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The Source Identification Game:
An Information-Theoretic Perspective

Mauro Barni, Fellow, IEEE, and Benedetta Tondi

Abstract—We introduce a theoretical framework in which to
cast the source identification problem. Thanks to the adoption
of a game-theoretic approach, the proposed framework permits
us to derive the ultimate achievable performance of the forensic
analysis in the presence of an adversary aiming at deceiving it.
The asymptotic Nash equilibrium of the source identification
game is derived under an assumption on the resources on which
the forensic analyst may rely. The payoff at the equilibrium is an-
alyzed, deriving the conditions under which a successful forensic
analysis is possible and the error exponent of the false-negative
error probability in such a case. The difficulty of deriving a
closed-form solution for general instances of the game is alleviated
by the introduction of an efficient numerical procedure for the
derivation of the optimum attacking strategy. The numerical
analysis is applied to a case study to show the kind of information
it can provide.

Index Terms—Multimedia forensics, source identification,
counter-forensics, game theory, hypothesis testing, adversarial
signal processing.

I. INTRODUCTION

M ULTIMEDIA forensics [1] is a new discipline aiming
at collecting evidence about the past history of multi-

media documents, including the identification of the source of
the document [2], the distinction between computer generated
and real world documents (e.g., distinction between real and
synthetic images [3]), the detection of traces left by the appli-
cation of certain processing tools like resampling [4] or JPEG
compression [5], the modification of the semantic content of
the document through cut and paste [6] or copy-move opera-
tions [7] and so on. Early works in this field did not consider
the presence of an adversary aiming at impeding the forensic
analysis; as a result most multimedia forensic techniques do
not work properly if some simple countermeasures (collectively
referred to as counter-forensic techniques) are taken in order
to delete the traces left by the acquisition device or the pro-
cessing tool that has been used to create the forgery [8]–[12].
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In an attempt to re-establish the validity of forensic analysis, re-
searchers have started building new tools to detect the traces left
by counter-forensic algorithms, as, for example, in [13]–[15].
It is evident that any attempt to improve the forensic analysis

will be accompanied by a dual effort to devise more powerful
counter-forensic techniques that leave less and less evidence in
the forged documents.While this is an unavoidable and possibly
virtuous loop that will finally lead to more powerful forensic and
counter-forensic tools, the need to investigate the ultimate limits
of forensic (and counter-forensic) analysis clearly exists.

A. Previous Works

Few attempts have been made so far to cast the multimedia
forensic problem into a rigorous framework and systematically
study the relationship between forensics, counter-forensics and
counter counter-forensics. In [12], Böhme and Kirchner cast
the forensic problem in a hypothesis testing framework. Several
versions of the problem are defined according to the particular
hypothesis (or hypotheses) being tested, including distinction
between natural and computer generated images, manipulation
detection, source identification. Still in [12], counter-forensics
is defined as a way to degrade the performance of the hypothesis
test envisaged by the forensic analyst. By relying on arguments
similar to those used in steganography and steganalysis [16],
[17], Böhme and Kirchner argue that the divergence between
the probability density functions of the observed signals after
the application of the counter-forensic attack is a proper mea-
sure to evaluate the reliability of the attack, thus introducing
the concept of -reliable and perfectly reliable counter-foren-
sics. Noticeably, such measures do not depend on the particular
investigation technique adopted by the forensic analyst. Even if
Böhme and Kirchner do not explicitly refer to a game-theoretic
framework, their attempt to decouple the counterattack from a
specific forensic strategy can be seen as a first-implicit-step to-
wards the definition of the equilibrium point of a general multi-
media forensics game. The analysis presented in this paper pro-
vides a formal game-theoretic framework to cast the above con-
cepts in, clarifying their exact meaning and the conditions under
which they hold.
Another work loosely related to the present paper is [18],

where the authors introduce a game-theoretic framework to
evaluate the effectiveness of a given attacking strategy and de-
rive the optimum countermeasures. As opposed to our analysis,
in [18] the attacker’s strategy is fixed and the game-theoretic
framework is used only to determine the optimum parameters
of the forensic analysis and the attack, thus failing to provide
a complete characterization of the game between the attacker
and the forensic analyst.
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Finally, we would like to observe that source identification
in the presence of an adversary has already been studied, from
a more practical point of view and without resorting to game
theory, in [13]. The scenario depicted in [13], however, does
not fit into the framework introduced in this paper, since the
underlying statistical model based on PRNU (Photo Response
Nonuniformity) can not be described as a stationary source. On
the positive side, the framework introduced in this paper is more
general, since it can be applied also to manipulation detection
and many other forensic problems. In manipulation detection,
for instance, the analyst wants to distinguish between original
images following some distribution and manipulated images
following a different distribution, while the attacker’s goal is to
impede manipulation detection by concealing the changes intro-
duced as a consequence of the manipulation under some distor-
tion constraints (see also [12]).

B. Contribution

In this paper, we consider the following problem: let
be a source of information known to both the Forensic Analyst
(FA) and the Adversary (AD). The goal of the FA is to distin-
guish sequences generated by from those generated by other
sources. Let be a second source known to the AD (and
possibly to the FA), and let be a sequence
drawn from . It is the aim of the AD to transform into a
new sequence as close as possible to in such a way that
FA believes that has been generated by .
Given the above scenario, the first contribution of this paper

is to propose a rigorous game-theoretic framework that can be
used to analyze the source identification problem, and derive
the equilibrium point of the game for some simple, yet mean-
ingful cases. Specifically, we show that under certain assump-
tions on the set of strategies available to the FA, the game admits
an asymptotic Nash equilibrium, and derive the optimum strate-
gies for the AD and the FA at the equilibrium. With respect to
[12], the use of a game-theoretic framework has the advantage
of clarifying the exact conditions under which the divergence
can be used as a measure of the effectiveness of the forensic
and counter-forensic strategies.
As a second contribution, we analyze the asymptotic behavior

of the payoff at the equilibrium. In this way we are able to
distinguish the cases in which the FA will succeed from those
in which the AD will eventually win the game. This analysis
significantly extends the concept of vulnerability of a forensic
strategy [12], since we prove that, at least in the scenario we
are considering, the vulnerability of any forensic strategy ulti-
mately depends only on the relationship between the sources
and , the allowed attack distortion and the target false alarm
error probability.
Finding a closed-form expression for the Nash equilibrium

point is possible only in very simple cases, hence the third con-
tribution of the paper is the description of an efficient numer-
ical procedure whereby the asymptotically optimum strategies
can be identified and the payoff at the equilibrium evaluated.
We then use the numerical analysis to get some insights into the
best achievable performance for a close-to-reality case study.
Some of the ideas presented in this paper were already in-

troduced in [19]. With respect to such a work, though, several

novelties are introduced. From a theoretical point of view, the
most relevant differences are the way the resource limited as-
sumption (see Section III-A) is introduced and the details of
the proofs, that correct some imprecisions present in [19]. The
part dedicated to multivalued sources and the numerical anal-
ysis are also a complete novelty with respect to [19], where the
discussion focused on the binary case only. The mathematical
machinery used to prove our main results relies heavily on the
methods of types [20], [21] and is somewhat similar to the tech-
niques used in [22], with reference to watermarking and [23],
with regard to hypothesis testing. Despite the similarities, sev-
eral differences exist between our work and the analysis carried
out in [22]. First of all, the watermarking scenario described in
[22] does not refer directly to a game theoretic formulation: as a
matter of fact, the analysis in [22] is carried under the assump-
tion that no attack is present or that the attack channel is fixed,
and the resort to a min–max optimization is due to the necessity
of finding the jointly optimumwatermark embedding and detec-
tion strategies. Secondly, in [22] no attempt is made to derive the
error exponents for the jointly optimum watermarking scheme.
In our case, instead, such an analysis plays a major role since it
determines the winner of the game under asymptotic conditions.
Finally, we observe that even if the paper focuses on the

source identification problem, the same set up can be used to
model a much wider category of problems. As a matter of fact,
any situation in which an analyst is interested in distinguishing
between two hypotheses characterized by different probability
distributions, despite the presence of an adversary, can be prof-
itably analyzed by using the framework proposed in this work.
The rest of this paper is organized as follows. In Section II,

the notation used throughout the paper is introduced, together
with some basic notions of game theory. Section III contains the
main results of the paper. First it introduces a rigorous definition
of the source identification game, then the equilibrium point of
the game is looked for and the behavior of the payoff at the
equilibrium is analyzed. Section IV is devoted to the numerical
analysis and its application to a simple case-study. The paper
ends with Section V, where some conclusions are drawn and
directions for future research highlighted.

II. BASIC CONCEPTS, NOTATION, AND DEFINITIONS

In this section we summarize the notation and definitions used
throughout the paper. We also introduce some basic concepts of
game theory that will be used to model the source identification
problem.
For the rest of this work we will use capital letters to indicate

scalar random variables (RVs), whose specific realizations will
be represented by the corresponding lower case letters. Random
sequences, whose length will be denoted by , are indicated by
. Instantiations of random sequences are indicated by the

corresponding lowercase letters, so indicates a specific re-
alization of the random sequence , and in-
dicate the -th element of and respectively. Information
sources will also be defined by capital letters. The alphabet of an
information source will be indicated by the corresponding cal-
ligraphic capital letter (e.g., ). Calligraphic letters will also be
used to indicate classes of information sources and classes
of probability density functions . The probability density
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function (pdf) of a random variable will be denoted by .
The same notation will be used to indicate the probability mea-
sure ruling the emission of sequences from a source , so we
will use the expressions and to indicate, respec-
tively, the probability of symbol and the probability that
the source emits the sequence , the exact meaning of
being always clearly recoverable from the context wherein it is
used. Given an event (be it a subset of or ), we will
use the notation to indicate the probability of the event
under the probability measure . Given two sequences

and , their Hamming distance is defined as the number of lo-
cations for which , i.e.,

(1)

with if and 0 otherwise.
Throughout the paper we make extensive use of the con-

cepts of type and type class defined as follows (for more in-
sights into the use of type classes in information theory and sta-
tistics we refer to [20]). Let be a sequence with elements
belonging to an alphabet . The type of is the empir-
ical probability distribution induced by the sequence , i.e.,

. In the following we in-
dicate with the set of types with denominator , i.e., the set
of types induced by sequences of length . Given , we
indicate with the type class of , i.e., the set of all the
sequences in having type .
The Kullback–Leibler (KL) divergence between two distri-

butions and on the same finite alphabet is defined as:

(2)

where, according to usual conventions, and
if . Empirical distributions can be used

to calculate empirical information theoretic quantities, thus the
empirical entropy of a sequence will be denoted by:

(3)

Similar definitions hold for other information theoretic quanti-
ties (e.g., KL-divergence and conditional entropy) governed by
empirical distributions.

A. Game Theory

Game theory is a branch of mathematics devoted to the anal-
ysis of strategic situations, referred to as games, in which the
success of one player depends on the choices made by the other
players. Traditionally, analysis in game theory aims at finding
the equilibrium points of the game, i.e., a set of strategies for
the various players of the game such that each player cannot
improve his outcome, given the others’ strategies. Game theory
encompasses a great variety of situations depending, among
other things, on the number of players, the way the degree of
success of each player is defined, the knowledge that a player
has on the strategies adopted by the others, the deterministic
or probabilistic nature of the game and so on. In this paper,
we are concerned with a rather simple class of games, i.e., the

class of strategic, two-player, zero-sum games. In this setup,
a game is defined as a 4-uple , where

and are the set of strate-
gies (actions) the first and the second player can choose from,
and is the payoff of the game for player
, when the first player chooses the strategy and the second
chooses . A pair of strategies and is called a pro-
file. In a zero-sum competitive game the two payoff functions
are strictly related to each other since for any profile we have

. In other words, the win of a
player is equal to the loss of the other. In the particular case of a
zero-sum game, then, only one payoff function needs to be de-
fined.Without loss of generality we can specify the payoff of the
first player (generally indicated by ), with the understanding
that the payoff of the second player is equal to . In the
most common formulation, the sets and the payoff func-
tions are assumed to be known to both players. In addition, it is
assumed that the players choose their strategies before starting
the game so that they have no hints about the strategy actually
chosen by the other player (strategic game).
Given a game, the determination of the best strategy that

each player should follow to maximize its payoff is not an easy
task, all the more that a profile that is optimum for both the
players may not exist. As we said, a common goal in game
theory is to determine the existence of equilibrium points, i.e.,
profiles that, in some sense represent a satisfactory choice for
both players. While there are many definitions of equilibrium,
the most famous and commonly adopted is the one due by Nash
[24], [25]. For the particular case of a two-player game, a profile

is a Nash equilibrium if:

(4)

where for a zero-sum game . In practice, a profile
is a Nash equilibrium if each player does not have any interest
in changing its choice assuming the other does not change its
strategy. In the rest of this paper we will formulate the source
identification game as a zero-sum, competitive game, between
the FA and the AD, and we will derive the Nash equilibrium
profile for some particular versions of the game.

III. SOURCE IDENTIFICATION WITH KNOWN SOURCES

Our definition of the Source Identification game starts
from the observation that the task of the FA is the definition
of a test to accept or reject the hypothesis that the sequence
under analysis was produced by a certain source . On the other
side, the goal of the AD is to take a sequence generated by a
different source and modify it in such a way that the FA accepts
the hypothesis that the modified sequence has been generated
by . In doing so the AD may want to minimize the amount
of modifications it has to introduce to deceive the FA. In the
following, we cast the above ideas into a rigorous framework.
To start with, we assume that both the FA and the AD have
a full knowledge of the source . We assume the source
is also known to both the FA and the AD. This may seem a
questionable choice, since in practice it may be difficult for the
FA to have full access to the source . We will see, however,
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that, at least asymptotically, the assumption that the FA knows
can be removed, thus leading to a more realistic model. One

may also argue that perfect knowledge of sources and can
never be reached in practice, yet we believe that the analysis
of even this simplified version of the game can be extremely
insightful and open the way to the analysis of more realistic and
complex scenarios.
Let, then, be a class of information sources with finite al-

phabet (e.g., the class of memoryless sources, or the class of
-order Markov source) and let and be two sources be-
longing to . As we said, we assume that the probability mea-
sures and ruling the emission of sequences by and
are known to both the FA and the AD.
Let be a sequence drawn from and let be a modified

version of produced by the AD in the attempt to deceive the
FA. Let be the hypothesis that the test sequence has been
generated by , and let be the opposite hypothesis that the
sequence has been generated by . We define the source iden-
tification game under the known source assumption as
follows.
Definition 1: The game is a zero-sum,

strategic, game played by the FA and the AD, defined by the
following strategies and payoff.
• The set of strategies the FA can choose from is the set
of acceptance regions for for which the false positive
probability (i.e., the probability of rejecting when
is true) is below a certain threshold:

(5)

where is the acceptance region for (similarly we in-
dicate with the rejection region for ), is a
prescribed maximum false positive probability, and where

indicates the probability that a sequence
generated by does not belong to .

• The set of strategies the AD can choose from is formed by
all the functions that map a sequence into a new
sequence subject to a distortion constraint:

(6)

where is a proper distance function and is the
maximum allowed average per-letter distortion1.

• The payoff function is defined as the false negative error
probability , namely:

(7)

A few comments are in order to clarify some of the choices
we made to formulate the game. First of all we decided to
limit the strategies available to the AD to deterministic functions
of . This may seem a limiting choice, however we will see in
Section III-A that, at least asymptotically, the optimum strategy
of the FA depends neither on the strategy chosen by the AD
nor on , then, it does not make sense for the AD to adopt a
randomized strategy to confuse the FA.

1While can be interpreted as the average per-letter distortion, the AD is
not obliged to introduce a distortion that is lower than for each sample of the
sequence, since (6) defines only a global constraint.

The second comment regards the assumption that the FA
knows . As it is evident from (7), this is a necessary assump-
tion, since for a proper definition of the game it is required that
both players have a full knowledge of the payoff for all possible
profiles. An alternative possibility could be to define the payoff
under a worst case assumption on , however such a choice
has two major drawbacks. First of all, if and belong to
the same class of sources , the worst case for the FA would
always be , a condition under which no meaningful
analysis can be made to distinguish sequences drawn from
and . One could require that and belong to different
source classes, however such classes should have to be known
to the FA for a proper definition of the game, thus raising the
same concerns raised by the assumption that the FA knows .
Secondly, adopting a worst case analysis leads to the necessity
of differentiating the payoffs of the FA and the AD, since for
the FA the worst case corresponds to the highest false negative
error probability across all , while the AD knows and
hence can compute the actual error probability. This observa-
tion would lead to the definition of a noncompetitive version of
the game in which two different payoffs are specified for the FA
and the AD. While this is an interesting direction to look into,
we leave it for future work, all the more that in the sequel of the
paper we will focus on the asymptotic solution of the game, for
which the optimum strategy of the FA does not depend on ,
thus making the assumption that the FA knows irrelevant.

A. Asymptotically Optimum Strategies for FA With Limited
Resources

Solving the game as stated in Definition 1 is a cumber-
some task, hence in this section we focus on the asymptotic op-
timum strategies that are obtained when the length of the ob-
served sequence tends to infinity. In order to make the problem
tractable, we also limit the kind of acceptance regions the FA
can choose from. We will do so by using an approach similar to
that used in [22] to derive the optimum embedding and detec-
tion strategies for a general watermarking problem. Specifically,
we limit the complexity of the analysis carried out by the FA by
confining it to depend on a limited set of statistics computed on
the test sequence. To fix the ideas, we assume that the sources
and belong to the class of discrete memoryless sources,

however our analysis can be extended to other source classes
as outlined in Section III-D. Given the memoryless nature of
and , it makes sense to require that the FA bases its decision
by relying only on , i.e., on the empirical probability den-
sity function induced by the test sequence2. Note that, strictly
speaking, is not a sufficient statistics for the FA; in fact,
even if is a memoryless source, the AD could introduce some
memory within the sequence as a result of the application of .
This is the reason why we need to introduce explicitly the re-
quirement that the FA bases its decision only on .
A fundamental consequence of the limited resources assump-

tion is that it forces to be a union of type classes, i.e., if
belongs to , then the whole type class of , namely ,
will be contained in . Since a type class is univocally defined

2In order to keep the notation as light as possible, we use the symbol
to indicate the test sequence even if, in principle, it is not known whether
originates from or not.
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by the empirical probability density function of the sequences
contained in it, we can redefine the acceptance region as a
union of types , where is the set of all possible types
with denominator .
With the above ideas in mind we can define the (asymptotic)
game as follows.

Definition 2: The game is a game be-
tween the FA and the AD defined by the following strategies
and payoff:

(8)

(9)

(10)

where in the definition of indicates the power set of
, i.e., all the possible unions of types3. Note also that we now

ask that the false positive error probability decay exponentially
fast with , thus opening the way to the asymptotic solution of
the game.
We start our derivation by proving the following lemma.
Lemma 1: Let be defined as follows:

(11)

and let be the corresponding acceptance region. Then we
have:
1) , with for ,
2) for every (with defined as in (8)) we have

.
Proof: Since and are unions of type classes,

can be rewritten as

(12)

where indicates the collective probability (under
) of all the sequences in . For the class of discrete

memoryless sources, the number of types is upper bounded
by and the probability of a type class by

(see [20] chapter 12), hence we have:

(13)

proving the first part of the lemma with
and where the last inequality de-

rives from (11).

3In the rest of the paper we will refer at as a union of sequences or a union
of types interchangeably, the two perspectives being equivalent and clearly un-
derstandable from the context.

We now pass to the second part of the lemma. Let be in
and let be in . Then we have (see [20] chapter 12 for

a justification of the last inequality):

(14)

that, by taking the logarithm of both sides, proves that indeed
.

The first relation proved in lemma 1 says that, asymptotically,
defines a valid strategy for the FA, while the second one

implies the optimality of . In fact, if for a certain strategy of
the ADwe have that , a fortioriwe have that for
any other choice of hence resulting in a higher false negative
error probability.
An interesting consequence of lemma 1 is that the optimum

strategy for the FA does not depend on: i) the strategy chosen
by the AD, and ii) , i.e., the optimum strategy is universally
optimum across all the probability density functions in . As
we anticipated, this result makes the assumption that the FA
knows unnecessary. In the same way, it is not necessary for
the FA to know the probability density function of the attacked
sequences.
We also observe that the strategy expressed by (11) has a

simple heuristic interpretation: the FA will accept only the se-
quences whose empirical pdf is close enough (in divergence
terms) to the known pdf of the source .
We now pass to the determination of the optimum strategy

for the AD. Since the acceptance region is fixed, the AD can
optimize its strategy by assuming that . We start by
observing that the goal of the AD is to maximize . Such a
goal is obtained by trying to bring the sequences produced by
within , i.e., by trying to reach the condition:

(15)

In doing so, the AD must only respect the constraint that
. The optimum strategy for the AD can

then be expressed as follows:

(16)

Together with lemma 1, the above observation permits to state
the first fundamental result of the paper, summarized in the fol-
lowing theorem.
Theorem 1: The profile defined by lemma 1 and (16)

defines an asymptotic Nash equilibrium for the game.
Proof: Adapting (4) to the case at hand yields:

(17)

(18)

where the minus sign in the second inequality is due to the fact
that in a zero-sum game we have . By remembering
that for the game is the false negative error proba-
bility, the inequality (17) derives immediately from lemma 1.
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In the same way, since maximizes the false negative error
probability given , the inequality (18) is always verified thus
proving the theorem.
We conclude this section by observing that even if in the def-

inition of the game the payoff is the average false negative
error probability, the strategy defined by (16) represents the op-
timum attack the AD can use for each single sequence. In fact,
if the minimization in (16) fails to bring into , any other
attack will also fail.

B. Payoff at the Equilibrium and Error Exponents

The next step is the computation of the payoff at the equilib-
rium. Given the asymptotic nature of the solution we found, it
makes sense to compute the asymptotic behavior of at the
equilibrium. From the foregoing discussion it is easy to argue
that will either tend to 0 or to 1 for depending on
the relationship between the maximum allowed distortion and
the KL-divergence between and . Then, for a more ac-
curate analysis, we will also evaluate the error exponent of the
false negative error probability defined as4

(19)

In this framework we are interested in understanding the con-
ditions under which tends to 0, and the value of in this
case5.
Let be the set of sequences generated by that can be

moved into . We can write:

(20)

The false negative error probability is clearly equal to the prob-
ability that . We start by observing that, under some
very general assumptions, is still a union of type classes.
Property 1: The set defined in (20) is a union of type

classes for any permutation-invariant distance-measure.
Proof: Let . Then there exists a sequence
such that . Let be a generic sequence

belonging to the type class of , i.e., . Then there
exists a permutation of the elements of the sequence such
that . If we apply the same permutation to we
obtain a sequence belonging to . Given that
is a union of type classes, . We now assume that

the distance measure used to define the distortion constraint is
invariant to a permutation of the sequence elements. This is the
case, for instance, of all additive distance measures for which:

(21)

for any function . Under this assumption
, with , hence proving that .

The above property shows that is a union of type classes
for all the most common distance measures, including dis-
tances, the Hamming distance and the max (infinity) distance

4Due to (8), the false positive error exponent is always larger than or
equal to .
5In the same way we could investigate how fast the probability of a correct

decision tends to zero when . Such an analysis goes along the same
lines we will use for the computation of and will not be detailed.

for which . Thanks to property 1,
can be redefined in terms of types instead than sequences:

(22)

where we have explicitly indicated that we refer to sequences
of length .
We are now ready to investigate the asymptotic behavior of
. To this aim, we need to introduce the asymptotic version

of , defined as:

(23)

where indicates the closure of a set .
At this point we can distinguish two cases: may either

belong to or not. In the former case , and the FA
will not be able to correctly distinguish between original and
fake sequences. In the latter case is strictly positive and the
probability that the FA will not distinguish original and fake se-
quences tends to zero exponentially fast when increases. In
both cases, the error exponent of the false negative error prob-
ability is given by the following theorem.
Theorem 2: For the game, the error exponent of the false

negative error probability at the equilibrium is given by:

(24)

leading to the following cases:
1) , if ;
2) , if .

Proof: The theorem can be seen as a special case of
Sanov’s theorem (see [20], chapter 12, and [23]), however
proving that the hypothesis of Sanov’s theorem are satisfied is
not a straightforward task due to the complicated expression
used to define . For this reason in the following we give a
complete proof of the theorem. We start by showing that is
lower bounded by the expression in (24). Later we demonstrate
that the same expression is also an upper bound for thus
proving the theorem. For any value of we have

(25)

where inequalities and follow from the properties of
types [20], and follows from the fact that .
Passing to the error exponent yields:

(26)
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We now prove that the same expression is also an upper bound
for . Let the probability distribution which satisfies (24).
Even if does not need to belong to for any , in the
Appendix we show that if is large enough we can find a type
in that is arbitrarily close to . Due to the continuity of
, we can then find a sequence of types such that

when . So, for large , we
have:

(27)

where the last inequality follows from the properties of types
[20]. By passing to the error exponents, we have:

(28)

Combining the two bounds the theorem is proved.
The main consequence of Theorem 2 is that, given

and , the set of sources can be split into two distinct re-
gions, the subset of sources for which the false negative prob-
ability tends to zero exponentially fast ( and the
sources for which, as a consequence of the attack, the false neg-
ative probability tends to 1. Stated in another way, Theorem 2
permits to say whether two sources and are asymptoti-
cally distinguishable with a false positive error exponent equal
to , in the presence of an attack subject to a distortion con-
straint .
A problem with Theorem 2 is that the expression of ,

does not allow an easy computation of the pdf’s for which
and the corresponding error exponents. In Section IV,

we show how such a problem can be solved numerically. Here
we specialize the expression of to the case in which the dis-
tortion constraint is expressed in terms of the Hamming distance
between and . In this case, in fact, a closed-form expres-
sion can be found for thus greatly simplifying the analysis.
The simplification relies on the following lemma.
Lemma 2: If , the set can be

expressed as:

(29)

where the distance between and (sometimes called
variational distance) is defined as:

(30)

Proof: We start by proving that a sequence whose type has
a distance larger than from all the types in can not

belong to . Let and be two sequences, and let
and be their types. The distance between and can
be rewritten as follows:

(31)

where (respectively ) indicates the set of ’s for
which (respectively

), and where the last equality follows from
the observation that:

(32)

Let us consider now the Hamming distance between the se-
quences and . By considering , we see that
is larger or equal to . In fact, for
each , there must be at least posi-
tions in which the sequences and differ, so to justify the
presence of more ’s in than in , thus
yielding:

(33)

For the sequences whose type does not satisfy (29), we have
, yielding

(34)

showing that .
We now show that . Let be a type in . Then

there exists a type whose distance from is lower
than or equal to . Let be a sequence belonging to ,
the type class of . Starting form we can easily build a new
sequence whose type is equal to by proceeding as follows.
Let be the set of ’s for which . For each

we take positions where ,
and replace with a value , in such a way that at the
end we have . Note that this is always
possible as we have

(35)

Since to pass from to we modified only
positions of we have:

(36)

showing that , and hence , thus concluding
the proof of the lemma.
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Lemma 2 permits to use a simpler expression for , that
passes from the definition of the asymptotic version of , as
specified in the following:

(37)

Given the above definition it is easy to restate Theorem 2 by
adopting the more convenient expression of . The proof
goes along the same lines followed to prove Theorem 2, and
is omitted.

C. Bernoulli Sources

The exact computation of and the payoff at the equilib-
rium for the game in a general case is very cumbersome,
and depends heavily on the particular relationship between
and . In order to exemplify the general concepts described
in the previous section, we now apply them to the case of two
Bernoulli sources. For this kind of sequences the Hamming dis-
tance is a natural choice to define the distortion constraint, thus
permitting to adopt the simplified definition of given in
(37).
Let and be Bernoulli sources with parameters and

respectively. In this case the acceptance region for assumes a
very simple form. In fact, the KL-divergence between and

depends only on the number of 1’s in , the divergence
being a monotonic increasing6 function of , where we
indicated with the relative frequency of 1’s in . When
seen as an union of types, the acceptance region may be defined
in terms of (the probability of 1 under ) only:

(38)

with and derived from the equality

(39)

and where we have explicitly indicated the dependence of
and on . Note that in some cases we may have
and/or , since (39) may admit a solution only for

, or no solution at all.
The optimum strategy of the AD is also easy to define. Given

the monotonic nature of the KL-divergence, the AD will in-
crease (decrease) the number of 1’s in to make the relative
frequency of 1’s in as close as possible to . The AD will
succeed in inducing a decision error if the relative frequency of
ones in belongs to the interval . Since the distor-
tion constraint states that , we clearly have:

(40)

6Actually the KL-divergence may have an asymmetric behavior for
and however this asymmetry does not have any impact on our

analysis.

with the boundaries of the interval truncated to 0 or 1 when
needed. For the computation of the error exponent of at
the equilibrium we first consider the asymptotic version of
and :

(41)

where and are now derived from the equality
and

(42)

As stated by theorem 2, we can distinguish two cases:

(43)

In the first case . In the second case tends to 0 for
and the error exponent can be computed by resorting to

(24) and (37). Let us suppose for instance that .
The type in closest to in divergence is a Bernoulli source
with parameter , and hence the error exponent
will be .

D. Sources With Memory

The existence of a Nash equilibrium for the game has
been proven by assuming that the FA bases its analysis on the
empirical pdf of the test sequence. This assumption makes sense
for the class of DMS sources whose characteristics are com-
pletely described by first order statistics, but is not reasonable
for sources with memory. A closer inspection to the methods
used in Sections III-A and III-B, however, reveals that the anal-
ysis carried out therein can be extended to sources with memory,
as long as the concepts of type and type classes can still be
used. As a matter of fact, even if the method of types was ini-
tially developed to work with memoryless sources [21], it can
be extended to more complex models as well. Given a class
of sources with alphabet , we say that a partition of into

disjoint sets , is a partition into type classes if all
the sequences in the same are equiprobable for all the sources
in . If the number of type classes grows subexponentially
with , then the method of types can be applied to sources in
, and the analysis we carried out in Sections III-A and III-B
can be extended to such sources, if we insist with the limited
resources assumption, i.e., if we continue to assume that the FA
is restricted to define the acceptance region as a union of type
classes. Now it turns out that the concept of types can be applied
to some of the most commonly used source models, including
Markov sources with finite order and renewal processes.
For Markov sources with finite order, a model that is com-

monly used to describe a wide variety of sources with memory,
it is known that the number of type classes grows polynomi-
ally with [21], hence making the extension of our analysis
straightforward. For instance, in this case, the limited resources
assumption is equivalent to ask that the FA bases its decision on
the empirical transition probabilities induced by plus the pdf
of . While the final form of the optimum acceptance region
and the minimization problem to be solved by the AD will be
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much more complicated, their general form will remain essen-
tially the same.
Renewal processes are another class of sources amenable to

be analyzed by relying on the concept of types. Given a binary
source, let us indicate by the posi-
tions of the 1’s in the sequences produced by the source. The

are called interarrival times, and initial waiting time.
If the are independent and identically distributed random vari-
ables, the output of the source is called a renewal process. In the
same way, if the sequence forms a order Markov chain,
the output of the source is called a Markov renewal process of
order . Renewal processes can be used, for instance, to model
run length sequences and hence could be of interest in forensic
problems dealing with compressed streams adopting run-length
coding (e.g., the JPEG coding standard). In [26], it is shown that
the number of type classes of renewal processes and Markov re-
newal processes (of finite order) grows subexponentially with
, thus opening the way to the extension of our analysis to this
class of sources.

IV. NUMERICAL ANALYSIS

Finding a closed-form solution for the case of multivalued
sources seems a prohibitive task. While the formula defining
the optimum acceptance region does not change and can be
easily implemented by the FA, the task of the AD is more com-
plex due to the necessity of solving the minimization problem
in (16). Such a minimization resembles some instances of the
optimal transport problem [27], however here we are interested
in minimizing the divergence subject to a distortion constraint,
whereas, classically, optimal transport faces with the somewhat-
dual problem of minimizing the distortion needed to make a
source pdf equal to a target one. In the following we intro-
duce an efficient numerical procedure to determine the optimum
strategy of the AD. At first sight, numerical analysis could also
seem a difficult problem, since the number of variables involved
in the optimization grows with the sequence length , which
in turn needs to be very large due to the asymptotic nature of
the analysis. After a closer look, however, the minimization
problem can be greatly simplified. In order to show how, let us
reformulate it in a more convenient way. Let and
be the number of times the symbol appears, respectively, in
and , and let and be the corresponding relative

frequencies ( ). Let
be the number of times that a symbol is transformed into a
symbol as a result of the application of 7. The first con-
straint that the AD must satisfy when defining is a struc-
tural one, since can not modify more samples than there
are in the sequence. Specifically we have:

(44)

7According to this notation is always a positive number and
indicates the number of times that symbol is left as is by .

The second constraint is the distortion constraint, that can be
reformulated in terms of as follows

(45)

where we have assumed that an additive metric is used to com-
pute the distance between and , e.g., if the popular
norm is used, we would have . We now must
express the objective function of the minimization in (16) as a
function of . To do so we observe that:

(46)

By observing that

(47)

we can rephrase the optimization problem in (16) as follows

(48)

subject to the constraints (let us call them ):

(49)

Given the optimum values of the ’s, the AD can deter-
mine easily. For instance, for any pair he can pick at
random samples of equal to and transform them
into .
Some observations are in order regarding (48). First of all the

number of optimization variables is quadratic in . This is a
great improvement with respect to (16) where the number of
variables involved in the optimization was . Secondly, it ob-
viously makes sense to consider only solutions for which one
between and is equal to 0, neverthe-
less it is not necessary to explicitly express this constraint in
, since the solutions for which this condition does not hold

can be easily pruned after the optimization problem is solved.
Last, but not least, as it is shown in the Appendix, the objec-
tive function is convex in the optimization variables ,
hence several efficient solutions exist to solve it [28]. Among
them we mention the possibility of solving a relaxed version
of the problem in which the ’s do not need to be in-
teger. Given the convexity of the objective function the relaxed
problem can be solved efficiently by resorting to steepest gra-
dient methods. Once the relaxed solution has been obtained, the
optimum integer solution can be found by searching in the sur-
rounding of the relaxed minimum. A further significant simplifi-
cation can be achieved by observing that, actually, the AD does
not need to minimize the divergence between and , all
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he needs is to find a sequence within that satisfies the dis-
tortion constraint. Two cases are possible: let be the min-
imum divergence achieved by solving the relaxed problem. If

, then there’s no way for the AD
to move within and the FAwill win the game. On the con-
trary, if , the AD can proceed by
quantizing the values until he finds an integer solution
that satisfies the distortion constraint and for which .
If is large the impact of the quantization on the objective func-
tion in (48) will be minimal and the search very fast.

A. A Case Study

In order to show the potentiality of the numerical analysis
outlined above, we apply it to a case study somewhat related
to a class of practical source identification problems. Let us
assume that two signal sources and differ for the noisi-
ness of the signals they produce. In order to test the hypoth-
esis that a signal has been generated by , the FA applies a
wavelet decomposition to the signal and considers the statis-
tics of the DWT (Discrete Wavelet Transform) coefficients at a
certain decomposition level. The FA knows that the DWT co-
efficients are independent and follow a Laplacian distribution

. The DWT coefficients of the signal pro-
duced by the source also follow a Laplacian distribution but
with a different decay parameter . Alternatively, we could con-
sider images produced by cameras characterized by a different
noise variance [29], [30]. In order to distinguish between im-
ages acquired by the two cameras, the FA identifies a flat region
of the image and analyzes how the pixel grey levels are dis-
tributed around the mean value of the area. The FA knows that
if the image has been produced by the first source the pixels
follow a Laplacian distribution with decay parameter , while
for images acquired by the second camera, the decay parameter
is equal to . Note that we used a Laplacian distribution only as
an example, the whole derivation remaining valid for any other
distribution. Given a sequence of DWT coefficients (or pixel
gray levels) produced by and a distortion constraint , we
would like to derive the optimum attacking strategy for the AD.
Wewould also like to investigate whether the FA can distinguish
between sequences (images) generated by and by ensuring
that the false positive error probability tends to zero exponen-
tially fast with error exponent at least equal to .
A first problem we have to solve is that the analysis described

in the previous sections does not apply to continuous sources.
The simplest way to get around this problem is to quantize
the continuous pdf’s. If the quantization step is small enough,
the analysis of the discrete case will provide useful indications
about the continuous problem. Without loss of generality, in
the following we quantize the Laplacian pdf’s onto the set of
integers by restricting the pdf to values that have a nonnegli-
gible probability of appearing in a sequence of a certain length.
Specifically, the probability is computed as:

(50)

For the values of and used in our simulations, it is enough
to consider values until since the probability that a

Fig. 1. False negative error probability obtained through Monte Carlo sim-
ulations (1000 random sequences). The plots have been obtained by letting

, .

value outside the interval shows up is significantly
lower than one8. For instance, with and , such
a probability is about 0.002. A similar procedure is adopted to
discretize . Let us call and the discretized versions
of and . A first possibility to use the numerical anal-
ysis is through Monte Carlo simulations. We generate a great
number of sequences according to and use the numerical op-
timization to move them within . Measuring the success rate
will provide an estimate of the false negative error probability.
Fig. 1 shows the results obtained with the above procedure for

, various values of and 2 dif-
ferent values of ( and ). Each point has been
obtained by generating sequences according to .
In Fig. 2, the results of the optimum attack are exemplified,

by reporting the target pdf , the type of a sequence gener-
ated according to , and the type of the attacked sequence for
two different values of . As it can be seen, the type of the at-
tacked sequence gets closer to the target pdf thus reducing the
divergence between and , possibly entering the detec-
tion region .
The behavior of agrees with the insights provided by

Theorem 2: the values of can be split into 2 main classes,
those for which the false negative error probability approaches
zero and those for which the false negative probability tends
to 1. Of course, the former class corresponds to the cases for
which is further from thus easing the job of the FA. Such
a dual behavior is more evident for large values of since for
such values the numerical analysis gets closer to the asymptotic
conditions underlying the theoretical analysis. The numerical
analysis, then permits, for each value of (and for a fixed ),
to compute the minimum and maximum values of for which
the FA is going to fail. An example of this analysis is given in
Fig. 3, where the range of for which the FA fails is plotted as
a function of .

8For we let . Similarly for
.
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Fig. 2. Result of the optimal attack (from top left to bottom right): target pdf
( , (drawn from a source with ), for and
. The divergence ) after the attack is, respectively, 0.453
and .

Fig. 3. Range of for which increasing results in a false-negative error
probability tending to 1. The plots have been obtained by letting ,

, and .

The above observation suggests an alternative way to use the
numerical analysis to decide who between the AD and the FA
is going to win the game. Since due to the law of large num-
bers, for large all the sequences will eventually belong to
the same type, and that such a type will approach , we can
investigate whether the AD will succeed in bringing such se-
quences within (of course this analysis does not allow to
estimate ). Doing so requires only that the numerical opti-
mization is applied directly to the type obtained by multiplying
the probabilities in by (a large enough) , and see whether
the value of the divergence obtained in this way is lower than

. An example of the results that can be
obtained in this way is given in Fig. 4, where the maximum
value of for which the AD is not able to fool the forensic anal-
ysis is given. Upon inspection of the figure, for any value of ,
we can determine the values of for which no reliable forensic

Fig. 4. Maximum value of achievable as function of . The plots refer to
different values of and have been obtained by letting , .

analysis is possible . For the other values, the FA
can distinguish between sequences produced by and as-
suming that he chooses a value of lower than .

V. CONCLUSION

The definition of the and games, and the deriva-
tion of the Nash equilibrium for the game, represent a first
step towards the construction of a theoretical framework to cast
multimedia forensics and counter-forensics in. While we rec-
ognize that the proposed framework does not account for all
the subtleties involved in real forensic analysis, e.g., the neces-
sity of preserving the perceptual plausibility of the forged doc-
uments, and that the statistical models under which some in-
stances of the problem are solved do not grasp the complexity
of real signals, we believe our analysis to be an important step
towards the construction of a rigorous theoretical background
for multimedia forensics research that can be used to guide the
search for practical algorithms. The identification of an efficient
numerical procedure to determine the optimum AD strategy is
also important for the application of the theoretical framework
to real scenarios, since it can contribute to fill the gap between
the simplicity of theoretical models and the complexity of real
life applications. In [31], for instance, such numerical procedure
is used to derive a universal attacking strategy to conceal ma-
nipulation traces left in the image histogram.
A lesson that can be learned from our analysis is that con-

straining the FA to rely only on the empirical pdf of the test
sequence for taking a decision may result in the impossibility
for him to successfully distinguish between the sources and
. The only way out in this case is to resort to higher order

analysis based on more accurate image models (as usually done
with camera identification methods based on PRNU-Photo
Response Nonuniformity [2]). In fact, this is a path similar to
the one followed by steganalysis researchers as a way to cope
with steganographic schemes designed according to the perfect
steganography approach [16].
Several directions for future research can be outlined, among

them we mention the extension of the results presented in this
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paper to more realistic models, e.g., Markov sources, or contin-
uous sources, and the adoption of a source model capable of de-
scribing nonstationary acquisition artifacts like PRNU and other
forms of sensor noise. The definition of the source identification
game when the sources are known only through training data
is another promising research direction that we plan to investi-
gate. A further research direction to look into is the definition
of a proper game for a multisource scenario in which the binary
hypothesis test is replaced by a multiple hypotheses test. Such
an extension could follow the approach adopted in [32], where
the optimum asymptotic decision strategy - in the absence of
attacks—is derived under a constraint on the error exponents
involved in the test.

APPENDIX

A. Proof of Theorem 2

In order to complete the proof of the theorem given in the
main body of the paper, we have to show that, given , if is
large enough we can find a type in that is arbitrarily close
to . We can distinguish two cases, may either belong to

or not. In the sequel we provide the proof for the former
case. In the latter case, in fact, for the very definition of we
can find a type in which is arbitrarily close to ,
and then a type in (with large enough) that is arbitrarily
close to and hence to . Let then be such that
for some . Due to the definition of this means that taken
a sequence a mapping exists such that

(A1)

where, as usual, and where is a strictly positive
quantity. In order to characterize the mapping we use the
same notation used in Section IV, i.e., we consider the quantity

9 indicating how many times a value is changed into
by the application of , and the quantity indicating
the number of occurrences of symbol in the sequence . Due
to the density of rational number on the real line, for large we
can find a type that is arbitrarily close to . More
precisely, by indicating with a sequence in and with

the number of times that the symbol appears in , we
can say that for any positive value and for large we have

(A2)

We now prove that if is small enough (and hence large
enough) . To do so, we have to prove that it is pos-
sible to map any sequence in in a sequence whose type
belongs to . To do so we consider a mapping defined
as follows:

(A3)

9We use the symbol instead of to indicate explicitly that we are consid-
ering sequences of length .

where , indicating the truncation error, is a negative quantity
strictly larger than . We now prove that the sequence re-
sulting from the application of to satisfies the distortion
constraint and belongs to . For any additive distortion mea-
sure , the distortion constraint can be rewritten as:

(A4)

where the last inequality derives from the fact that the applica-
tion of the mapping to satisfies the distortion con-
straint for sequences of length . We only have to show that

. We can do that by means of the following chain of
equalities:

(A5)

By passing to relative frequency we can write:

where is a sequence that tends to 0 for . By exploiting
the relation (A2), we can say that:

(A6)

with the absolute value of smaller than in (A2) and hence
arbitrarily small. In other words, for large the type of the
sequence can be made arbitrarily close to the type of .
Due to the continuity of as a function of the ele-
ments of , it is possible to choose a large enough such that
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with . Then we can
write:

(A7)

which completes our proof.

B. Convexity of as a Function of

Let be a matrix with . We have to
prove that the objective function, let us indicate it by ,
of the optimization problem expressed in (48) is convex in ,
i.e., that for any two matrices and and any two values

and , we have

(A8)

Let be the -th column of and let be defined as:

(A9)

We clearly have:

(A10)

By definition does not depend on , hence, if
relation (A8) holds for each , then it also holds for the overall
function . We have

(A11)

that we conveniently rewrite as:

(A12)

Being nonnegative, we can apply the log-sum in-
equality [20] to (A12), obtaining:

(A13)

which completes the proof.
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