effective for detecting frame replication, which is an

important attack in the video-surveillance scenario. It is worth noting that, although exploiting camera

characteristics, this work does not target the fingerprinting of the device at all.

Another camera-based approach is the one from Kobayashi et al. [70]: they propose to detect suspicious

regions in video recorded from a static scene by using noise characteristics of the acquisition device.
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Specifically, photon shot noise2 is exploited, which mainly depends on irradiance through a function

named Noise Level Function (NLF). The method computes the probability of forgery for each pixel by

checking the consistency of the NLFs in forged regions and unforged regions. Since it is not known

a-priori which pixels belong to which region, the Expectation-Maximization [71] algorithm is employed

to simultaneously estimate the NLF for each video source and the probability of forgery for each pixel.

The core of the technique resides in correctly estimating the function from temporal fluctuations of pixel

values, and this estimate is thoroughly discussed from a theoretical point of view. On the other hand,

from a practical point of view, the estimate can be performed only for pixels whose temporal variation

results entirely from noise and not from motion of objects or camera. This limits the applicability of the

approach to stationary videos, like those acquired by steady surveillance cameras. When this assumption

is respected, and the video is not compressed, this method yields very good performances (97% of forged

pixels are located with 2.5% of false alarm); also, the perfect resolution of the produced forgery map (each

pixel is assigned a probability) should be appreciated. Unfortunately, since videos usually undergo some

kind of noise reduction during encoding, performances drop dramatically when the video is compressed

using conventional codecs like MPEG-2 or H.264, and this further limits the practical applicability of

this work.

Going back to a global view, it can be stated that camera based methods are effective on uncompressed

videos. However, videos are typically stored in compressed format in most practical applications. This

motivates the investigation of camera footprints that are more robust to aggressive coding.

B. Detection based on coding artifacts

From what emerged in the previous section, video encoding strongly hinders the performances of

camera based detection techniques. On the other hand, however, coding itself introduces artifacts that can

be leveraged to investigate the integrity of the content. Since video codecs are designed to achieve strong

compression ratios, they usually introduce rather strong artifacts in the content (as seen in Section IV). In

the last years, some forensic researchers investigated the presence or the inconsistencies of these artifacts

to asses the integrity of a video, and to localize which regions are not original.

The first approach in this direction was from Wang and Farid [4], focusing on MPEG compressed

videos, where two phenomena are explored, one static (inter-frame) and one temporal (intra-frame). The

static phenomena, which has been discussed in Section IV-B, relies on the fact that a forged MPEG

2This noise originates from the temporal fluctuations of the number of photons that fall onto a CCD element.
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Fig. 6: In this example, the first six frames of the original MPEG compressed video (first row) are deleted, thus

obtaining a new sequence (second row). When this sequence is re-compressed using MPEG, each GOP will contain

frames that belonged to different GOPs in the original video (frames highlighted in yellow in the third row).

video will almost surely undergo two compressions the first being performed when the video is created,

and the second when video is re-saved after being doctored. The temporal phenomena is based on the

GOP (Group of Pictures) structure of MPEG files. As shown in Figure 6, when a video is re-compressed

after removing or adding a group of frames, a desynchronization will occur in the GOP pattern. Due to

the predictive nature of MPEG compression, all the P frames in a GOP are correlated to the initial I

frame. In the re-compressed sequence, some of the frames are likely to move from one GOP to another

(last row of Figure 6), so their correlation with the I frame of the new GOP will be smaller, resulting

in larger prediction errors. If a single set of frames is deleted, the shift of P frames will be the same

throughout all the video sequence, and the variability of prediction error in P frames along time will

exhibit a periodic behavior. That is, smaller error values will result for frames that remained in the same

GOP as the original video, and larger error for those that changed GOP.

This periodicity can be revealed via a Fourier analysis of the frame-wise average values of motion

error. Authors show the effectiveness of this approach on several examples, although they do not allow

us to give a value for precision-recall or overall accuracy of the method.

Another work from the same authors [56] provides a more accurate description of double compression

in MPEG videos, which allows them to detect doubly compressed macro-blocks (16x16 pixels) instead of

frames. Consequently, this approach allows to detect if only part of the frame has been compressed twice,

which usually happen when the common digital effect of green-screening is applied (that is, a subject

is recorded over a uniform background then it is cut and pasted into the target video). Performances of

this technique depend on the ratio between the two compression quality factors: for ratios over 1.7 the

method is almost ideal (99.4% detection rate) while for ratios less then 1.3 detection drops to 2.5%.

Quantization artifacts are not the only effect that have been exploited for video doctoring detection:

Wang and Farid proposed another approach [72] for detecting tampering in interlaced and de-interlaced

video (see Section III-B1 for a brief explanation of what an interlaced video is). For de-interlaced video,
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Fig. 7: Video interpolation based on line averaging, which is a field extension scheme. Compared to the method

in Figure 2, this one has the advantage of producing a final video with T frames instead of T/2, without showing

the combing artifact. On the other hand, vertical resolution is halved.

the authors consider how the missing rows of the frame are generated (see Figure 7 for an example): if

they are not tampered with, they should be a combination of fields that are adjacent in time and/or space.

Instead, if a region is forged, this relationship should not hold, thus exposing the doctoring. However,

in practice, both the adopted interpolation method and the possibly doctored region are not known in

advance. The authors propose to exploit the Expectation Maximization algorithm [71] to simultaneously

estimate the parameters of the filter and assign pixels to original or tampered regions. To give a simple

example, let us consider the odd rows Fo(x, y, t) of an interlaced frame F (x, y, t). Pixels that are not

tampered with are said to belong to the model M1, and should satisfy the following constraint:

Fo(x, y, t) =
∑

i∈{−3,−1,1,3}

αiF (x, y + i, t)+

∑

i∈{−2,0,2}

βiF (x, y + i, t+ 1) + n(x, y),

where αi and βi are the coefficients of the interpolation filter and n(x, y) is i.i.d. Gaussian noise. On the

other hand, pixels in tampered regions belong to another model, M2, for which a uniform distribution

is assumed. With these settings, the EM algorithm iteratively determines the probability of each pixel of

Fo(x, y, t) to belong to M1 (Expectation step). Then, it uses these assignments to refine the model M1,

by minimizing a cost function expressed in terms of αi and βi (Maximization step). Notice that the final

result is a pixel-resolution probability map of tampering, and this is an important contribution in that

tampering localization is always more difficult than tampering detection.

For interlaced video, in which frames are created by simply weaving together the odd and even fields,

the presence of rapidly moving objects introduces the combing artifact, already mentioned in Section

III-B1. Since the magnitude of this effect depends on the amount of motion between fields, authors use

incoherence between inter-field and inter-frame motion to reveal tampering. Both techniques in [56] allow
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the localization of tampering in time (frame) as well in space (region of the frame). Furthermore, both

algorithms can be adapted to detect frame rate conversion. Since compression partially removes inter-

pixel correlations this approach is mostly suited for medium/high quality video. For interlaced video,

instead, compression does not seem to hinder performance.

We argue that much has still to be discovered in coding-based doctoring detection for videos. As a

matter of fact, video coding algorithms are much more complex than JPEG compression. This makes

detection of introduced artifacts more difficult, since mathematical models are not easy to derive. However,

this should also motivate researchers to look for traces left by such video coding schemes, which are

likely to be much stronger compared to the case of images, due to the aggressive compression that it is

typically performed.

C. Detection based on inconsistencies in content

As already stated in Section II, it is very difficult to understand whether the geometry or the phys-

ical/lighting properties of a scene are consistent. In particular, it is very hard to do so unless some

assistance from the analyst is provided. If this effort from the analyst may be affordable when a single

image is to be checked, it would be prohibitive to check geometric consistencies in video on a frame-by-

frame basis. Existing works usually exploit phenomena connected to motion in order to detect editing.

So far, two approaches have been proposed: i) the one in [73], based on artifacts introduced by video

inpainting, ii) the one in [74], that reveals inconsistencies in the motion of objects in free-flight.

Going into details, Zhang et al. [73] propose a method to detect video inpainting, which is a technique

that automatically replaces some missing content in a frame by reproducing surrounding textures. Though

originally developed for still images, this technique is also applicable frame-by-frame to video signals

introducing annoying artifacts, known as “ghost shadows”, due to temporal discontinuity of the inpainted

area. Authors observe that these artifacts are well exposed in the Accumulative Difference Image (ADI).

This is obtained by comparing a reference image with every subsequent frame and using each pixel

as a counter, which is incremented if the current frame differs significantly from the reference image.

Unfortunately, ADI would also detect any moving object. Therefore, the authors propose a method to

automatically detect the presence of these artifacts, provided that the removed object was a moving

object. The authors point out that only detection of forgery is possible, and no localization is provided.

Experiments, performed on just a few real world video sequences, show that the method is robust against

strong MPEG compression.

Before moving to the work in [74], a remark must be made: if detecting geometrical inconsistencies
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in an inter-frame fashion is difficult, it is perhaps more difficult to detect physical inconsistencies, since

this requires to mix together tracking techniques and complex physical models to detect unexpected

phenomena. Nevertheless, restricting the analysis to some specific scenarios, it is possible to develop

ad-hoc techniques capable of such a task. This is what has been done by Conotter et al. in [74]: an

algorithm is proposed to detect physically implausible trajectories of objects in video sequences. The

key idea is to explicitly model the three-dimensional parabolic trajectory of objects in free-flight (e.g. a

ball flying towards the basket) and the corresponding two-dimensional projection into the image plane.

The flying object is extracted from video, compensating camera motion if needed, then the motion in the

3D space is estimated from 2D frames and compared to a plausible trajectory. If the deviation between

observed and expected trajectories is large, the object is classified as tampered. Although analyzing a

very specific scenario, the method inherits all the advantages that characterize forensic techniques based

on physical and geometrical aspects; for example, performance does not depend on compression and

video quality.

D. Copy-move detection in videos

Copy and copy-move attacks on images have been considered in order to prevent the illegal duplication

or reusing of images. More precisely, these approaches check for similarities between pairs of images

that are not supposed to be related (since they have been taken in different time/places or different origins

are claimed). However, it is possible to verify that different images are copies of the same visual content

checking the similarity between their features [75]. Many approaches for copy detection in images are

based on SIFT, which allows detecting the presence of the same objects in the acquired scene [76].

Copy-move attacks are defined for video both as intra and inter-frame techniques. An intra-frame copy-

move attack is conceptually identical to the one for still images, and consists in replicating a portion

of the frame in the frame itself (the goal is usually to hide or replicate some object). An inter-frame

copy-move, instead, consists in replacing some frames with a copy of previous ones, usually to hide

something that entered the scene in the original video. To this end, partial inter-frame attacks can be

defined, in which only a portion of a group of frames is substituted with the same part coming from

a selected frame. To the best of our knowledge, there is only one work authored by Wang and Farid

[77] that targets copy-move detection directly in video. The method uses a kind of divide-and-conquer

approach: the whole video is split in subparts, and different kinds of correlation coefficients are computed

in order to highlight similarities between different parts of the sequence. In the same work, a method for

detecting region duplication, both for the inter-frame and intra-frame case, is defined. Results are good
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(accuracy above 90%) for a stationary camera, and still interesting for a moving camera setting (approx.

accuracy 80%). MPEG compression does not hinder performance.

E. Anti-forensic strategies

For what concerns video, only a work has been proposed by Stamm et al. [78] to fool one of the forensic

techniques described in [4] (see Section V-B), specifically the one based on GOP desynchronization.

Authors of [78] observe that the simplest way to make the forgery undetectable is to raise prediction

errors of all frames to the values assumed in the spikes, so that peaks in the error due to desynchronization

will be no longer distinguishable. In order to raise prediction errors, they alter the encoder so that a certain

number of motion vectors will be set to zero even if they were not null. The quality of the video will not

be reduced, since the error is stored during encoding and compensated before reproduction; furthermore,

authors select which vector will be set to zero starting from those that are already small, so that the

introduced error is spread on many vectors, and introduced modification is harder to detect. Authors also

point out that the other detection technique proposed by Wang et al. in the same work [4] can be attacked

using counter forensic methods designed for still images, in particular those that hide JPEG quantization

effects [79].

For what concerns camera-artifacts based methods, there is a straightforward counter forensic method,

which also applies to images: it simply consists in scaling the doctored video (even by a very low factor)

and then re-encode it. Since rescaling requires an interpolation step, noise artifacts will be practically

erased; furthermore, the correlation operator used in Equation 4 is performed element-wise, so frames

having different sizes cannot be even compared directly.

F. Video Phylogeny

Two videos are termed “near-duplicate” if they share the same content but they show differences in

resolution, size, colors and so on. If we have a set of near duplicate videos, like the one in Figure 8,

it would be interesting to understand if one of them has been used to generate the others, and draw

a graph of causal relationships between all these contents. This problem, which was firstly posed for

images under the name “image phylogeny” [80] or “image dependencies” [81], is being studied on video

under the name of “video phylogeny”. The first (and by now the only) work on video phylogeny is the

one by Dias et al. [82].

Given two near-duplicate and frame-synchronized videos VA and VB, given a fixed set T~β
of possible
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Fig. 8: An example of near-duplicate frames of the a video.

video transformations parameterized by ~β, the dissimilarity between VA and VB is defined as

dVA,VB
= min

~β

∣

∣VB − T~β
(VA)

∣

∣

L

where L is a comparison method. The best array of parameter ~β is searched by choosing a set of

analogous frames from VA and VB , extracting robust interest points from frames and finding the affine

warping between these points. Using this definition of dissimilarity, and for a chosen number f of frames

taken from N near-duplicate videos, authors build f dissimilarity matrices, and each of them give the

dissimilarity between all couples of videos evaluated on that frame. Instead of directly deriving the video

phylogeny tree from these matrices, authors found more convenient to use the image phylogeny approach

[80] to build f phylogeny trees, one for each set of frames, and then use a tree reconciliation algorithm

that fuses information coming from these trees into the final video phylogeny tree (in our example,

the phylogeny tree resulting from Figure 8 would be as in Figure 9). Experiments carried by authors

F

E

C

D

A B

Fig. 9: The ground-truth phylogeny tree for the near-duplicate set in Figure 8.
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show that the method is good (accuracy ∼ 90%) in finding the root of the tree (corresponding to the

video originating the whole set) and also correctly classifies leafs 77.7% of the times, but the overall

performances in terms of correctly positioned edges are still poor (∼ 65.8%).

VI. CONCLUSIONS AND FUTURE WORKS

As it has been shown in the previous sections, video forensics is nowadays a hot research issue in the

signal processing world opening new problems and investigation threads.

Despite several techniques have been mutuated from image forensics, video signals pose new challenges

in the forensic application world because of the amount and the complexity of data to be processed and

the wide employment of compression techniques, which may alter or erase footprints left by previous

signal modifications.

This paper presented an overview of the state-of-the-art in video forensic techniques, underlying the

future trends in this research field. More precisely, it is possible to divide video forensic techniques into

three macro-areas concerning the acquisition, the compression, and the editing of the video signals. These

three operations can be combined with different orders and iterated multiple times in the generation of the

final multimedia signal. Current results show that it is possible to reconstruct simple processing chains

(i.e., acquisition followed by compression, double compression, etc...) under the assumption that each

processing step does not introduce an excessive amount of distortion on the signal. This proves to be

reasonable since a severe deterioration of the quality of the signal would make it useless.

The investigation activity on video forensics is still an ongoing process since the complexity of video

editing possibilities requires additional research efforts to make these techniques more robust.

Future research has still to investigate more complex processing chains where each operation on the

signal may be iterated multiple times. These scenarios prove to be more realistic since the possibility of

transmitting and distributing video content over the internet favors the diffusion of copies of the same

multimedia content which has been edited multiple times.

Moreover, anti-forensic and counter-antiforensic strategies prove to be an interesting issue in order to

identify those techniques that could be enacted by a malicious user in order to hide alterations on the

signal and how to prevent them.

Future applications will include forensics strategies into existing multimedia applications in order to,

e.g., provide the devices with built-in validating functionalities.
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