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Abstract—Compressed sensing (CS) is an innovative
technique allowing to represent signals through a small
number of their linear projections. Hence, CS can be
thought of as a natural candidate for acquisition of mul-
tidimensional signals, as the amount of data acquired and
processed by conventional sensors could create problems in
terms of computational complexity. In this paper we pro-
pose a framework for the acquisition and reconstruction
of multidimensional correlated signals. The approach is
general and can be applied to D dimensional signals, even
if the algorithms we propose to practically implement such
architectures apply to 2D and 3D signals. The proposed
architectures employ iterative local signal reconstruction
based on a hybrid transform/prediction correlation model,
coupled with a proper initialization strategy.

Index Terms—Compressed Sensing, Multidimensional
Signals, Linear Predictor, Image Scanning, Remote Sens-
ing, Hyperspectral Imaging.

I. INTRODUCTION

Compressed Sensing (CS) [1], [2] has recently
emerged as an efficient technique for sampling a sig-
nal with fewer coefficients than the number dictated
by classical Shannon/Nyquist theory. The assumption
underlying this approach is that the signal to be sampled
is sparse or at least “compressible”, i.e., it must have
a concise representation in a convenient basis. In CS,
sampling is performed by taking a number of linear
projections of the signal onto pseudorandom sequences.
Therefore, the acquisition presents appealing properties
such as low encoding complexity, since the basis in
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which the signal is sparse does not need to be com-
puted, and universality, since the sensing is blind to the
source distribution. Reconstruction of a signal from its
projections can be done e.g. using linear programming
[2], with a complexity that is O(N3), with N the number
of samples to be recovered.

Plenty of applications are possible, ranging from
image and video to biomedical and spectral imaging,
just to mention a few. A single-pixel camera has been
demonstrated in [3], [4], which uses a single detector
to sequentially acquire random linear measurements of a
scene. This kind of design is very interesting for imaging
at wavelength outside the visible light, where manufac-
turing detectors is very expensive. CS could be used
to design cheaper sensors, or sensors providing better
resolution for an equal number of detectors. E.g., in [5]
an architecture is proposed based on Hadamard imaging,
coupled with reconstruction techniques borrowed from
CS.

The acquisition of multidimensional signals could
benefit from CS due to its low-complexity sampling
process and the reduction of the number of samples
to be taken, processed and transmitted. In this case, a
serious problem arises regarding the computational com-
plexity of the reconstruction process. The conventional
approach of measuring the signal along all dimensions
at once leads to very large N , making the reconstruction
computationally intractable. The simplest solution is to
take separate sets of measurements grouping subsets of
dimensions and to perform separate reconstructions. For
example, an hyperspectral image could be acquired in
the spatial or spectral dimensions. However, this “sepa-
rate” approach does not yield satisfactory performance
in terms of mean-squared error (MSE), as it neglects
the overall correlation among every dimension. In the
example above, the spatial CS approach completely ne-
glects the spectral correlation, and the spectral approach
neglects the spatial one.

The authors of [6] showed a way to recast a multidi-
mensional CS problem to a one-dimensional one, by the
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means of Kronecker products of sensing and sparsity
matrices. The problem of this approach is that the
dimensionality of the CS problem to be solved rapidly
grows as the product of the sizes of each dimension. The
authors of [7] apply CS to blocks of images considering
wavelets as sparsity basis. Reconstruction algorithms for
multidimensional signals have also been proposed in [8],
[9], [10] for hyperspectral images and multiview video.

In this paper, we propose a generic framework for
CS acquisition and reconstruction of multidimensional
signals. Then, we propose architectures for 2D and
3D signals. The framework is general since the prin-
ciples behind the architectures we propose can be easily
extended to D-dimensional signals, with arbitrary D.
Moreover, the proposed architectures can be practically
implemented following the algorithms we devise for
each architecture. The architectures we propose can be
applied to several scenarios we describe in the following
paragraphs.

The first architecture describes a practical implemen-
tation for devices that acquire 2D visual information
through progressive scanning [11]. These devices are
equipped with a one-dimensional array of detectors, and
a 2D image is obtained via the repeated use of the array
over different slices of the 2D object to be imaged. This
is a very important scenario, which encompasses many
applications. Amongst others, it is worth mentioning
at least two examples, which we will focus on in the
respective sections of this paper. The first is given
by flatbed scanners, where each line of the image is
acquired by a 1D optical sensor moving in the orthogonal
direction. The second one is represented by airborne and
spaceborne imagers of the pushbroom type for remote
sensing applications. In this case, the 1D sensor is carried
on a flying platform such as an airplane or satellite; the
sensor looks down at the Earth, and acquires a line-by-
line scan of the underlying scene, while each line is
oriented in the across-track direction, and the platform
flight moves the sensor from one line to the next one.
These applications, as well as several other ones, can
clearly benefit from CS. Devices similar in principle to
the Single Pixel Camera can be applied to progressive
scanning, where a 1D micromirror array can be used
to directly sense lines in the CS format. In the case of
the remote sensing imaging system, CS can lead to a
simpler and cheaper system, which uses a single detector
and produces a reduced number of sampling. Detectors
can be costly in the wavelengths outside the visible
spectrum, and the reduced number of samples allows to
implement simpler onboard processing systems. For the
flatbed scanner, CS would be extremely useful in order to
develop a scanner of small size, as the CS sensor needs

not be of the same physical size as the document being
scanned. Moreover, in both cases, processing and data
handling would be greatly reduced, which is important in
order to reduce power consumption in the remote sensing
case, and in order to enable application to small-sized
low-power devices in the flatbed scanner case.

The second scenario is the acquisition of hyperspectral
images. Satellite imaging is a highly effective tool in
a variety of scientific and engineering contexts because
of the information it provides about the nature of the
materials being imaged. While traditional digital imaging
techniques produce images with scalar values associated
with each pixel location, in multi- and hyperspectral
images these values are replaced with a vector containing
the spectral information associated to that spatial loca-
tion. The resulting image is therefore threedimensional
(two spatial and one spectral dimensions), and spectral
resolution is very important for several applications,
including classification, anomaly detection, and spectral
unmixing. Despite the huge potential, however, many
modern satellite imagers face a limiting trade-off be-
tween spatial and spectral resolution. In fact, the total
number of samples that can be acquired is constrained
by the size of the detector array. This limits the use-
fulness and cost-effectiveness of spectral imaging for
many applications. This scenario intends to investigate
the possibility of overcoming this limitation by means
of a new imaging architecture based on CS, that is, an
architecture in which the acquisition system does not
detect single pixels of the scene, but rather a small
number of measurements. Reconstruction of the image
is going to be performed at the ground station, and all
subsequent processing steps (radiometric and geometric
calibration, orthorectification, and applications) would be
performed on the reconstructed image. In this paper we
consider several possible architectures that are based on
the constraints imposed by real-world spectral imaging
systems. A first architecture is derived from 2D imag-
ing systems, and is based on the concept of a sensor
that acquires the image as a whole, both spatially and
spectrally. In this case, the single-pixel camera paradigm
is still applicable, provided that this single pixel is
actually a single-pixel spectral imaging device, i.e. one
that separates the spectral components of the incoming
light into several different wavelengths, in such a way
that the integration of spatially modulated light can be
done individually in each spectral channel, yielding a
different set of linear measurements for each wavelength.
The second architecture mimics spectral imagers of the
pushbroom type. These scanners have a 2D sensor, but
the two dimensions correspond to the spectral (wave-
length) dimension and one spatial dimension, i.e. the
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direction perpendicular to the flight path. At a given
flight position, the scanner acquires at once one spatial-
spectral slice, i.e. one line of the image with all its
spectral components; as the satellite or airplane moves
one, another spatial-spectral slice is acquired, and this
process is repeated until the desired image length has
been obtained. In this paper we also consider a CS
imaging architecture based on this paradigm. We assume
that the single-pixel concept is applied to spectral slices,
i.e. there is a diffractive element before the single pixel,
so that the spatial-spectral slice can be modulated before
being sensed by the single detector. It is worth noticing
that these architectures would yield significant benefits
to hyperspectral imaging systems. They would allow to
reduce the cost and size of the sensor itself, for the same
spatial and spectral resolution, thanks to the reduced
number of detectors. Moreover, they would allow to
greatly simplify onboard data handling, since the com-
pressed acquisition process would generate much less
data than a conventional system, allowing to employ less
memory and computing power, eliminating the need of
onboard compression altogether, and eventually leading
to reduced power consumption, which is a critical aspect
of any remote sensing mission. Despite the very appeal-
ing advantages, however, these acquisition architectures
entail a reconstruction problem of huge size. Indeed,
optimal reconstruction must exploit signal sparsity (and
hence correlation) in all dimensions, requiring to solve
the reconstruction problem at once employing a three-
dimensional transform as sparsity model. This problem
has huge computational complexity, and becomes infea-
sible for rather small image sizes, highlighting the need
of techniques that can achieve near-optimal performance
with a reasonable computational complexity.

In this paper we address these scenarios, and tackle
the reconstruction problem for 2D and 3D signals. In
particular, for 2D images, we propose a simple pro-
gressive acquisition algorithm, where rows are acquired
independently of each other, but the reconstruction is
performed jointly over all rows. Joint reconstruction is
achieved through an iterative algorithm that correlates
different rows through linear prediction filters, instead of
taking a multidimensional transform as sparsity domain.
Prediction filters allow to exploit correlation in both hor-
izontal and vertical dimensions, even if the acquisition
is performed in one direction only. The main concept
is to exploit correlation along the vertical direction by
iteratively predicting each line and reconstructing the
prediction error only, which is more compressible than
the line itself. Results show that few iterations of the pro-
posed algorithm suffice to significantly improve the MSE
of the reconstruction, allowing to obtain high-quality

reconstruction results with feasible complexity. On the
other hand, for 3D images we have more degrees of free-
dom than in the 2D case. For example, in [12] it has been
shown that 2D spatial CS (i.e., every spectral channel
is measured independently) has better performance than
spectral CS (in which every spectral vector is measured
independently), just because the former approach models
correlation in two dimensions, and the latter in only one.
However, it should be noted that even spatial CS achieves
an MSE that is not small enough for many hyperspectral
applications, as the relative error is around ±5% for
sensible values of the number of acquired samples. The
key idea is that, in order to improve reconstruction qual-
ity, correlation must be exploited in all three dimensions
of the spectral cube. To achieve this goal, we propose
several approaches, combining an accurate modelling of
the spatial-spectral correlations, with the low complexity
of sequential, as opposed to fully joint, reconstruction. In
particular, instead of modelling the correlation by means
of a three-dimensional transform, and hence attempting
to reconstruct the hyperspectral cube as a whole, we
employ a linear correlation model of the hyperspectral
image, and iteratively apply this model band by band,
improving the quality of the reconstructed image. An
alternative algorithm applies the model to the spectral
rows of the image, iterating along rows.

Since the quality of the reconstructed signal depends
on two factors: i) the initialization of the iterative proce-
dure and ii) the accuracy of the linear prediction filters,
we consider different initialization strategies based either
on a 2D CS approach or on a simplified 3D strategy [13]
and test different prediction filters looking for the one
providing better performance.

This paper is organized as follows. Section II contains
the background of this work, notations and definitions.
In section III we describe in detail the algorithms we
propose. In section IV we show some results obtained
by simulations and we conclude our work in section V.

II. BACKGROUND

A. Notation and definitions

We denote (column-) vectors and matrices by lower-
case and uppercase boldface characters, respectively. The
(m,n)-th element of a matrix A is (A)m,n. The m-th
row of matrix A is (A)m. The n-th element of a vector
v is (v)n. The transpose of a matrix A is AT.

The stack operator vec {A} denotes the column vector
obtained by stacking the columns of A on top of each
other, from left to right.

We denote 3D variables by calligraphic letters, e.g.
Q. X = Qi,:,: is the matrix obtained by fixing index i
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in the first dimension of Q. Y = Q:,j,: is the matrix
obtained by fixing index j in the second dimension of
Q. Z = Q:,:,k is the matrix obtained by fixing index k
in the third dimension of Q.

The notation ‖v‖`0 denotes the number of nonzero
elements of vector v. The notation ‖v‖`1 denotes the
`1-norm of the vector v and is defined as ‖v‖`1 ,∑

i |(v)i| . The notation ‖v‖`2 denotes the Euclidean
norm of the vector v and is defined as ‖v‖`2 ,√∑

i |(v)i|
2 . The notation a ∼ N (µ, σ2) denotes a

Gaussian random variable a with mean µ and variance
σ2 .

The notation A ⊗ B = [(A)ijB] (written in block
matrix form, where the pair i, j spans the range of
indexes of A) denotes the Kronecker product of A times
B

B. Compressed Sensing

In the standard CS framework, introduced in [14], a
signal x ∈ RN×1 which has a sparse representation in
some basis Ψ ∈ RN×N , i.e:

x = Ψθ, ‖θ‖`0 = K, K � N

can be recovered by a smaller vector y ∈ RM×1,
K < M < N , of linear measurements y = Φx,
where Φ ∈ RM×N is the sensing matrix. The optimum
solution, requiring at least M = K + 1 measurements,
would be

θ̂ = argmin
θ
‖θ‖`0 s.t. ΦΨθ = y .

Since the `0 norm minimization is a NP-hard problem,
one can resort to a linear programming reconstruction
by minimizing the `1 norm

θ̂ = argmin
θ
‖θ‖`1 s.t. ΦΨθ = y , (1)

provided that M is large enough (∼ K log(N/K)).
The same algorithm holds for signals which are not

exactly sparse, but rather compressible, meaning that
they (or their representation θ in basis Ψ) can be
expressed only by K significant coefficients, while the
remaining ones are (close to) zero.

When the measurements are noisy the `1 minimization
with relaxed constraints is used for reconstruction:

θ̂ = argmin
θ
‖θ‖`1 s.t. ‖ΦΨθ − y‖`2 < ε , (2)

where ε bounds the amount of noise in the data. It has
been shown in [15] that extracting the elements of Φ
at random from a Gaussian or Rademacher distribution
(i.e., ±1 with the same probability), and, in general,
from any Sub-Gaussian distribution, allows a correct
reconstruction with overwhelming probability.

III. PROPOSED ARCHITECTURES

In this paper, we propose a general framework for
multidimensional signals, allowing to exploit the low
complexity and universality of CS in the acquisition pro-
cess, with a manageable complexity of the reconstruction
algorithm. Refer to Figure 1, which depicts the canonical
approach of considering the multidimensional signal as
a single signal (1(a)) and the architecture proposed in
this paper (1(b)), based on progressive scanning and
iterative reconstruction. Multidimensional signals are
often captured in a progressive way, in a sequence of
acquisitions corresponding to subsets of the coordinates.
The principle is to acquire separately each signal di-
mension (or subsets of dimensions, considering them as
single signals). Then, instead of reconstructing the whole
set of measurements at once, as done with Kronecker
Compressed Sensing [13], an iterative algorithm is ap-
plied to dimensions not involved in the measurement
process. At each iteration, a linear prediction filter is
used to aid the reconstruction process, measuring the
prediction and reconstructing the prediction error only,
which is supposed to be more compressible than the
original signal. For example, if an hyperspectral image is
acquired band by band, the iterative algorithm is applied
on wavelength dimension. At each iteration, each band is
predicted, acquired with the same sensing matrix used to
acquire that band, the measurement of the predicted band
is subtracted from the measurement of the band itself and
the CS reconstruction is applied to this “measurement
prediction error”, only.

In the following, we specialize the approach to 2D and
3D signals. We propose novel architectures for 2D and
3D acquisition and reconstruction, and the corresponding
algorithms implementing the proposed architectures.

A. 2D signals

According to typical progressive scanning approaches,
like the ones used by commercial flatbed scanners or
by remote sensing systems acquiring environmental pic-
tures, an image is acquired by sensing NCOL pixels of
each row in a progressive fashion, until NROW rows
are acquired. Hence, the acquired image will result as
a matrix of pixels of size NROW × NCOL, which will
be compressed (and, accordingly, decoded) using a con-
ventional technique. This process requires the acquisition
(and processing) of NROWNCOL pixels. When NROW and
NCOL are large, processing of this huge amount of data
may represent an issue, especially when dealing with low
cost or low complexity devices.

For this reason, we propose a very simple acquisition
scheme, based on CS linear measurements taken on
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Fig. 1. Block Diagram of an architecture processing the whole signal (a) and of the novel iterative architecture (b).

Algorithm 1 Acquisition algorithm for 2D signals
Require: the image X, M
Ensure: the measurement matrix Y

1: for i = 1 to NROW do
2: Draw Φi of size M × NCOL s.t. (Φi)kj ∼
N (0, 1/M)

3: (Y)Ti ← Φi(X)Ti
4: end for
5: return Y

each row, without any further processing. This reduces
the amount of data to be acquired and processed. The
reconstruction algorithm relies on linear prediction filters
in order to improve the quality of CS reconstruction,
by correlating the measurements of adjacent rows in
order to exploit their statistical dependencies during the
reconstruction stage, largely improving over individual
separate reconstruction.

1) Acquisition: The image acquisition algorithm we
propose, labelled as Algorithm 1, is very simple and
consists in taking linear measurements of each row of
the image in a progressive fashion. To minimize the risks
of failures in the reconstruction side, a different sensing
matrix Φ is drawn for each row.

The image to be measured can be divided into NROW

rows. For each row, M linear measurements are taken,
where M < NCOL and NCOL is the desired vertical
resolution.

In summary, the scene we wish to acquire is repre-
sented by the matrix X ∈ RNROW×NCOL . For each row of
X, we draw a matrix Φi ∈ RM×NCOL whose elements
are Gaussian i.i.d. such that (Φi)kj ∼ N (0, 1/M), with
k = 1, . . . ,M and j = 1, . . . , NCOL. Then, we take M
linear measurements of (X)i which will form the rows
of the matrix of measurements Y ∈ RNROW×M , namely

(Y)Ti = Φi(X)Ti

A more complex algorithm, based on Compressed
Sensing and able to capture spatial correlation in both

directions (horizontal and vertical), could acquire in a
single shot the whole image in a single measurement
vector of length M ′.

y′ = Φ′vec {X} ,

where vec {X} ∈ RNROWNCOL×1, Φ′ ∈ RM ′×NROWNCOL ,
y′ ∈ RM ′×1 .

Even if this algorithm performed better than the one
proposed here since the reconstruction would optimally
exploit the correlation in 2 dimensions through a 2D
transform matrix, it would require the solution of (1)
for a vector of length N = NROWNCOL. For realistic
values of NROW and NCOL, the solution of (1) would
be impossible to perform in reasonable time. On the
other hand, the proposed approach splits the problem into
smaller (and hence tractable) subproblems. However,
in doing so, it does not neglect the spatial correlation
in vertical direction, which is modelled and employed
in the reconstruction process through the use of linear
prediction filters.

2) Reconstruction: A trivial reconstruction algorithm
based on the acquisition scheme described in section
III-A1 would simply apply the `1 reconstruction (1) to
recover separately each line of X given the correspond-
ing Φi and (Y)i.

Instead, we propose an algorithm which iteratively
improves the current estimate of X by modelling statis-
tical dependencies between adjacent lines. We label this
Algorithm 2. We count the iterations using the index n.
The estimation of X at iteration n is denoted with X(n).

In particular, the algorithm evaluates a first image re-
construction using some initialization strategy z(Y,Φ)
(iteration n = 0). Then, the iterations start. The in-
tuition is as follows. For each row, if we are able to
reliably predict it using the reconstruction of the upper
and lower lines at previous iteration with some linear
prediction filter P(·, ·), obtaining xP, we can compute
the “measurement” yP of this prediction by applying
matrix Φi to xP. Then we calculate the prediction error
in the linear measurement domain ey by subtracting this
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Algorithm 2 Reconstruction algorithm for 2D signals
Require: the measurement matrix Y, the set of Φi

Ensure: the estimation X̂
1: n← 0
2: X(n) ← z(Y,Φ)
3: repeat
4: n← n+ 1
5: for i = 1 to NROW do
6: if i = 1 or i = NROW then
7: xP ← (X(n−1))Ti
8: else
9: xP ← P

(
(X(n−1))i−1, (X

(n−1))i+1

)T
10: end if
11: yP ← ΦixP

12: ey ← (Y)Ti − yP

13: eθ ← argmine ‖e‖`1 s.t. ΦiΨe = ey
14: ex ← Ψeθ
15: (X(n))Ti ← (xP + ex)

T

16: end for
17: until Convergence is reached
18: return X(n)

“predicted measurement” from the original measurement
row (Y)i. The error ey will be then reconstructed using
(1), leading to a prediction error on the signal samples
equal to ex. Adding ex to xP provides a new estimate
of x. Since the new estimate is more accurate than the
old one, the process can be repeated by estimating a
new, more accurate prediction. If the prediction of the
row is accurate enough, the prediction error is going
to be more compressible than the original vector. As a
consequence, for an equal number of measurements, the
`1 reconstruction will yield lower MSE. We support this
claim by numerical simulations, whose results are shown
in Section IV-A2.

Different initialization strategies are described in sec-
tion III-D, while prediction filters for 2D signals are de-
scribed in section III-C1. Since (1) is a convex problem
and the prediction filters we test are linear, the overall
algorithm can be considered as a projection onto convex
sets. This ensures the convergence of the algorithm to
the intersection of the constraint sets (if any) [16].

B. 3D signals

As has been said, acquisition of 3D hyperspectral
images can be performed in different ways. Common
to the various approaches are the signal dimensions,
which determine the spatial and spectral resolution of
the imaging system. The spectral resolution is given
by the number of individual wavelengths NBAND that

Algorithm 3 Acquisition algorithm for 3D signals
Require: the hyperspectral image F , M
Ensure: the measurement matrix Y

1: for i = 1 to NBAND do
2: Draw Φi of size M ×NROWNCOL s.t. (Φi)kj ∼
N (0, 1/M)

3: Fi = F:,:,i

4: (Y)Ti ← Φivec
{
Fi
}

5: end for
6: return Y

the system is able to discriminate. In one possible ap-
proach, each wavelength is sensed individually, leading
to different measurements for each spectral channel. In
another approach, the system measures spatial-spectral
slices individually, and different wavelengths are sep-
arated during the CS reconstruction process. In both
cases, we assume that the user intends to acquire or
reconstruct each spectral channel with a resolution of
NROW × NCOL pixels. In both cases, we can represent
the original data as a cube with two spatial and one
spectral dimension, and interpret them either as a col-
lection of NBAND spectral channels, or as a collection of
NROW spatial-spectral slices. In the following we take
the first approach, and consider an hyperspectral image
F ∈ RNROW×NCOL×NBAND as a collection of NBAND spectral
channels Fi = F:,:,i, i = 1, . . . , NBAND, each consisting
of a NROW ×NCOL frame, i.e.

F = [F1,F2, . . . ,FNBAND ] .

1) Acquisition: According to Algorithm 3, for each
spectral channel a collection yi ∈ RM×1 of M mea-
surements is acquired as

yi = Φivec
{
Fi
}
,

where each sensing matrix Φi ∈ RM×NROWNCOL is taken
as Gaussian i.i.d. and M < NROWNCOL. For simplicity,
M is taken as the same value for all spectral channels.
The measurements of all channels are then collected in
the matrix Y. This setting is amenable to separate spatial
reconstruction of each spectral channel using a two-
dimensional transform as sparsity domain. However, we
expect that separate spatial reconstruction does not yield
a sufficiently accurate estimate of the original image,
since it lacks modelling of spectral correlation, which is
very strong for hyperspectral images.

2) Reconstruction: The idea behind the iterative re-
construction is that, as in the 2D case, if we can obtain
a prediction of a spectral channel Fi, e.g. applying the
operator P(·, ·) to channels Fi−1 and Fi+1 of some initial
reconstruction, then we can cancel out the contribution of
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this predictor from the measurements of Fi, and recon-
struct only the prediction error instead of the full spectral
channel. If the prediction filter is accurate, the prediction
error is expected to be more compressible than the full
signal, and the reconstruction will yield better results
as shown in Section IV-A2. In particular, the iterative
procedure starts from the initial reconstruction F (0) of
all spectral channels. At this stage, we do not specify
how we generate such initial reconstruction, which is
generically denoted by z(Y,Φ) to indicate that it is
computed from random projections Y and measurement
matrices Φ. Then, for every channel we first obtain
FP = P

(
F (n−1)
:,:,i−1 ,F

(n−1)
:,:,i+1

)
. After that, we compute

prediction error measurements as ey = yi−Φivec {FP},
and we use ey to reconstruct the i-th channel summing
the CS reconstruction of ey to FP. Ψ2D is the 2D
sparsity transform matrix. If θ = ΨROWXΨT

COL is the
sparse representation of the 2D signal X for some ΨROW

and ΨCOL, then vec {X} = Ψ2Dvec {θ}, where

Ψ2D =
(
ΨT

COL ⊗ΨT
ROW

)
. (3)

This process is performed on all bands, and is iterated
until convergence. Again, it is worth noting that since (1)
is a convex problem and the prediction filter is linear, this
algorithm can be cast in terms of projections onto convex
sets [16], guaranteeing convergence to the intersection of
the constraint sets (if not empty). The proposed iterative
reconstruction scheme is shown in Algorithm 4.

Remark 3.1: The proposed acquisition and recon-
struction architecture for 3D signals can be applied in
any of the 3 dimensions. For example, the acquisition
can be performed for each spectral row (instead of spec-
tral channels), and the reconstruction can be performed
iterating over rows. The respective algorithms can be
obtained by Algorithms 3 and 4 by properly rotating
indexes and dimensions.

C. Linear Prediction Filters

1) Row prediction filters for 2D signals: We consider
here several linear prediction filters P ((X)i−1, (X)i+1)
for 2D signals, looking for the one providing fastest
convergence and best MSE performance. We denote as
xP the result of the prediction.

Prediction filter labelled as P1 estimates the current1

line to be predicted as the average of the upper and lower
lines:

xP =
1

2
((X)i−1 + (X)i+1)

T

1Here and in the following equations, we omit the index (n)
denoting current iteration

Algorithm 4 Reconstruction algorithm for 3D signals
Require: the measurement matrix Y, the set of Φi

Ensure: the estimation F̂
1: n← 0
2: F (n) = z(Y,Φ)
3: repeat
4: n← n+ 1
5: for i = 1 to NBAND do
6: if i = 1 then
7: FP ← P

(
·,F (n−1)

:,:,i+1

)
8: else if i = NBAND then
9: FP ← P

(
F (n−1)
:,:,i−1 , ·

)
10: else
11: FP ← P

(
F (n−1)
:,:,i−1 ,F

(n−1)
:,:,i+1

)
12: end if
13: yP ← Φivec {FP}
14: ey ← (Y)Ti − yP

15: eθ ← argmine ‖e‖`1 s.t. ΦiΨ2De = ey
16: eF ← Ψ2Deθ
17: vec

{
F (n)
:,:,i

}
← (vec {FP}+ eF)

18: end for
19: until Convergence is reached
20: return F (n)

Prediction filter labelled as P2 predicts each pixel of
current line as the average of adjacent pixels of upper
and lower lines

(xP)j =
1

6
[(X)i−1,j−1 + (X)i−1,j + (X)i−1,j+1

+ (X)i+1,j−1 + (X)i+1,j + (X)i+1,j+1] .

Finally, prediction filter labelled as P3 predicts each
pixel of current line as the weighted average of adjacent
pixels of upper and lower lines. Weights depend on the
distance from the pixel to be predicted, namely

(xP)j = [a(X)i−1,j−1 + b(X)i−1,j + a(X)i−1,j+1

+ a(X)i+1,j−1 + b(X)i+1,j + a(X)i+1,j+1] ,

with a = 2−
√
2

4 and b =
√
2−1
2 .

In section IV-A, we test the performance of the linear
prediction filters P(·, ·) and of the overall algorithm.

2) Band prediction filter for 3D signals: In the fol-
lowing we describe the linear prediction stage P(·, ·)
employed in Algorithm 4. The prediction filter operates
in a blockwise fashion. Prediction of spectral channel i
is performed dividing the channel into non-overlapping
spatial blocks of size 16 × 16 pixels. Each block is
predicted from the spatially co-located block in a ref-
erence spectral channel l (typically the previous or next
band). Focusing on a single 16 × 16 block, we denote
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by fm,n,i the pixel of an hyperspectral image in m-th
line, n-th pixel, and i-th band, with m,n = 0, . . . , 15,
and i = 0, . . . , NBAND − 1.

Samples fm,n,i belonging to the block are predicted
from the samples f̂m,n,l of the reconstructed reference
band. In particular, a least-squares estimator [17] is
computed over the block. First, a gain factor is calculated
as α = αN

αD
, with αN =

∑
m,n

[(f̂m,n,l − µl)(f̂m,n,i − µi)]

and αD =
∑
m,n

[(f̂m,n,l − µl)
2]. µi and µl are the

average values of the co-located reconstructed blocks
in bands Fi and Fl. Then the predicted values within
the block are computed for all m,n = 0, . . . , 15 as
f̃
(l)
m,n,i = µi + α(f̂m,n,l − µl).

This one-step prediction filter is employed in such a
way as to take full advantage of the correlation between
bands. In particular, the current band is very correlated
with its two adjacent bands, while the correlation tends
to decrease moving further away. Eventually, we define
a predictor for a block in the current band Fi as the
average of two predictors obtained from the previous and
the next band. f̃m,n,i = (f̃

(i−1)
m,n,i + f̃

(i+1)
m,n,i )/2. Hence, the

prediction filter P (·, ·) applies this predictor to the two
adjacent reconstructed spectral channels in a blockwise
manner as described above, yielding a predicted spectral
channel FP. Exceptions are made for the first and last
band, where only the available previous/next band is used
for the prediction.

D. Initialization Strategies

1) Separate reconstruction: Separate reconstruction
represents the trivial way for reconstructing signal ac-
quired with progressive algorithms like Algorithm 1
or Algorithm 3. It simply consists in applying the `1
reconstruction (1) to recover each separately acquired
portion of the original signal (i.e. a line (X)i of an image
or the frame Fi of an hyperspectral image) independently
from each other, given the corresponding Φi and (Y)i.

2) Kronecker Compressed Sensing: Given the above,
we have investigated the possibility of implementing a
more sophisticated reconstruction algorithm which al-
lows the proposed scheme to achieve good performance
even for low M , i.e., for high compression ratios. To
this aim, we considered the simplified 3D reconstruction
scheme proposed in [13], [6], where it is shown that
Kronecker product matrices are a natural way to generate
sparsifying and measurement matrices for the applica-
tion of CS to multidimensional signals, resulting in a
formulation that is denoted by Kronecker Compressive
Sensing (KCS). In KCS, starting from the assumption
that the signal structure along each dimension can be

expressed via sparsity, Kronecker product sparsity bases
combine the structures for each signal dimension into a
single matrix and representation. This allows to obtain
separable transforms matrices, thus maintaining the com-
putational complexity to an acceptable level. Similarly,
Kronecker random product measurement matrices for
multidimensional signals can be implemented by per-
forming a sequence of separate random measurements
obtained along each dimension. Given the above, the
application of KCS to the problem at hand is straightfor-
ward. We describe the initialization based on KCS for
the more general 3D signal case, which can be trivially
specialized to the 2D case: the separate (band by band)
random projections (Y)Ti = Φivec

{
Fi
}

can be used
to get a reconstruction scheme which profitably exploits
correlation in all dimensions by using a separable 3D
Kronecker product sparsity domain. More specifically,
we consider DCT transforms for both spatial and spectral
domains since DCT transform is better than other typical
transforms used in CS (e.g. Wavelet transform) on small
spatial crops, while a wavelet transform would arguably
provide better performance over a larger image. Accord-
ingly, denoting by Ψ2D and Ψλ the DCT sparsifying
operator for the spatial and spectral domain, respectively,
reconstruction is given by

vec
{
F (0)

}
= Ψ3Dθ̂ ,

where Ψ3D = Ψ2D ⊗ Ψλ and θ̂ can be obtained by
means of linear program reconstruction

θ̂ = argmin
θ
‖θ‖`1 s.t. ΦΨ3Dθ = y ,

where y = vec
{
YT
}

and Φ is the block-diagonal
sensing matrix obtained as

Φ = diag
(
Φ1, . . . ,ΦNBAND

)
.

The reconstructed set of images F (0) can then be used
as starting point for the iterative algorithm proposed in
Algorithm 4.

E. Complexity

We explain here the complexity reduction obtained
using Algorithms 2 and 4 instead of the standard CS
reconstruction algorithm, processing the 2D/3D signal
as a whole. We specialize the discussion to 2D and 3D
signals, but it can be easily extended to any multidimen-
sional signal. For an NROW × NCOL image, the stan-
dard CS reconstruction algorithm has an O(N3

ROWN
3
COL)

complexity. Our algorithm performing NITER iterations
has an O(NITERNROWN

3
COL) complexity, with, usually,

NITER � NROW, NCOL. Hence, the complexity gain that



TO BE PUBLISHED IN IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 9

5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Iteration

M
S

E

 

 

M = 32, P1
M = 32, P2
M = 32, P3
M = 64, P1
M = 64, P2
M = 64, P3
M = 128, P1
M = 128, P2
M = 128, P3
M = 256, P1
M = 256, P2
M = 256, P3
M = 512, P3

Fig. 2. Test of different prediction filters on lena image.

can be obtained is ∼ O(N2
ROW). For 3D signals the

same considerations hold. In this case, the gain will be
∼ O(N2

BAND).

IV. NUMERICAL RESULTS

A. 2D images

1) Choice of the Prediction Filter: First, we start by
seeking the linear prediction filter P ((X)i−1, (X)i+1)
providing fastest convergence and best MSE perfor-
mance. For this test, we use the standard lena black and
white image of size 512 × 512. M takes the values of
32, 64, 128, 256 and the transform matrix Ψ is the DCT
matrix. We denote as xP the result of the prediction.

Fig. 2 shows the MSE performance of the overall
system for different values of M and using the prediction
filters described above. Results show that the conver-
gence is reached for each value of M . The bigger M ,
the faster the convergence and the smaller is the MSE
at convergence. In any case, it can be noticed that the
best performance is obtained for each value of M using
prediction filter labelled as P3, i.e. the weighted average.
Hence, we will use this prediction filter in our further
tests, omitting to mention it from now on.

For M = 64, the MSE obtained with separately
recovered lines is 4.16 · 10−2. After 30 iterations, an
MSE of 3.96 · 10−3 is obtained, with a gain of 10.2 dB.
The convergence in this case is quite slow, but the MSE
is decreased as much as one order of magnitude. Faster
convergence is obtained with M = 128, as after 15 MSE
is decreased from 1.49 · 10−2 to 1.72 · 10−3, with a gain
of 9.38 dB. Finally, with M = 256 the MSE decreases
from 3.59 · 10−3 to 6.18 · 10−4 in 5 iterations only, with
a gain of 7.64 dB.
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Fig. 3. Mean row compressibility of lena image. M = 128.

Finally, Fig. 2 shows as a reference the performance
of a “non compressive” system. It can be noticed that
the convergence is reached in only 1 iteration, leaving
a residual MSE of 2 · 10−6 due to unpredictable signal
components.

2) Prediction error compressibility: In this section,
we show results supporting the claim that accurate
prediction leads to prediction errors which are more
compressible than the original signal. Fig. 3 shows the
mean row compressibility of prediction error of the same
image as previous section, measured at each of the first
10 iterations of the reconstruction algorithm. The data at
0-th iteration corresponds to the compressibility of the
original image. With the term compressibility here we
mean the fraction of coefficients of the DCT of a row
of the prediction error (or of the original image) below
a certain threshold θTH, averaged over the rows. The
threshold, evaluated for each row and at each iteration in
order to take into account norm fluctuations, is computed
as θTH = 5

‖θi‖`1
NCOL

, where θi is the DCT of the current
row.

Fig. 3 supports the claim that the prediction error is
more compressible than the original signal and that it
gets more and more compressible along iterations.

3) Flatbed Scanner: In this section, we apply our al-
gorithm to images suitable to a flatbed scanner scenario.
These are black and white graphics and text, and are
depicted in Fig. 4. M takes the values of 8, 16, 32, 64,
128, 256 and (where possible) 512. Since they all have a
completely white background (representing paper), they
can be considered sparse in the pixel domain. Hence, the
matrix Ψ is the identity matrix of size NCOL, namely
INCOL

.
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(a) Constellation (b) Trellis

(c) Block Diagram

(d) Sample Text

Fig. 4. The graphics used as test image for flatbed scanner scenario.

Fig. 4(a) is the simplest graphic, representing a QPSK
constellation. Fig. 4(b) represents a slightly more com-
plicated (hence, less sparse) graphic, the trellis of a con-
volutional code. Fig. 4(c) is a larger figure representing a
generic block diagram. Finally, fig. 4(d) depicts a sample
of generic text.

Table I reports the results obtained using the proposed
algorithm. The table shows, for each image, the initial
MSE (obtained using separate CS reconstruction of each
line), the MSE the algorithm converges to, the perfor-
mance gain, and the number of iterations necessary to
reach convergence. Figures confirm the results obtained
in the previous section. The more measurements are
taken, the faster is the convergence and the lower is
the MSE that can be obtained when the algorithm
has converged. When the picture is very sparse, it is

TABLE I
MSE AND CONVERGENCE RESULTS ON SAMPLE GRAPHICS

M init. MSE conv. MSE gain (dB) steps
Constellation (680× 576)

64 2.08 · 10−2 7.86 · 10−3 4.23 18
128 9.99 · 10−3 3.05 · 10−3 5.15 14
256 4.72 · 10−3 7.25 · 10−4 8.14 10

Trellis (680× 576)
64 8.56 · 10−2 3.98 · 10−2 3.33 18

128 7.45 · 10−2 2.00 · 10−2 5.71 13
256 3.39 · 10−2 6.51 · 10−3 7.17 8

Block Diagram (529× 1123)
64 8.38 · 10−3 7.02 · 10−3 0.77 7

128 5.79 · 10−3 3.97 · 10−3 1.64 6
256 2.79 · 10−3 1.66 · 10−3 2.25 5
512 1.23 · 10−3 4.71 · 10−4 4.17 5

Sample Text (512× 512)
64 6.40 · 10−2 4.59 · 10−2 1.44 10

128 5.46 · 10−2 2.99 · 10−2 2.62 7
256 3.39 · 10−2 1.41 · 10−2 3.81 4

Fig. 5. The AIRS sensor gran 9 hyperspectral image, 600-th band.

possible to obtain a reduction of one order of magnitude,
while when the picture is less sparse the contribution of
Compressed Sensing is weaker, but still a reduction of
about 50% in MSE can be obtained.

4) Remote Sensing: To test the performance of the
proposed scheme in a remote sensing scenario, we use a
spectral band extracted from hyperspectral image “gran-
ule 9” of the AIRS sensor. AIRS is an ultraspectral
sounder with 2378 spectral channels, used to create 3D
maps of air and surface temperature. The spatial size is
NCOL = 90 pixels and NROW = 135 lines. The dataset
consists in the raw output of the detector, without any
processing, calibration or denoising applied. We choose
the 600-th band, which is depicted in Fig. 5, but very
similar results have been obtained with other bands and
are omitted for brevity. M takes the values of 8, 16, 32
e 64. The sparsity basis Ψ is the DCT.

Table II (Basic Algorithm) summarizes the results
obtained applying the proposed algorithm to the 600-th
band of the test image. Results show that with M = 8
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TABLE II
MSE AND CONVERGENCE RESULTS ON AIRS SENSOR IMAGE

M init. MSE conv. MSE gain (dB) steps
Basic algorithm

8 2.40 · 10−1 2.63 · 10−2 (20-th it.) 9.6 20+
16 9.57 · 10−2 5.21 · 10−3 (20-th it.) 12.6 20+
32 2.17 · 10−2 1.56 · 10−3 11.4 10
64 2.89 · 10−3 3.40 · 10−4 9.29 4

Kronecker improved algorithm
8 4.60 · 10−3 3.80 · 10−3 0.83 7
16 2.62 · 10−3 2.02 · 10−3 1.13 5
32 1.22 · 10−3 9.73 · 10−4 0.98 3
64 2.95 · 10−4 2.64 · 10−4 0.48 1

and M = 16 the convergence is very slow and is not
reached after 20 iterations. On the other hand, when
M = 32 the convergence is obtained after 10 iterations
(reducing from 2.17 · 10−2 to 1.56 · 10−3, with a gain of
11.4 dB), while taking M = 64 measurements per row
implies the convergence after 4 steps only (with MSE
reduction from 2.89 · 10−3 to 3.40 · 10−4 and a gain of
9.29 dB).

As a term of comparison, we report here the MSE
performance of a simple reconstruction algorithm named
Orthogonal Matching Pursuit [18], whose complexity is
linear in the number of samples of the original signal
(NROWNCOL in this case). We acquire and reconstruct
the entire image as a whole using M = 32 ·NROW and
M = 64 · NROW measurement, to be compared with
the performance of our algorithm with M = 32 and
M = 64, respectively. For M = 32 · NROW, we obtain
an MSE of 1.9 · 10−3, while for M = 64 · NROW we
obtain an MSE of 1.7 · 10−3. Hence, our algorithm with
M = 32 performs 3 dB better than OMP with the same
total amount of measurements, while with M = 64 the
gain is 8 dB.

5) Improving performance with Kronecker Com-
pressed Sensing: An improvement to the performance of
the algorithm is obtained using Kronecker Compressed
Sensing (KCS), described in section III-D2, into the
algorithm we showcase. Hence, we use KCS to ini-
tialize the iterative algorithm we propose in this paper
(instead of separate linewise reconstruction) and apply
it to the remote sensing scenario. The performance of
this modified version of the algorithm are reported in
Table. II (Kronecker improved algorithm). The figures
show two effects. First, the initial MSE is much lower
than in the separate reconstruction case. This gain can
be noticed in particular when M is small and is due
to the better performance of KCS reconstruction with
respect to separate reconstruction; second, the iterative
algorithm slightly improves the overall performance and
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Fig. 6. Performance comparison of proposed algorithms vs. M .

converges in very few steps. This is due to the fact
that KCS captures also correlation in vertical direction,
making the contribution of each iteration less effective.

Figure 6 summarizes the best MSE performance
obtained by Separate Row Reconstruction (SRR), our
Iterative algorithm initialized with Separate Row Re-
construction (ISRR), the Kronecker Compressed Sensing
(KCS) and our Iterative algorithm with KCS initializa-
tion (IKCS) vs. the number of measurements M . Best
performing algorithms are the ones implementing KCS.
Plain KCS shows a gain of 7.37 dB over ISSR when
M = 8, and 1.10 dB when M = 32. When using IKCS,
roughly 1 dB of additional gain can be obtained with
very few iterations.

B. 3D signals

We report reconstruction results on a few scenes that
are used as reference for onboard lossy compression in
the “multispectral and hyperspectral data compression”
working group of the Consultative Committee for Space
Data Systems (CCSDS), namely scene sc0 of AVIRIS
(Yellowstone) and granule 9 (gran9) of AIRS. AVIRIS
is a spectrometer with 224 bands, and the size of this
image is 512 lines and 680 pixels. AIRS has already
been described in previous sections. Because of the
complexity of the reconstruction process and the large
amount of data, we do not use the complete images, but
rather a 32x32 spatial crop with all spectral channels.
Both are raw images, i.e. they are the output of the
detector, with no processing, calibration or denoising
applied. These images are noisier than the corresponding
processed images, but more realistic for application to
onboard sensors.
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Fig. 7. AVIRIS: Reconstruction MSE of Algorithm 4 as a function
of the number of iterations with initial separate 2D reconstruction.

1) Preliminary experimental analysis with initial sep-
arate 2D reconstruction: We have carried out some
experiments to preliminarily assess the validity of the
proposed algorithm when the initial reconstruction im-
ages are computed using separate 2D DCT transforms
band by band. In particular, Figure 7 shows the MSE
behaviour experienced on AVIRIS images as a func-
tion of the number of iterations for different values of
the number of projections M . A similar behaviour is
observed for AIRS images. Note that for medium to
high M , iterations are effective in reducing MSE, e.g.,
for M > 400 the proposed algorithm improves the
MSE up to a factor of 35 with respect to the initial
reconstruction. Moreover, convergence to the minimum
attainable MSE is obtained in a relatively small number
of iterations. For lower M , convergence is slower and
MSE reduction is less effective. In particular, for very
low M , e.g. for M = 100 convergence is very slow
and MSE reduction is negligible. In essence, the algo-
rithm shows a threshold behaviour with respect to the
initial reconstructed images: a poor initial reconstruction
prevents the iterative algorithm to improve the MSE
while if the initial reconstruction’s MSE falls below a
minimum threshold, the improvement is remarkable and
convergence very fast.

2) Improving initial reconstruction by means of Kro-
necker CS: To assess the effectiveness of such an ap-
proach, in Figure 8 we show the MSE behaviour expe-
rienced on AVIRIS images as a function of the number
of iterations, for different M , when the starting point of
the iterative scheme proposed in Algorithm 4 is obtained
through Kronecker 3D reconstruction. Comparing with
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Fig. 8. AVIRIS: Reconstruction MSE of Algorithm 4 with 3D
Kronecker starting point, as a function of the number of iterations.

Figure 7 it can be observed that, as expected, the MSE
starting point is much lower and convergence is achieved
in few iterations. Moreover, despite 3D Kronecker re-
construction already exploits correlation in the spectral
domain, the proposed iterative algorithm still allows to
improve the MSE up to a factor of 3 with respect to the
initial reconstruction. In the next section, we describe in
more details the experiments we conducted to evaluate
the performance of the two proposed reconstruction
schemes, namely iterative compressed sampling (ICS)
and Kronecker-iterative compressed sampling (KICS),
which are both based on the iterative procedure described
in Algorithm 4, with the initial point computed by means
of separate reconstruction and KCS, respectively.

3) Spectral channel analysis: We compare results of
the proposed ICS and KICS with those obtained through
separate spatial reconstruction (S2D) of each spectral
channel and through 3D KCS. The reconstruction algo-
rithm for the iterative schemes is run for 40 iterations,
with several values of M .

Results in terms of MSE versus M are shown in
Figures 9 and 10 for the AVIRIS and AIRS scenes,
respectively. As can be seen, S2D spatial reconstruction
yields very large mean-squared error (MSE), typically in
excess of 5 · 104 for AVIRIS and of 7 · 103 for AIRS.
Considering that the average signal energy for this crop
is equal to 2.76 ·107 for AVIRIS and 4.85 ·106 for AIRS,
spatial reconstruction yields an average percentage error
of nearly ±4% both test images, which is inadequate for
most applications.

As anticipated in Figure 7, the proposed ICS recon-
struction algorithm allows to improves the MSE up to a
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Fig. 9. AVIRIS: Reconstruction MSE vs. M for different schemes.
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Fig. 10. AIRS: Reconstruction MSE vs. M for different schemes.

factor of 35 for high M , but it is not effective for low M .
On the other hand, the 3D KCS reconstruction without
iterative predictions performs quite well for low M but
its performance are not so good for high M , e.g., it is
even worse than ICS for M > 200 − 250. Eventually,
KICS gives the best performance over the whole range
of considered M . In other words, combining 3D KCS
with predictive CS allows to accurately reconstruct orig-
inal images requiring a number of linear measurements
much smaller than the original samples. On the other
hand, average results provide a somewhat biased picture
though. In Fig. 11 and 12, the individual MSE per band
and for M = 450 obtained through KICS algorithm on
AVIRIS and AIRS scene is shown, respectively. As can
be seen, in most bands the MSE is very small, between
100 and 400. The average MSE is biased by a relatively
small number of bands which are reconstructed with
large error. Visual inspection shows that e.g. band 104
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Fig. 11. AVIRIS: Reconstruction MSE for each band, M = 450.
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Fig. 12. AIRS: Reconstruction MSE for each band, M = 450.

is extremely noisy (hence not at all sparse) and contains
almost no information, while band 32 is misregistered
with respect to band 31, yielding poor prediction. This
shows that, on average, a much lower relative error can
be achieved in most bands, except for noisy bands, which
are not very important altogether, or misregistered bands,
where improved prediction models can be employed to
improve the reconstruction.

4) Separate acquisition of spectral rows: Fig. 13
refers to a 32 × 32 × 32 crop of AIRS. Instead of
taking separate measurements of spectral channels, here
we separately acquire horizontal spectral rows Fi ∈
RNCOL×NBAND , where Fi = Fi,:,: and i = 1, . . . , NROWS.
The cube is then reconstructed using algorithm 4, it-
erating over rows instead of wavelength. In this case,
to predict spectral rows we use prediction filter P1
described in section III-C1. Results show that separate
reconstruction (the MSE of the initial step) applied to
spectral rows leads to better performance than the same
algorithm applied to spectral channels. Nevertheless, the
iterative algorithm is less effective when iterating over
rows than when iterating over wavelength. Results show
that only a slight MSE gain can be obtained from itera-
tive algorithm. This effect is due to stronger correlation
along wavelength direction than between rows. Stronger
correlation is better exploited by Compressed Sensing,
leading to better separate reconstruction performance,
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Fig. 13. MSE performance of ICS applied to spectral rows.

while weaker correlation between rows yields only a
minor contribution of the iterative algorithm.

V. CONCLUSIONS

In this paper, we proposed a general architecture for
the acquisition and reconstruction of multidimensional
correlated signals with manageable computational com-
plexity. The acquisition is based on Compressed Sensing
and consists in taking a sequence of separate random lin-
ear measurements of the signal, grouping subsets of the
coordinates, in a progressive fashion. The reconstruction
process implements an iterative architecture relying on
linear prediction filters and the Compressed Sensing re-
construction of the prediction error, which is supposed to
be more compressible than the original signal. Then, we
specialize this framework to 2D signals and 3D signals,
proposing practical applications for these scenarios. For
2D signals, we envisage applications to flatbed scanners
and remote sensing, which already perform progressive
scanning. For 3D signals, the straightforward application
is hyperspectral imaging, even if applications related to
video could be also be imagined. For both scenarios,
we show that the performance in terms of MSE and
speed of convergence depend on two factors. On one
hand, the initial MSE of the algorithm depends on the
initialization strategy. We show that the performance ob-
tained by trivially initializing the algorithm with separate
measurement reconstruction can be improved by using
the so-called Kronecker Compressed Sensing, which is
able to capture the correlation in all dimensions at the
cost of an increased computational complexity. On the
other hand, the effectiveness of the iterative algorithm in
terms of MSE gain strongly depends on the choice of
the linear prediction filter and on the amount of signal
correlation along the iteration dimension.
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