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Abstract

Copy-move forgeries are very common image manipulations that are often carried out with malicious

intents. Among the techniques devised by the Image Forensic community, those relying on SIFT features

are the most effective ones. In this paper we approach the copy-move scenario from the perspective of an

attacker whose goal is to remove such features. The attacks conceived so far against SIFT-based forensic

techniques implicitly assume that all SIFT keypoints have similar properties. On the contrary, we base our

attacking strategy on the observation that it is possible to classify them in different typologies. Then one

may devise attacks tailored to each specific SIFT class, thus improving the performance in terms of removal

rate and visual quality. To validate our ideas, we propose to use a SIFT classification scheme based on the

gray scale histogram of the neighborhood of SIFT keypoints. Once the classification is performed, then we

attack the different classes by means of class-specific methods. Our experiments lead to three interesting

results: (i) there is a significant advantage in using SIFT classification; (ii) the classification-based attack is

robust against different SIFT implementations; and (iii) we are able to impair a state-of-the-art SIFT-based

copy-move detector in realistic cases.
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1 Introduction

Counter-forensics, that is the study of methods to mislead forensic techniques by concealing traces of manipulations,

is becoming a hot research topic [1]. As a matter of fact, this discipline rapidly became a benchmark for the security

of image forensic techniques, whose correct behaviors may be intentionally obstructed by an adversary (or attacker)

interested on covering traces of malicious tampering. Nowadays, for example, it is possible to conceal traces of

contrast enhancement, compression or resampling [2–4]. In [1], two categorisations of counter-forensic schemes (or

attacks) are proposed: according to when in the image acquisition chain an attack takes place (integrated or post-

processing, i.e. during or after the acquisition); and according to whether the countered forensic algorithm is known

or unknown to the attacker (targeted or universal attack, respectively). Regardless of its category, an attack should

respect some constraints while attempting to mislead a certain forensic technique, such as preserving the visual quality

of the forged image and the integrity of the semantic message conveyed by the content.

Copy-move forgery, whereby a portion of the image is copied and pasted once or more times elsewhere into the

same image, is one of the most common ways of manipulating the semantic content of a picture. Usually, the original

and the forged portions share similar statistical and semantic properties. As a consequence, it is possible to exploit

such similarities to detect the presence of the manipulation. In the past years, literature has proposed several copy-

move detectors [5], which often are conventionally summarized into two categories: methods based on blocks and

methods based on keypoints. The former methods first divide the image into overlapping blocks, then extract some

features which are ordered and used to match similar blocks, according to certain criteria of similarity [6,7]. The latter

methods extract highly descriptive robust points of an image, to each of which a univocal features vector is assigned.

Such vectors are then used to match similar points across images (or region within them). Among such methods, the

most recent and effective ones [8,9] are those based on Scale Invariant Feature Transform (SIFT) [10]. The capability

of SIFT to discover correspondences between similar visual contents, in fact, allows the forensic analysis to detect

even very accurate and realistic copy-move forgeries.

The research community has recently started to approach copy-move detection from the perspective of the attacker,

whose goal is to hide the features causing similar blocks or keypoints to match. Chrislein et al. [11] studied the

robustness of several detectors against common image processing and observed that block-based methods are not

robust against geometric manipulations (e.g. resampling, cropping), lossy compression and noise addition. Nguyen

et al. [12] successfully impaired three well-known block-based detectors by combining some of these manipulations

into a simple yet effective counter-forensic schemes (see [12]). The same results, however, cannot be replicated with

SIFT-based detectors inheriting the intrinsic robustness against geometric transformations from Lowe’s algorithm. To

devise more sophisticated schemes, then, it is necessary to understand the security of SIFT algorithm. The first study
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in this direction is the one by Hsu et al. [13], in which first the impact of simple attacks is analyzed and then a method

to strengthen SIFT keypoints is proposed. Following this work, Do et al. [14–16] focused on a SIFT-based Content

Based Image Retrieval (CBIR) [17] scenario and devised a number of interesting attacks.

The aim of the previous works is to modify the SIFT feature descriptor of keypoints but they do not consider the

complete removal of the keypoints. To the best of our knowledge the only work in this sense is [18], where an attack

based on local warping techniques derived from image watermarking was proposed. All the studies carried out so far

have demonstrated that devising methods to attack SIFT features is not a trivial task. SIFT features are not only robust

against several non-malicious processing but also against tampering attempts. Most attacks, in fact, pay a high cost in

terms of visual quality degradation. Moreover, the attempt to remove SIFT keypoints can alter the content in such a

way that new keypoints are created, thus complicating even more the problem.

The methods for countering SIFT-based forensic analysis proposed so far have been applied indifferently to all the

keypoints of an image. In this paper, we present a new counter-forensic strategy (targeted and post-processing, accord-

ing to the terminology of [1]) that permits to improve the performance of the existing approaches. We demonstrate

that it is possible to discriminate between SIFT keypoints and to devise attacks that are tailored to the characteristics

of the keypoints. Specifically, we have chosen a classification criterion based on first order statistics, that is the pixel

histogram of the gray scale neighborhoods centered in the SIFT keypoints. On top of such classification, we have built

an iterative attacking algorithm. At each step our algorithm classifies the keypoints and then attempts to delete them

with class-tailored attacks, ideally until their complete removal.

We compared the proposed method against other attacks [13–16] and we demonstrated the benefits brought by

SIFT classification in terms of keypoints removal and visual quality. We also demonstrated that the proposed method

is also capable of impairing SIFT detectors different than the one used during the attack. We then applied our method

to a realistic scenario of copy-move forgery detection, with the goal to disable the detector described in [9]. We have

successfully completed this task by eliminating only the keypoints whose matches across the copy-moved regions were

used to detect the manipulation. Finally, we have explored the possible interactions between the proposed method and

the existing block-based copy-move countermeasures.

The paper is organized as follows: Section 2 briefly reviews the SIFT algorithm and the copy-move detectors based

on it. Section 3 describes the rationale underlying the SIFT classification and the algorithm which has been used to

perform it. Sections 4 introduces the framework putting in practice the principles previously introduced. Section 5

experimentally validates the framework by means of three important results of the proposed method: (i) the advantage

of SIFT classification with respect to blind attacks; (ii) the robustness against different implementations of the SIFT

algorithm; and (iii) the effectiveness in a copy-move detection scenario. Section 6 concludes the paper.

3



2 SIFT-based Copy-Move Forgery Detection

In this Section we briefly review SIFT technique and describe the copy-move detectors based on it.

2.1 Scale-Invariant Feature Transform (SIFT)

SIFT features have become extremely popular in pattern recognition applications, due to their robustness with respect

to partial occlusion, clutter and geometric transformations [10]. The idea behind this kind of visual local features is

to model a complex object or a scene by a collection of salient points. In a nutshell, SIFT features of an image are

detected at different scales using a scale-space representation implemented as an image pyramid. The pyramid levels

are obtained by Gaussian smoothing and sub-sampling of the image resolution, while interest points are selected

as local extrema (min / max) in the scale-space. The detection of extrema usually produces numerous candidate

keypoints. However, not all the candidates possess the robustness and the stability required to become a keypoint

and thus they need to be discriminated. To this end, the SIFT algorithm performs two checks against two different

thresholds, whose commonly accepted values were experimentally set by Lowe in [10]. The first check verifies

whether the contrast value of the keypoint’s neighborhood is sufficiently large. The second check verifies whether

a keypoint is distant enough from an image edge (edges are considered unstable). If either of the checks fails, the

candidate keypoint is rejected. It is worth noting that such thresholds represent the principal vulnerability of the SIFT

algorithm, as we will see in Section 4. Attacks against SIFT, in fact, locally alter the image in such a way that either

a real keypoint falls below one of the thresholds (false negative) or a fake keypoint raises above one of the thresholds

(false positive).

The keypoints that passed both the previous tests guarantee invariance to scaling and affine transformations. At

this point, the algorithm assigns to each of them a canonical orientation in order to also guarantee rotation invariance.

This task is performed by means of a histogram of gradient orientations computed in the neighborhood of the keypoint

(defined by a specific window). Finally, a unique fingerprint, called descriptor, is computed in order to identify

univocally a keypoint. Therefore, a SIFT keypoint is completely described by the following information: xi =

{x, y, σ, o, f}, where (x, y) are the coordinates in the image plane, σ is the scale of the keypoint, o is the canonical

orientation and f is the final SIFT descriptor.

2.2 Copy-move detection

In pattern recognition, the SIFT operator usually is applied to two images: a target and a test image. In the case of

copy-move forgery detection, the SIFT operator is applied to one image only. In fact, in a copy-move forgery the

copied part is within the same image (see images of Figure 1). For this reason, the keypoints extracted in that region
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will be quite similar to the original ones, therefore a matching between SIFT features can be used to discover which

part was copied and which geometric transformation was applied.

In the past years different techniques have been proposed by the scientific community to address the problem

of copy-move forgery detection in digital images. Most of the methods divide the image into overlapping blocks

and then extract some peculiar features that can reveal whether some of the blocks have been duplicated or not [5].

Depending on the amount and on the characteristics of the paired blocks, a decision about forgery is then made.

Unfortunately, such methods are hardly robust against rotation and scaling operations, which are very common in

copy-move forgeries. The SIFT features allow to overcome such limitations thanks to their intrinsic robustness against

geometric transformations. Among the most recent SIFT-based copy-move detection techniques, we are interested in

the one proposed by Amerini et al. [9], which is able to detect and estimate the geometric transformation applied in a

copy-move forgery attack also dealing with the case of multiple copy-move forgeries.

In a nutshell, the technique in [9] works as follows (see Figure 1). Given an image I , the method extracts the key-

points X = {x1, . . . ,xn} and their SIFT descriptors D = {f1, . . . , fn}. The best candidate match for each keypoint

xi is found by identifying its nearest neighbor among the other n − 1 keypoints, i.e. the keypoint with the minimum

Euclidean distance descriptors. For sake of clarity, given a keypoint, a similarity vector S = {d1, d2, . . . , dn−1} is

defined with the sorted Euclidean distances with respect to the other descriptors. The keypoint is matched only if

d1/d2 < T (fixed empirically to 0.6). By iterating on each keypoint in X , a set of matched points is obtained.

Although this set already provides a draft idea of the presence of cloned areas, a clustering procedure is run in order

to improve accuracy. To understand whether an area has been cloned or not, an agglomerative hierarchical clustering

is performed on spatial locations, i.e. (x, y) coordinates, of the matched points. Such method creates a hierarchy of

clusters which can be represented by means of a tree structure. Briefly, the clustering algorithm works as follows:

(i) each keypoint is assigned to a cluster; (ii) the reciprocal spatial distances among clusters are computed; (iii) the

closest pair of clusters is found; and (iv) the obtained pair is merged into a single cluster. Consequently, if two (or

more) clusters are detected with at least 4 pairs of matched points linking a cluster to another, then the corresponding

regions are considered cloned. When an image has been classified as non-authentic, the method can also determine

which geometric transformation was applied between the original area and its copy-moved version by employing an

affine homography.

3 Classification of SIFT Keypoints

In this Section we first describe the classification method, then we introduce the classes that we have defined and

finally we provide some visual examples of each class.
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Figure 1: Overview of the method proposed in [9]. SIFT matched pairs and clustering.

3.1 The Rationale Behind the Classification

In principle we would imagine that the classification relies on the visual content surrounding the keypoints. Although

this task could be performed in more than one way (e.g. textures, edges, shapes), we chose to analyze the gray scale

histogram of a relatively small region surrounding the keypoint. More specifically, among all the characteristics of

an image histogram, we chose the number of modes, since they provide valuable information about the local image

content. The idea is that, in general, the effectiveness of an attack may be strictly related to the properties of the

keypoint we attempt to remove. As an example, suppose that the neighborhood of a keypoint contains a straight

vertical edge; a local warping attack, such as the one in [18], would probably succeed in deleting it. Unfortunately,

after the attack the straight edge would be no more straight and the bending effect would be clearly visible. Perhaps a

Gaussian smoothing attack may delete the keypoint as well, arguably with a significantly lower impact on quality.

For the rest of the paper we will make two assumptions: we will work on gray scale images and we will consider

only the SIFT keypoints originated by the first scale of the image (s = 0). The reasons behind the latter assumption

are the following: (i) the keypoints of the first scale are the most difficult to remove; and (ii) for sake of clarity, we

work with a significant yet not excessive amount of keypoints.

3.2 SIFT Keypoints Classification Algorithm

In order to classify the keypoints we have adapted the histogram analysis method proposed by Chang et al. in [19],

which was originally designed for image segmentation based on histogram thresholding. The original algorithm relies

on the assumption that the histogram of large natural gray scale images can be modeled as a mixture of Gaussians f

as follows:

f(k) =

n+1∑
i=1

Pi√
2πσi

e
− 1

2

(
k−mi
σi

)2
(1)
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where: k = 1 . . . 256 are the samples of the mixture; n + 1 is the number of histogram segments; (Pi, mi, σ2
i ) are

respectively the weight, the mean and the variance of the i-th Gaussian. The classifier is designed to estimate the

model parameters in order to minimize |f − H|, where H corresponds to the original histogram. In a nutshell, it

proceeds as follows. First, H is smoothed to reduce the number of unstable local extrema. Then, the local minima are

determined and the segments between consecutive pairs of minima are initialized. For each segment i, the calculation

of the parameters (Pi,mi, σ
2
i ) consists of two steps: the estimation of a unique optimal window w∗ with minimum

skewness near the center of the segment; and the estimation of the Gaussian parameters in w∗, which are then refined

by means of a maximum likelihood criterion. Finally, the thresholds used to segment the histogram are computed by

relying on the refined Gaussian parameters.

Here we are interested more in the number of modes, rather than in the thresholds for segmenting H . We cannot

rely directly on the number of Gaussians composing the mixture, since Chang et al.’s algorithm tends to over-segment

the histograms, thus creating rather flat segments whose weight is very small. Therefore, the original technique

required some adjustments in order to fit our application. Given a keypoint, the classification was modified as follows:

(i) we initialize the number of modes equal to the n + 1 contributes of the mixture (where n has been computed by

means of Chang’s method); (ii) we estimate all the Gaussian parameters and we determine the weight of the largest

contribution, namely Pmax; (iii) we suppress all the contributions 1 ≤ i ≤ n + 1 such that Pi ≤ 0.2 · Pmax, thus

obtaining the number of histogram modes M . It goes without saying that if M = 1 the histogram is considered

unimodal, if M = 2 bimodal and if M > 2 multimodal.

The choice of the size N of the neighborhood used for the classification is closely related to Chang et al.’s algo-

rithm. N should be large enough in such a way that the hypothesis of Gaussianity holds. At the same time, it should

not be so large to include the statistics of content that is too far from the support of the keypoint. According to our

experiments, a good trade-off is obtained by letting N = 32.

3.3 Classes of Keypoints

By relying on the method described above, we have classified the 32 × 32 neighborhoods of several thousands of

keypoints extracted from natural images with different visual content (landscapes, people, buildings). Our observations

confirmed that the histograms tend to cluster into well defined groups. We defined three of them: unimodal, bimodal

and multimodal (number of modes > 2). Interestingly, these classes correspond to very different visual contents:

uniform flat regions with low variance tend to have a unimodal histogram; edges and geometric shapes correspond

to bimodal histograms; regions with high variance (which resemble some sort of noise) usually have a multimodal

histogram. Figure 2 provides an example of a keypoint belonging to each of the three classes. The first row shows the
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Figure 2: Example of visual contents (first row) and histograms (second row) for the 3 classes of keypoints. From left
to right: unimodal, bimodal and multimodal.

visual content of the neighborhood, the second row shows its gray scale histogram. For this example we have used

an image representing a landscape. The unimodal, bimodal and multimodal contents represent respectively a water

surface, the top of a building and some foliage.

4 The Attack

In this Section, we first describe the various attacks and then we explain how they have been combined to remove

SIFT keypoints and to invalidate the copy-move detection algorithm. Even if the classifier works on a fairly large

neighborhood of the keypoint, the attacks are carried out on a 8× 8 region (still centered on the keypoint), in order to

reduce the visual impact of each attack. In the following, we will refer to this region with the term “patch”.

4.1 The proposed framework

Before discussing in depth the attacks, it may be useful to briefly introduce our framework (see Figure 3). It relies

on an iterative procedure. At the beginning (1st iteration), an original grayscale image G (or a region within it) is

fed to the system, which starts by detecting the SIFT keypoints. Then, for each keypoint, the neighborhood of size

32 × 32 centered on the keypoint is extracted and classified accordingly to its grayscale histogram. Depending on

the class of each keypoint, the corresponding 8 × 8 patch is manipulated by means of a class-tailored attack. Finally,

the manipulated patches are inserted back into the image in their original positions. The procedure moves to the next

iteration and halts only when particular requirements are met (e.g. percent of deleted keypoints, maximum iterations,
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Figure 3: Proposed attack scheme: SIFT keypoints are detected and classified; the neighborhood of each keypoint is
attacked with a specific class-tailored attack and then inserted back into the image. The procedure continues until the
specified conditions are met.

minimum allowed visual quality).

4.2 Single Attacks

The first attack is the Smoothing Attack. A light Gaussian smoothing flattens the pixel values of an image in such a

way that its potential keypoints at the level of DoG are reduced. On the other hand, an excessive smoothing has a very

noticeable impact on the visual quality. The intensity of the attack can be controlled with the parameters (h, σ), i.e. the

size and the standard deviation of the Gaussian kernel. In our experiments, we have found out that h = 3 and σ = 0.7

represent a good compromise between the amount of deleted keypoints and the overall visual quality following the

attack. This attack has also been used in [15].

The second attack is the Collage Attack, which is a variant of the method first used in [13]. It consists on the

substitution of the original patch with another patch of the same size. The new patch should not contain a keypoint

and needs to be as similar as possible to the original one according to some similarity criteria. To implement the

attack, we created a database of about 120000 patches not containing keypoints, extracted from a data set of 80 images

characterized by very heterogeneous visual contents. We chose to measure the similarity by means of the histogram

intersection distance, which has been widely used in the past in image retrieval applications [20]. Let Horig and Hdb

be, respectively, the histograms of the original patch and of a patch stored in the database; the intersection distance
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Figure 4: Weighting window 8 × 8 of Equation 3. The coefficients decrease from 1 (white) along the borders to 0
(black) near the center.

dint is evaluated as follows:

dint(Horig, Hdb) =

∑L
j=1min

(
Horig(j), Hdb(j)

)∑L
j=1Hdb(j)

(2)

where j indicates the j-th bin of the histogram and L = 256 indicates the number of bins. Let now patchorig

and patchmin be respectively the original patch and the most similar counterpart stored in the database (i.e. the patch

whose histogram is at minimum dint); to avoid visible artifacts along the borders, we do not reinsert patchmin directly

into the original image. Instead, we reinsert the following linear combination:

patchnew =W · patchorig + (1−W ) · patchmin (3)

where W is an empirical 8× 8 weighting matrix, whose elements wi,j ∈ [0, 1] are set to 1 along the patch borders and

progressively decrease to 0 near the center, as shown in Figure 4.

The third attack is the Removal with Minimum Distortion (RMD) attack proposed by Do et al. in [15]. The idea

behind this technique is to calculate a small patch ε that, added to the neighborhood of a keypoint, allows its removal.

The coefficients of ε are chosen in such a way that the contrast around the keypoint (at DoG level) is reduced, thus

invalidating the check performed by SIFT algorithm on all potential keypoints. Moreover, it is requested that the

coefficients locally introduce the minimum visual distortion.

In a nutshell, the RMD attack works as follows. Let x = (x, y, σ) be a keypoint and let D(x) be the DoG in x; the

patch ε is obtained by resolving the following optimization problem:

ε = arg minε:D′(x)=D(x)+δ

(
||ε||2

)
(4)

where δ is a parameter that allows to control the intensity of the attack: let C be the contrast threshold set by the SIFT

algorithm (usually by default C = 0.03); the attack reduces |D(x)| by |δ| in such a way that the altered value drops

below C.
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The size of ε depends on the spatial support of the targeted keypoint: the larger the support, the stronger the attack.

The final altered DoG region is thenD(x+u, y+v, σ), with both u and v belonging to the interval [−6
√
2hσ, 6

√
2hσ]

and h = 2
1
3 . To be compliant with our system, we introduced two small variants into the original method: first, we

limited the size of ε to a maximum of 8 × 8 also for those keypoints whose spatial support was larger; secondly, we

used the same weighting window of Equation 3 to replace the original neighborhoods.

4.3 Combined Attack

Sometimes an attack may introduce new keypoints in its attempt to delete those already present (see [14]). In such

cases a single iteration of the attack is not enough, since now one needs to deal also with the newly introduced

keypoints. For this reason, we arranged our attacks into an iterative procedure whose pseudo-code is illustrated in

the following (see Algorithm 1). The purpose of the attack is to iteratively remove SIFT keypoints until one of the

following requirements is met: the algorithm reaches the maximum number of allowed iterations (maxIter); the

desired number of keypoints has been removed from the image (minRemoval, ideally 100%). Practically, at each

iteration we compute the keypoints and classify them. For the first part of the iterations (1 to K = 10 by default), we

attack all the classes with Smoothing attack, while in the second part (K +1 to maxIter) we attack the unimodal and

multimodal keypoints by means of Collage attack and the bimodal ones by means of RMD attack. From now on,

to measure the effectiveness of an attack (or of a single iteration of it), we will use the term removal rate, that is the

percent of keypoints that have been removed from an image with respect to their original number before the attack.

Algorithm 1
1: procedure CLASSIFICATION BASED ATTACK( originalImage, maxIter, minRemoval )
2: j ← 1
3: K ← 10
4: removal rate← 0
5: attackedImage← originalImage
6: while (j ≤maxIter and removal rate < minRemoval) do
7: keypoints = calculateSIFT( attackedImage )
8: kp classes = classifySIFT( keypoints )
9: if (j ≤ K) then

10: attackedImage← smoothingAttack( kp classes )
11: else
12: attackedImage← collageAttack ( unimodal,multimodal )
13: attackedImage← RmdAttack( bimodal )
14: end if
15: removal rate← calculate removal rate( originalImage, attackedImage )
16: j ← j + 1
17: end while
18: end procedure
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The rationale behind the algorithm is the following. The Smoothing attack can be effective on all the classes,

regardless of their content, since it reduces the population of keypoints without a significant loss of quality. The

keypoints that survive to this first round of the attack are somehow “harder” to remove and require more powerful

countermeasures (i.e. Collage and RMD), and here the keypoints classification plays its basic role. The Collage is

not suitable for those patches that contain geometric edges (i.e. the bimodal ones) since the histogram similarity

does not take into account the shapes contained in the keypoint neighborhood. Therefore, we manipulate the bimodal

keypoints with RMD, which does not present this problem. On the contrary, the Collage attack can be applied both to

uniform patches, such as the unimodal, and to noisy patches, such as multimodal, without an excessive visual quality

degradation.

Before we move to the next Section, it is important to point out that, in the attempt to remove a keypoint, an

attack could obtain the opposite result, that is to alter the image in such a way that a new keypoint is generated. In

our implementation, we chose not to keep track of this different category of keypoints but rather to deal with them in

the same way as the original ones. This means that the keypoints introduced during an iteration i are classified and

attacked again at the following iteration i+ 1.

5 Experimental Analysis

The goal of this Section is twofold: first, to highlight the benefits introduced by the classification step with respect

to a class-unaware attack; while performing such task we also demonstrate the effectiveness of the attack procedure

against various SIFT software. Secondly, to address a specific forensic scenario by countering the copy-move detection

technique described in [9].

5.1 Image data sets

The experimental analysis has been carried out on two distinct sets of images. To demonstrate the effectiveness

of our technique and its robustness against different SIFT implementations, we have used the UCID database [21].

Such data set, which is a well known benchmark amongst the image retrieval research community1, consists of 1338

uncompressed (TIFF) color images, whose contents depict landscapes, cityscapes, people and man-made objects. The

rather large size of this collection allowed us to make conclusive statements on the performance of the proposed

technique. Finally, to demonstrate the capability of our method to impair a SIFT-based copy-move detector, we have

used a set of 10 images containing a realistic copy-move forgery (as examples, see Figure 13 or Figure 14(a)).

1The UCID database can be freely downloaded from http://homepages.lboro.ac.uk/ cogs/datasets/ucid/ucid.html
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Figure 5: Histogram of the number of keypoints at first scale for the images belonging to the UCID database.

5.2 Classification-based SIFT keypoints removal

In the following tests, the keypoints have been computed by means of VLFeat, the Vedaldi and Fulkerson’s imple-

mentation of SIFT [22] (DoG peak and edge thresholds set respectively to 4 and 10). The 1338 images composing the

UCID database, that we used for our experiment, contain a total of 385750 keypoints at the first scale, distributed as

shown in the histogram of Figure 5.

We organized the experimental procedure as follows. We set a target removal rate of 100% (i.e. perfect removal)

and a maximum number of iterations (i.e. maxIter= 40). Then, we separately attacked each image by means of

four methods: the classification-based attack of Section 4.3; the iteration of RMD (δ = 2); the iteration of Smoothing

(σ = 0.7, h = 3); the iteration of Collage. We iterated each attack until we reached either 100% removal rate or

the 40-th iteration. Once the algorithm halted, we evaluated the removal rates actually achieved on each image. We

organized these values in four histograms, whose envelopes are shown in Figure 6 (results for removal rates below 50%

are omitted for the sake of clarity). Two observations can highlight the superior performance of the classification-based

method: (i) it grants a minimum removal rate of 80% practically on the whole data set; (ii) in general, it provides the

highest removal rate. As an example, let us focus our attention on removal rates greater than 90%: the classification-

based method achieved such goal on 1149 images out of 1338 (corresponding to 86% of the data set), followed by

Collage, which achieved the same results on 468 images (35% of the data set). The RMD and Smoothing proved to

be the less effective attacks, with 147 (11% of data set) and 12 (0.9% of data set) respectively. It is also worth noting
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Figure 6: Effectiveness of classification-based attack with respect to the state of the art of “class-unaware” techniques
(UCID database).

that only the classification-based approach was able to reach the perfect removal, although only on a limited number

of images (32, corresponding to 2.7% of the data set).

The number of deleted keypoints is not the only important metric for evaluating the performance of the attacks.

To be really effective, in facts, an attack also needs to preserve the image quality. Therefore, to evaluate the impact

on visual quality, we selected the images belonging to each bin of the histograms that led to Figure 6 and we have

averaged the PSNR (Peak Signal-to-Noise Ratio) over all the attacked patches. The results for high removal rates are

summarized in Table 1, where we omitted rates greater than 90%, since averaging on a small number of images did

not produce significant results. Clearly, the Smoothing is the attack with the lowest impact on image quality, but such

an advantage comes at the price of the lowest removal rates. Amongst the remaining techniques, the classification-

based method provides the best quality. One may wonder about the causes behind the poor performance of Collage

and RMD: for the former, they may be related to the size or the quality of the database or to the similarity criterion;

as for the latter, they are undoubtedly related to the nature of the attack itself. The RMD, in facts, although very

powerful, covers the original patches with very unpleasant “dots” rather than replacing them with something more

similar content-wise. Consequently, this effect quickly deteriorates the local quality, specially for those keypoints

whose spatial support is large.

Figure 7 provides a visual comparison of the three most effective methods. The artifacts introduced by RMD (3rd

from left) and Collage (4th from left) are more noticeable than those inserted in the picture by the classification-based
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Table 1: Average patch PSNR (dB) vs removal rate for the 4 attacks.
60% 65% 70% 75% 80% 85% 90%

Classification 36.66 36.60 36.59 36.57 36.56 36.55 36.40
Smoothing 41.83 41.79 41.87 41.98 41.85 41.28 40.55
RMD 29.57 29.46 29.31 29.01 28.77 28.40 27.99
Collage 30.34 30.31 30.27 30.24 30.12 29.87 29.71

Figure 7: Detail of an attacked region. From left to right: Original; Proposed (98% removed with average patch PSNR
of 37.8dB); RMD (94%, 25.6dB); Collage (91%, 35.1dB). Results refer to the whole image.

attack (2nd from left). Such phenomena are particularly visible between the ears of the dog.

Finally, it is also interesting to evaluate the computational burden of each technique. Within a single iteration of an

attack, the main contribute to the time complexity comes from cycling through all the keypoints, while the detection

of the SIFT features generally has a negligible impact. In Figure 8, the average execution time for a single image is

shown: the higher complexity of the Collage attack (triangular marker) is the consequence of several comparisons with

the database of patches not containing keypoints and becomes evident for removal rates above 75%. The comparisons

are still required by the classification-based attack (star marker), but limited in terms of iterations (25 instead of 40)

and of classes of keypoints (2 instead of 3). All the tests have been performed on Matlab R© on a desktop configuration

with 2GHz dual-core processor, 4GB RAM, 32bit Windows OS.

5.3 Robustness against different SIFT implementations

There exist a number of different implementations of the algorithm, often performing differently in terms of results

such as the number or the spatial location of keypoints. Although it is not the aim of this work to assess the fidelity

to Lowe’s original code of the various implementations, these software should not be ignored when evaluating the

robustness of our attack. In fact, one may rightly wonder whether the proposed approach is only capable of impairing

the adopted implementation of SIFT by exploiting its weaknesses (and its specific parameters). This should not happen

in a realistic counter-forensic scenario, where the attacker typically does not know which SIFT implementation the

forensic analyst will be using. Consequently, to evaluate the robustness of the classification based attack, we have
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Figure 8: Average processing time for a single image vs removal rate on the UCID database.

selected the following four SIFT implementations:

• VLFeat [22]. To the best of our knowledge, this is the “reference library” for the SIFT-based forensics and

counter-forensics related works. Other than the present work, [9], [14], [15] and [16] are also based on it. This

software is written in C language and can be downloaded from http://www.vlfeat.org.

• SIFT Legacy [23] (also known as MATLAB/C and SIFTC++). Although this is basically the predecessor

of VLFeat and has been superseded by it, such software is still used (see [18]). It can be downloaded from

http://www.vlfeat.org/∼vedaldi/code/sift.html.

• Rob Hess SIFT library [24]. It is written in C and uses the well-established OpenCV computer vision

library. It can be downloaded from http://blogs.oregonstate.edu/hess/code/sift/. There

also exists a Java porting of this code.

• Jift (by Jun Liu). Arguably the less famous implementation, it is written in C++ and uses the VXL computer

vision library. It can be downloaded from http://www.cs.man.ac.uk/∼liuja/#downloads. There

also exists an OpenCV porting of this code.
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5.4 Test of robustness

In the next experiments we attacked again the 1338 images of the UCID database, but only by means of the

classification-based attack (maxIter = 40, minRemoval = 100). Our goal now is to evaluate the behavior of

the proposed method in those cases where the attacker and the forensic analyst may be relying on different versions of

SIFT. In order to obtain fair results, the attack procedure was not tweaked to the characteristics of the various detec-

tors: the only constraint we imposed to the tools at our disposal is to work on the first octave, in compliance with our

starting assumptions. We left unchanged all the other parameters (see Table 2), whose values correspond most of the

times to those suggested by Lowe in [10].

Table 2: Main parameters of the employed SIFT implementations. In Vedaldi and Fulkerson’s VLFeat the minimum
amount of contrast to accept a keypoint is controlled by the Peak threshold (hence the × symbol in the table).

Octaves Thresholds
Number Initial Intervals Contrast Edge Peak

VLFeat 1 0 3 × 10 4
SiftLegacy 1 0 3 0.03 10 4
RobHess 1 0 3 0.04 10 0.8
Jift 1 0 3 0.03 10 0.8

For each image, we proceeded as follows: (i) we computed the original keypoints with all the SIFT implementa-

tions; (ii) we manipulated the image with the VLFeat classification-based attack; (iii) we evaluated the removal rate

according to the number of final keypoints detected by each version of SIFT. Similarly to the procedure that led to

plots of Figure 6, we organized all the values into histograms, whose envelopes are shown in Figure 9.

As one may expect, the best results were achieved against the VLFeat-based detector (91.8% average removal),

followed by SiftLegacy (80%) and Jift (75%). Unfortunately, our method did not seem to be effective against

RobHess: averagely, only 9.5% of the detected keypoints were removed. Furthermore, on 216 images out of 1338

(about 16% of data set) new keypoints were introduced by the attack’s iterations (see negative removal rates of Figure

9). A more accurate analysis revealed that this specific implementation of SIFT often tends to calculate several

keypoints in spatial locations different from those detected by the remaining tools. Therefore, the classification-based

attack was not actually carried out on the keypoints that RobHess is calculating, whose neighborhoods remained

unaltered.

By relying on such new information, we improved the base framework of Section 4.1: rather than employing just

one SIFT detector, we tried to combine both VLFeat and RobHess detectors during the classification-based attack.

As a consequence, at each iteration we classified and attacked the union of the keypoints provided by the two tools.

The curves of Figure 10 were obtained by following the same procedure of the previous case.

Not only now the attack is dramatically more effective against the RobHess version (76.7% average removal),
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Figure 9: Robustness of the VLFeat-based proposed method. Curves correspond to the envelopes of removal rate’s
histograms, obtained by analyzing the manipulated UCID database by means of 4 different SIFT versions.
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Figure 10: Robustness of the VLFeat+RobHess-based proposed method. Curves correspond to the envelopes
of removal rate’s histograms, obtained by analyzing the manipulated UCID database by means of 4 different SIFT
versions.
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but the performance remained basically the same against VLFeat (91.5%), SiftLegacy (79.8%) and Jift (71%).

From the latter test we can conclude that it may be worth investigating the case in which an attacker can select a

combination of more than one SIFT detector before removing the keypoints, since this would bring the attacker and

the analyst on the same level, thus opening new interesting scenarios.

As an example, let us consider the face2.jpg test image shown in Figure 12 (left). On the original image, VLFeat

and RobHess detect respectively 58 and 24 keypoints. If we attack the image with the classification-based method

relying only on VLFeat, we obtain the results of Figure 11 (top), where we omitted iterations 26-40 because the

number of keypoints remained constant. We can see that, according to VLFeat, there is only 1 keypoint left in the

attacked image. However, if we let RobHess analyze the same image, 15 keypoints are detected. Let us now carry

out again the attack, this time relying on both VLFeat and RobHess (Figure 11 bottom). Clearly, the amount of

keypoints is higher now (82), as they are the union of the keypoints detected by the two implementations. However,

the attack shows the same trend as before, but this time it is also effective against RobHess.

It is interesting to point out that this improvement did not come at the cost of visual perceptivity. As Figure 12 can

confirm, the quality loss of the combination of VLFeat and RobHess with respect to VLFeat alone, in terms of

PSNR of the final image, is barely noticeable: 44.12dB vs 45.84dB for the full image and 36.56dB vs 37.75dB for the

average over all the patches.

5.5 Copy-Move Counter Forensics

In a copy-move scenario, the aim of an attacker is to avoid the detection of matched SIFT keypoints linking the cloned

patches. For sake of simplicity, we can assume to deal with two copy-moved patches without loss of generality.

Therefore, our objective is now to hide the traces of the manipulation by altering only the source and destination

patches. As a consequence, we will now deal with a significantly lower number of keypoints with respect to the attack

carried out on the whole image. As a matter of fact, if the manipulation is wisely distributed over the two patches in

such a way that a mismatch in their SIFT descriptions is introduced, one does not even need to delete all the keypoints

of the patches.

To this aim, we have slightly modified the procedure of Section 4.3 in such a way that, at each iteration, only

one keypoint of each match at a time is manipulated. Let N be the number of matches revealed by the copy-move

detector; first, we randomly choose N
2 matches and we try to erase them by attacking the corresponding keypoints in

the source patch; then, we select the remaining N
2 matches and we try to erase them by attacking the corresponding

keypoints in the destination patch. Although we did not exploit such advantage here, it is interesting to point out that

it is not always strictly necessary to completely remove all the matched keypoints. Copy-move detection methods, in
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Figure 11: Number and classes of keypoints for each iteration of the attack on test image face2.jpg: VLFeat only
(top) and VLFeat+RobHess (down). In the latter case the total amount of keypoints is the union of the keypoints
detected by the two techniques. The values in the upper portion of each plot correspond to the PSNR (full image) of
even iterations.
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Figure 12: Visual comparison of the impact of the classification-based attack on test image face2.jpg (40-th iteration).
From left to right: original, VLFeat only and VLFeat+RobHess.

fact, usually require at least 3 matches to detect a forgery.

Table 3 confirms that the conclusions drawn for the general case of Section 5.2 still hold for the copy-move

scenario. The classification-based method represents again the best trade off between the rate of removal (all matches

deleted with the lowest number of iterations) and the perceptual quality (average PSNR of 35.2dB second only to the

Smoothing attack).

Table 3: Tests on 10 copy-move manipulated images: left matches are listed according to the relative iteration.
Attack: CLASSIFICATION-BASED SMOOTHING RMD COLLAGE

Image (matches) After (%) Iter. PSNR After (%) Iter. PSNR After (%) Iter. PSNR After (%) Iter. PSNR
I1 (37) 0 (100%) 14 41.2 12 (67.6%) 40 39.4 5 (86.5%) 40 30.7 3 (91.9%) 40 28.6
I2 (66) 0 (100%) 20 39.9 29 (56.1%) 40 47.7 21 (68.2%) 40 25.6 6 (90.9%) 40 33.7
I3 (150) 0 (100%) 23 48.1 103 (31.3%) 40 57.8 0 (100%) 26 41.2 7 (95.3%) 40 43.1
I4 (41) 0 (100%) 15 42.8 11 (73.2%) 40 42.1 9 (78.0%) 40 27.4 2 (95.1%) 40 32.2
I5 (23) 0 (100%) 31 47.0 8 (65.2%) 40 44.5 8 (65.2%) 40 25.3 0 (100%) 9 28.0
I6 (56) 0 (100%) 17 45.8 27 (51.8%) 40 41.1 7 (87.5%) 40 26.3 3 (94.7%) 40 33.3
I7 (55) 0 (100%) 28 34.3 10 (81.8%) 40 40.9 10 (81.8%) 40 26.2 1 (98.2%) 40 28.4
I8 (32) 0 (100%) 15 45.0 8 (75.0%) 40 38.7 1 (96.8%) 40 30.1 2 93.8%) 40 29.4
I9 (52) 0 (100%) 19 45.8 21 (59.6%) 40 48.6 10 (80.8%) 40 25.3 2 (96.2%) 40 33.5
I10 (53) 0 (100%) 21 44.2 16 (69.8%) 40 46.7 22 (58.5%) 40 29.4 3 (94.3%) 40 32.0
Average: 100% 21 43.4 63.1% 40 45.1 80.3% 39 28.8 95.0% 37 32.2

Figure 13 shows image I7’s copy-moved regions following the four attacks. It can be observed that the detector is

fooled by the classification-based attack (see Figure 13 - image bottom right) because the duplication of the skyscraper

is not recognized. On the contrary, the detector is still able to reveal the forgery in the other three cases: Smoothing

(10 matches, 40.9dB); Collage (1 match, 28.4dB); and RMD (10 matches, 26.2dB).

5.6 Block-based and SIFT-based copy-move detection

Copy-move forgery detection is not carried out only by means of SIFT-based methods. For this reason, in this Section

we propose a brief qualitative analysis of the performance of the classification-based attack in presence of a block-

based approach. More specifically, we have employed the following two detectors: the block-based one devised by
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Figure 13: Matches of the copy-moved regions of image I7 after the four attacks. Top left: Smoothing; top right:
Collage; bottom left: RMD; bottom right: Classification-based.

Fridrich et al. in [6], which relies on the similarity of low frequency DCT coefficients; and the SIFT-based one of [9].

We selected the forged image of Figure 14(a), where a person has been removed from the picture by duplicating

a portion of the sandy region. Starting from it, we hid the copy-move forgery by means of the following counter-

forensic techniques: the classification-based attack and the geometric attack proposed in [12]. According to the

authors, the attack of [12] proved to be effective against a number of block-based detectors (including [6]). It consists

of a crop of 3 pixels (column-wise and row-wise), followed by two JPEG compressions (qualities 70 and 60) and

a final resampling (bicubic interpolation) back to the size of the original image. We ran the two detectors on the

manipulated images and the results we obtained are show in Figure 14: the first image of each row represents a

manipulation, while the second and third images represent the detection performance of the block-based and SIFT-

based tools respectively. Both techniques succeeded in revealing the presence of tampering before the attacks were

carried out. Following the geometric attack (Figure 14(d)), only the block-based detector was successfully impaired.

Vice versa, the classification-based attack (Figure 14(g)) hid the manipulation only to the SIFT-based detector. Unlike

the single application of either of the two countermeasures, their cascade (Figure 14(l)) was effective against both

detectors, regardless of the order of the attacks.

The interpretation of such results is straightforward: SIFT features have been devised in such a way to be robust
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(a) Copy-moved (b) Block-based detection [6] (c) SIFT-based detection [9]

(d) Geometric attack [12] on (a) (e) Block-based detection (f) SIFT-based detection

(g) Classification attack on (a) (h) Block-based detection (i) SIFT-based detection

(j) Cascade of (d)–(g) on (a) (k) Block-based detection (l) SIFT-based detection

Figure 14: Block-based copy-move detector [6] vs SIFT-based copy-move detector [9]. First row: on copy-move
forged image; second row: following the geometric attack of [12]; third row: following the classification-based attack;
fourth row: following the cascade of the two attacks.
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against geometric manipulations, which obviously fail at impairing a SIFT-based copy-move detector. On the other

hand, the classification-based attack is designed to preserve the local visual quality of the image. Therefore, the

artifacts introduced into the image do not alter the features analyzed by the block-based detector. As a consequence,

the two different counter-forensic schemes (and possibly others) should cooperate with each other in order to be

effective against a wider spectrum of detection techniques.

6 Conclusions and future work

In this paper we presented an counter-forensics scheme to counter a SIFT-based copy-move detector. The goal is to

remove SIFT keypoints with the lowest possible impact on visual quality. To do so, we first classified SIFT keypoints

depending on the histogram of their neighborhood. Then we used attacks specifically tailored to each class. Results

were better than those obtained by always using the same attack regardless of keypoint’s properties. The proposed

scheme was applied to a realistic copy-move scenario and succeeded in disabling a state-of-the-art SIFT-based detector.

Several aspects could be further investigated, the most interesting of which is the injection of fake keypoints into the

cleaned image. In fact, an image that does not contain SIFT keypoints (or very few of them) is suspicious: such

absence could be taken as a clue of tampering, thus leading to a counter-detector whose implementation is very

straightforward. As a matter of fact, in a copy-move scenario, the side effect of the classification-based attack tends

to be less noticeable, mainly for two reasons: (i) only half of the keypoints are removed from each patch; (ii) some

keypoints are actually not removed but altered in such a way that their previous match is canceled. Nonetheless,

our attack could greatly benefit from an additional module introducing plausible fake keypoints and triggering false

positives during the SIFT detection. Moreover, it could be useful to study more in depth the interactions between

the countermeasures against SIFT-based and block-based copy-move detectors. Finally, it would also be interesting

to apply our attack to a Content Based Image Retrieval (CBIR) scenario in order to assess its effectiveness against

SIFT-based search engines.
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