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Abstract

In this work we present a decision fusion strategy for image forensics. We define a framework that

exploits information provided by available forensic tools to yield a global judgment about the authenticity

of an image. Sources of information are modeled and fused using Dempster-Shafer Theory of Evidence,

since this theory allows to handle uncertain answers from tools and lack of knowledge about prior

probabilities better than the classical Bayesian approach. The proposed framework permits to exploit any

available information about tools reliability and about the compatibility between the traces the forensic

tools look for. The framework is easily extendable: new tools can be added incrementally with a little

effort. Comparison with logical disjunction- and SVM- based fusion approaches shows an improvement

in classification accuracy, particularly when strong generalization capabilities are needed.
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I. INTRODUCTION

Images have always played a key role in the transmission of information, mainly because of their

presumed objectivity. However, in the last years the advent of digital imaging has given a great impulse

to image manipulation, and nowadays images are facing a thrust crisis. Image Forensics, whose goal is

to investigate the history of an image using passive (blind) approaches, has emerged as a possible way

to solve the above crisis.

The basic idea underlying Image Forensics is that most, if not all, image processing tools leave some

(usually imperceptible) traces into the processed image, and hence the presence of these traces can be

investigated in order to understand whether the image has undergone some kind of processing or not.

In the last years many algorithms for detecting different kinds of traces have been proposed (see [?]

for an overview) which usually extract a set of features from the image and use them to classify the

content as exposing the trace or not. Very often, the creation of a forgery involves the application of more

than a single processing tool, thus leaving a number of traces that can be used to detect the presence

of tampering; this consideration suggests to analyze the authenticity of images by using more than one

tamper detection tool. Furthermore, existing forensic tools are far from ideal and often give uncertain or

even wrong answers, so, whenever possible, it may be wise to employ more than one tool searching for

the same trace. On top of that, it may also be the case that the presence of one trace inherently implies

the absence of another, because the traces are mutually exclusive by definition. For these reasons, taking

a final decision about the authenticity of an image relying on the output of a set of forensic tools is

not a trivial task, thus justifying the design of proper decision fusion methods explicitly thought for this

scenario. Given that new forensic tools are developed continuously, we would like our decision fusion

method to be easily extendable, so that new tools can be included as soon as they become available.

Another key issue regards the creation of training datasets for the fusion stage: while producing datasets

for training single tools is a rather simple task, creating datasets representing the variety of possible

combinations of traces that could be introduced during the creation of a realistic forgery is extremely

challenging.

As an answer to the above needs, we propose a decision fusion framework for the image forensics

scenario based on Dempster-Shafer Theory of Evidence (DST); the proposed model is easily extendable

and, as a key contribution, allows incremental addition of knowledge when new tools become available.
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With respect to more classical approaches to inference reasoning, the use of DST avoids the necessity

of assigning prior probabilities (that would be extremely difficult to estimate) and also provides more

intuitive tools for managing the uncertain knowledge provided by the forensic tools. This paper extends

a previous work by Fontani et al. [?] both from a theoretical and an experimental points of view. The

most significant novelty is that tools and searched traces are modeled in a more flexible way, specifically,

a mechanism for hierarchical fusion of traces is introduced, leading to a key improvement of framework

extendability. Moreover, the number of implemented tools has been raised to five and tests have been

performed also over a realistic (hand-made) forgery dataset. Differences with respect to the previous work

will be highlighted when necessary.

The rest of the paper is organized as follows. In the next subsection (I-A), we briefly introduce

the problem of decision fusion in an image forensics scenario, then we give some basic notion of

DST (section II) and describe in detail the proposed framework (section III). In section IV, we present

experimental results regarding a scenario in which the outputs of five image forensic tools ([?], [?],

[?], [?] and [?]) are fused to give a global judgement about image authenticity. The results show a

clear performance improvement with respect to more classical decision fusion strategies when realistic

forgeries are examined.

A. Decision fusion in the image forensics scenario

The problem of taking a final decision about an hypothesis by looking at the output of several different

tools is an important task in decision fusion; there are basically three kinds of approaches to tackle with

it. The first is to perform fusion at the feature level: a subset of the features extracted by the tools is

selected and used to train a global classifier. The second is to consider the (usually scalar) output provided

by the tools and fuse them (fusion at the measurement, or score, level). The last approach consists in

fusing the binary answers of the tools, usually obtained by binarizing their soft outputs (fusion at the

abstract level). An effective example of how these three strategies can be applied to a problem similar to

the one addressed in this paper is illustrated in [?], where fusion is used cast in a steganalysis framework.

In fact, both in steganalysis and image forensics, tools usually extract some features from the image,

perform measurements/classification on them and finally produce an output, often probabilistic, which

can be thresholded to yield a binary classification.

Although being promising in terms of performance, fusion at the feature level has some serious draw-

backs, most importantly the difficulty of handling cases involving a large number of features (commonly

addressed as “curse of dimensionality”) and the difficulty to define a general approach to feature selection,
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since ad-hoc solutions are needed for different cases. Furthermore, feature selection in most cases is

followed by some machine learning, that by definition is effective only when a training dataset can be

prepared that is representative of a large part of the global population of samples. If this can be done for

training a single detector, creating a representative dataset of all possible image forgeries is practically

unfeasible, especially in the case of photorealistic ones.

Working at the other extreme, the abstract level, suffers from the complementary problem: lots of

information is discarded when outputs are thresholded, so the discrimination power of the various tools

is not fully exploited. In image forensics, most of the existing works are based on the first approach [?]

[?] [?]; an hybrid solution has been investigated in [?], but still focusing on feature fusion.

In order to get around the above problems, we choose to perform fusion at the measurement level.

This choice delegates the responsibility of selecting features and training classifiers (or other decision

methods) to each single tool, thus keeping the fusion framework more general and easy to extend, while

avoiding the loss of important information about tool response confidences. Specifically, we present a

fusion framework based on Dempster-Shafer’s “Theory of evidence” (DST) [?] that focuses exclusively

on fusion at the measurement level. The proposed framework exploits knowledge about reliability of

tools and about compatibility between different traces of tampering, and can be easily extended when

new tools become available. It allows both a “soft” and a binary (tampered/non-tampered) interpretation

of the fusion result, and can help in analyzing images for which taking a decision is critical due to

conflicting data. Note that a fusion approach involving DS Theory has already been proposed in [?], but

such a scheme applies fusion at the feature level hence inheriting the general drawbacks of feature-level

fusion, noticeably the lack of scalability and the need to retrain the whole system each time a new tool is

added. Also, in [?] the authors exploit Dempster’s combination rule, which provides only a limited part

of the expressive capability of the DST framework, to devise an image steganalysis scheme that combines

three algorithms to improve detection accuracy; however, our goal is deeply different from that pursued

in [?], since we do not aim at providing a specific multi-clue forgery detection tool, but at defining a

theoretical model that allows fusing a generic set of tools targeting splicing detection. As we will see

later in the paper, the combination rule by itself is not sufficient to address our problem, since we must

deal with heterogeneous and evolving sources of information.

II. DEMPSTER-SHAFER’S THEORY OF EVIDENCE

Dempster-Shafer’s theory of evidence was firstly introduced by A. Dempster [?] and further developed

by G. Shafer [?]. It can be regarded as an extension of the classical Bayesian theory that allows
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representation of ignorance and of available information in a more flexible way. When using classical

probability theory for defining the probability of a certain event A, the additivity rule must be satisfied;

so by saying that Pr(A) = pA one implicitly says that Pr(Ā) = 1−pA, thus committing the probability

of an event A to that of its complementary Ā. Most importantly, the additivity rule influences also the

representation of ignorance: complete ignorance about a dichotomic event A in Bayesian theory is best

represented by setting Pr(A) = Pr(Ā) = 0.5 (according to the maximum entropy principle), but this

probability distribution also models perfect knowledge about the probability of each event being 0.5 (as for

a coin tossing), thus making it difficult to distinguish between ignorance and perfectly known equiprobable

events. Since reasoning in a Bayesian framework makes an extensive use of prior probabilities, which

are often unknown, a wide usage of maximum entropy assignments is often unavoidable, leading to the

introduction of extraneous assumptions. To avoid that, DS theory abandons the classical probability frame

and allows to reason without a-priori probabilities through a new formalism.

A. Shafer’s formalism

Let the frame Θ = {x1, x2, . . . , xn} define a finite set of possible values of a variable X; a proposition

about variable X is any subset of Θ. We are interested in quantifying how much we are confident in

propositions of the form “the true value of X is in H”, where H ⊆ Θ (notice that the set of all possible

propositions is the power set of Θ, 2Θ). To give an example, let us think of a patient that can either be

affected by cancer or not: we can model this scenario defining a variable C with frame Θ = {ac, nc}

where ac is the proposition “patient is affected by cancer”, nc is the proposition “patient is not affected

by cancer”, and (ac ∪ nc) is the doubtful proposition “patient is or is not affected by cancer”. The link

between propositions and subsets of Θ allows to map logical operations on propositions into operations

among sets. Each proposition is mapped onto a single subset and is assigned a basic belief mass through

a Basic Belief Assignment, defined over the frame of the variable.

Definition 1: Let Θ be a frame. A function mΘ : 2Θ → [0, 1] is called a Basic Belief Assignment

(BBA) over the frame Θ if:

mΘ(∅) = 0;
∑
A∈2Θ

mΘ(A) = 1 (1)

where the summation is taken over every possible subset A of Θ.
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Continuing the previous example, a doctor after examining the patient could provide information that

lead us to write the following basic belief assignment:

mΘ(X) =



0.8 for X = {ac}

0.2 for X = {nc}

0 for X = {ac ∪ nc}

(2)

Each set S such that m(S) > 0 is called a focal element for m. In the following, we will omit the frame

when it is clear from the context, writing m instead of mΘ; furthermore, when writing mass assignments

only focal elements will be listed (so the last row of eq. (2) would not appear). BBAs are the atomic

information in DST, much like probability of single events in probability theory. By definition, m(A) is

the part of belief that supports exactly A but, due to lack of knowledge, does not support any strict subset

of A, otherwise the mass would “move” into the subsets. In the previous example, if we had assigned

mass 0.85 to proposition {ac ∪ nc} and 0.15 to {ac} it would have meant that there is some evidence

for the patient being affected by cancer but, basing on current knowledge, a great part of our confidence

cannot be assigned to none of the two specific propositions. Whenever we have enough information to

assign all of the mass to singletons1, DST collapses to probability theory.

Intuitively, if we want to obtain the total belief for a set A, we must add the mass of all proper subsets

of A plus the mass of A itself, thus obtaining the Belief for the proposition A.

Definition 2: Given the BBA in 1, the Belief function Bel : 2Θ → [0, 1] is defined as follows:

Bel(A) =
∑
B⊆A

m(B)

Bel(A) summarizes all our reasons to believe in A with the available knowledge. There are many

relationships between m(A), Bel(A) and other functions derived from these; here we just highlight that

Bel(A) + Bel(Ā) ≤ 1 ∀A ⊆ Θ and 1 − (Bel(A) + Bel(Ā)) is the lack of information (or the amount

of doubt) about A.

B. Combination Rule

If we have two BBAs defined over the same frame, which have been obtained from two independent

sources of information, we can use Dempster’s combination rule to merge them into a single one. Notice

that the concept of independence between sources in DST is not rigorously defined (as it is, for example,

1A singleton is a set with exactly one element.
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in Bayesian theory): the intuition is that we require that the different pieces of evidence have been

determined by different (independent) means [?].

Definition 3: Let Bel1 and Bel2 be belief functions over the same frame Θ with BBAs m1 and m2.

Let us also assume that K, defined below, is positive. Then for all non-empty X ⊆ Θ the function m12

defined as:

m12(X) =
1

1−K
·

∑
A,B⊆Θ:
A∩B=X

m1(A)m2(B) (3)

where K =
∑

A,B:A∩B=∅m1(A)m2(B), is a BBA function defined over Θ and is called the orthogonal

sum of Bel1 and Bel2, denoted by Bel1 ⊕Bel2.

K is a measure of the conflict between m1 and m2: the higher the K, the higher the conflict. The meaning

of K can be understood from its definition, since K is obtained by accumulating the product of masses

assigned to sets having empty intersection (which means incompatible propositions). Furthermore, we

see that Dempster’s combination rule treats conflict as a normalization factor, so its presence is no longer

visible after fusion.

Recall the example in section II-A, and suppose that we obtain evidence coming from another doctor,

who is not a cancer specialist, about the variable C. Let us call m1 the BBA in eq. (2) and m2 the new

assignment; so we have:

m1(X) =


0.8 for X = {ac}

0.2 for X = {nc}
m2(X) =


0.1 for X = {ac}

0.9 for X = {ac ∪ nc}

Note that since the second doctor is not a specialist the information he provides is quite limited: most of

the mass is assigned to doubt. Fusing the two pieces of information according to Dempster’s rule results

in:

m12(X) =



0.8·0.1+0.8·0.9
1−(0.1·0.2) = 0.816 for X = {ac}

0.2·0.9
1−(0.1·0.2) = 0.184 for X = {nc}

We see that after fusion values are not far from those already assigned by m1: this is perfectly intuitive,

since the second doctor did not bring a clear contribution to the diagnosis. Notice also that for the same

reason, and for the low confidence of first doctor about absence of cancer, little conflict is observed

(K = 0.02).
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Dempster’s rule has many properties [?], in this work we are mainly interested in its associativity and

commutativity, that is:

Bel1 ⊕ (Bel2 ⊕Bel3) = (Bel1 ⊕Bel2)⊕Bel3 (4)

Bel1 ⊕Bel2 = Bel2 ⊕Bel1 (5)

Despite its many desirable properties, Dempster’s rule is not idempotent; this means that observing

twice the same evidence results in stronger beliefs. This is the reason why we need to introduce the

hypothesis of independent sources in Dempster’s combination rule. In practice, before letting a new

source of information enter the system, we must always look at how the new information is collected, to

ensure that we are not counting twice the same evidence. In our example, we must be sure that doctors

did not talk with each other, did not use the same technology when performing measurements, and so

on.

The combination rule expressed in eq. (3) is applicable if the two BBAs, m1 and m2, are defined over

the same frame, which means that they refer to the same propositions. Whenever we need to combine

BBAs defined over different frames, we have to redefine them on the same target frame before the

combination. This can be done by using marginalization and vacuous extension.

Definition 4: Let mΘ be a BBA function defined over a frame Θ, and let Ω be another frame. The

vacuous extension of mΘ to the product space Θ× Ω, denoted with mΘ↑Θ×Ω, is defined as:

mΘ↑Θ×Ω(X) =


mΘ(A) if X = A× Ω, A ⊆ Θ

0 otherwise

This allows to extend the frame of a BBA without introducing extraneous assumptions (no new infor-

mation is provided about propositions that are not in Θ). That said, vacuous extension is not the only

possible way to extend a BBA to a larger frame: it just provides the “least informative” extension.

The inverse operation of vacuous extension is marginalization.

Definition 5: Let mΘ be a BBA function defined on a domain Θ, its marginalization to the frame

Γ ⊆ Θ, denoted with mΘ↓Γ, is defined as

mΘ↓Γ(X) =
∑
A↓X

mΘ(A)

where the index of the summation denotes all sets A ⊆ Θ whose projection on Γ is X .

To outline the projection operator, let us introduce two product frames Θ and Γ, that are obtained as

the cartesian product of the frames of some variables. Formally, we have Θ = F1 × F2 × · · · × Fk and

Γ = FS1
× FS2

· · · × FSz
, where Fj is the frame of the j-th variable and S is a subset of the indices in
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{1, . . . , k}. Each element of Θ will be a vector whose j-th component is a value in Fj .2 The projection

operator maps each element θ ∈ Θ into an element of γ ∈ Γ by removing from θ all the components

whose indices are not in S.3

The importance of extension and marginalization is that they allow to combine over a common frame

BBAs originally referring to different frames, hence enabling us to fuse them with Dempster’s rule.

III. DST-BASED DECISION FUSION IN IMAGE FORENSICS

By using the basic instruments of DST introduced in the previous section, we developed a framework

for combining evidence coming from two or more forgery detection algorithms. In particular we focus

on the splicing detection problem, which consists in determining if a region of an image has been pasted

from another. As already stated, during this process some traces are left into the image, depending on the

modality used to create the forgery. The presence of each of these traces can be revealed by using one

(or more) image forensic tools, each of which provides information about the presence of the trace it is

looking for. Note that, in splicing detection tasks, most forensic tools assume knowledge of the suspect

region. That said, if no information is available, we could still run all tools in a block-wise fashion, and

fuse their outputs at the block level. As we will highlight in Section V, forgery localization is a different

problem, that we will consider from the decision fusion point of view in future works.

A. Assumptions

Our framework for decision fusion relies on the basic assumptions listed below:

1) Each tool outputs a number in [0,1], where higher values indicate higher confidence about the

analyzed region containing the searched trace;

2) Compatibility relations among some or all of the considered traces are known, at least theoretically

(for instance, we may know that two tools search for mutually-exclusive traces).

3) Information about tools reliability, possibly image dependent, is available (for instance such an

information could derive from published results or from experimental evidence);

4) Each tool gathers information independently of other tools (i.e. a tool is never employed as a

subroutine of another, and no information is exchanged between tools), and by different means

(each tool relies on a different principle or effect);

2For instance, if Θ = X × Y × Z one possible element of Θ is (x1, y3, z1), where x1 ∈ X , y3 ∈ Y and z1 ∈ Z.
3For example, if we project the set Θ = X × Y × Z to Γ = X × Z the element (x1, y3, z1) ∈ Θ reduces to (x1, z1) ∈ Γ
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These assumptions are very reasonable in the current image forensics scenario; nevertheless, some of

them can be relaxed with a limited impact on our framework. For example, in Section III-D we discuss

how to handle the case where some relationships between traces are not known, and in Section IV-B we

show that errors in estimating tool reliabilities do not affect overall performance significantly.

Notice that assumption 4 is needed to ensure that we can fuse tool responses using Dempster’s rule.

Intuitively, it means that if we observe two different tools supporting the same proposition, we are more

confident than observing only one. On the other hand, if two tools that search for the same trace exploiting

the same model are available, it makes sense to discard the less reliable one, since its contribution will be

limited or null. That said, and also considering that the concept of independence in DST is not equivalent

to statistical independence, we believe that possible limited dependencies between algorithms would not

undermine the developed framework.

B. Formalization for the single-tool case

For sake of clarity, we start by formalizing the DST framework when only one tool is available, let

us call it ToolA, which returns a value A ∈ [0, 1] and has a reliability R ∈ [0, 1]. While in our previous

work [?] we directly modeled the output of the tool with a variable, here we propose a different point of

view, that improves the extendability and generality of the framework: we focus on the trace searched by

the tool, and we consider the information coming from ToolA about the trace, by introducing a variable

α, with frame Θα = {tα, nα}, where tα is the proposition “trace α is present” and nα is the proposition

“trace α is not present”. We model the information provided by ToolA about the presence of α with the

following BBA over the frame Θα:

mΘα

A (X) =



AT for X = {(tα)}

AN for X = {(nα)}

ATN for X = {(tα) ∪ (nα)}

(6)

where AT , AN and ATN are functions (see next section and Fig.1) of the response A of the tool. We

see that this BBA assigns a mass to every element of the power set of Θα; {(tα) ∪ (nα)} is the doubt

that ToolA has about the presence of the trace, so it refers to the proposition “trace α is either present

or not”.

1) Detection mapping: The way A is mapped into AT , AN and ATN is an interpretation of ToolA

response and is simply models the behavior of the tool. For example we may know, either from theory

or from experimental results, that any value above 0.5 should be interpreted as a strong belief about
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the trace being present, so AT should be near to 1 when tool output crosses 0.5. We formalize this

concept introducing three functions µT (·), µN (·) and µTN (·), all from [0,1] to [0,1], which map the

detection score (A in this case) to a value for AT , AN and ATN respectively. These functions can be

either obtained from theoretical analysis or from experiments (training); since each tool will probably

distribute its output in the interval [0,1] in a characteristic way, we do not impose a general rule for

performing these assignments. What is important is that they depend only on the specific tool, so they

do not require any cross-tool information. An example of mapping is given in Fig.1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Tool output

M
as

s

Tool  response interpretation

 

 

µ
T

µ
N

µ
TN

Fig. 1. An example of mapping the tool answer to mass assignments. Such an example is typical for tools featuring a good

separation between positive and negative examples: most training examples yield very low (< 0.2) or high (> 0.6) values, while

nothing is observed in the middle range. Therefore, should the tool provide 0.5 as output, we can not say anything about the

class of the sample (i.e., we have only doubt) .

2) Incorporation of reliability within the framework: When we combine evidence using Dempster’s

rule, it is assumed that masses are assigned by reliable sources; if we have some information about the

reliability of the sources, then it should be taken into account. This can be done through a mechanism

called discounting [?], which permits to weigh each source by its reliability. If we denote with AR the

reliability of ToolA, applying discounting to the BBA in eq. (6) yields4:

mΘα

Atot
(X) =



AR ·AT for X = {(tα)}

AR ·AN for X = {(nα)}

CA for X = {(tα) ∪ (nα)}

(7)

4The formal derivation of this formula is provided in Appendix A.
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where CA = (1 − AR(AT + AN )). The effect of discounting is better understood by considering the

extreme cases for reliability: if the tool is fully reliable (AR = 1) its response is totally believed, while

if it is fully unreliable (AR = 0) we do not say anything about the presence of the trace since all the

mass moves to doubt.

C. Introducing new tools

Suppose we want to introduce in our framework a new tool, ToolB, that satisfies the assumptions

in section III-A. Differently from our previous work [?], we distinguish two cases: the new tool may

either search for a trace that is already considered in the framework, or for a novel trace; these cases are

addressed differently in our framework.

1) Introduction of a tool looking for a known trace: If the trace searched by the new tool is already

present in the framework (let us call it α, as in section III-B), applying the procedure in section III-B

will produce mΘα

Btot
, which can be directly fused with mΘα

Atot
by using Dempster’s rule, yielding:

mΘα

ABtot
(X) =

1

1−K
·


AR·AT ·CB+CA·BR·BT

+AR·AT ·BR·BT for X= {(tα)}
AN ·AR·CB+CA·BN ·BR

+AN ·AR·BN ·BR for X= {(nα)}

CA·CB for X= {(tα) ∪ (nα)}

(8)

where K = AN · AR · BT · BR + AT · AR · BN · BR. This BBA contains the information about the

trace α gathered by the two distinct tools. We see that conflict is non-null, and is obtained by summing

the masses for propositions in which the tools are reliable but provide conflicting information about the

presence of the trace. It is worth repeating that before introducing a new tool into the framework, the user

should understand how the tool works and ensure that it does not replicate the job of a tool that is already

present, since this would violate the request of independence of sources, and lead to a overestimation of

the presence of the trace the new tool is looking for.

2) Introduction of a tool looking for a new trace: If ToolB searches for a novel kind of trace, say β,

we have to introduce it into the framework defining a new frame Θβ = {tβ, nβ}, where the propositions

have the same meaning as in section III-B. The response of ToolB will be used to assign masses to

the variable Θβ , and application of discounting will lead us to m
Θβ

Btot
. Since α and β are defined over

different frames, mΘα

Atot
and m

Θβ

Btot
cannot be fused directly. We first need to define a common frame
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Θα ×Θβ , so that we can (vacuously) extend both mAtot
and mBtot

to it and finally fuse them, yielding:

m
Θα×Θβ

ABtot
(X) =



AR·AT ·BR·BT for X= { (tα, tβ)}
AR·AT ·BR·BN for X= {(tα, nβ) }
AR·AT ·CB for X= {(tα, tβ) ∪ (tα, nβ) }

AR·AN ·BR·BT for X= {(nα, tβ) }
AR·AN ·BR·BN for X= {(nα, nβ) }
AR·AN ·CB for X= {(nα, tβ) ∪ (nα, nβ) }
CA·BR·BT for X= {(tα, tβ) ∪ (nα, tβ) }
CA·BR·BN for X= { (tα, nβ) ∪ (nα, nβ)}
CA·CB for X= {(tα,tβ)∪(nα,tβ)

∪(tα,nβ)∪(nα,nβ)}

Notice that we are not considering whether traces α and β are compatible or not: we will take this

information into account only later on, exploiting the associativity and commutativity of Dempster’s rule.

Consequently, as confirmed by the fact that K = 0 in the above formula, there is no reason why the two

tools should be conflicting, since by now we are looking for “unrelated” traces.

The Procedures in section III-C1 and III-C2 can be repeated when another tool ToolX becomes available.

The associativity of Dempster’s rule, defined in eq. (4), allows to combine directly the BBA mXtot
of

the new tool with the one currently available (that takes into account all the tools in the framework), so

we will always need to extend the frame of, at most, two BBAs: this is a considerably smaller effort

with respect to extending the BBA and computing the combination rule for all the tools.

We stress that, compared to [?], using traces as basic entities (instead of tools responses) strongly

improves the extendability of the framework: as a matter of fact, while new tools are being released quite

often, many of them search for an already known trace; if this is the case, introducing a new tool is very

simple since only its BBA has to be extended.

D. Compatibility among traces

So far we have considered traces as if they were unrelated from each other. However, as we noted in

III-A, this is not always the case in real applications. Suppose, for instance, that we have two traces α

and β and suppose that, ideally, only some of their combinations are possible. For example, it may be

that the presence of α implies the absence of β, so, at least ideally, two tools searching for these traces

should never detect tampering simultaneously.

This information induces a compatibility relation between frames Θα and Θβ , meaning that some of

the elements of the cartesian product Θα × Θβ are impossible (and hence should be removed from the

frame of discernment, because by definition it contains only possible values of the variables, see section

II-A). However, since we do not know in advance which traces will be introduced in our framework, we

need a way to include this knowledge only in the late stage of fusion. Fortunately, in DST we can easily
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model this information by using a standard belief assignment: we define a BBA on the domain Θα×Θβ ,

that has only one focal set, containing the union of all propositions (i.e, combination of traces) that are

considered possible, while all others have a null mass. For example the following BBA:

mcomp(X) =

{
1 for X= {(tα,nβ)∪(nα,tβ)∪(nα,nβ)}
0 for X= {(tα,tβ)}

(9)

models the incompatibility between traces α and β. Thanks to the commutative property of Dempster’s

combination rule, this BBA can be combined with those coming from traces in the final stage of fusion.

In such a way, information about tools relationships are exploited only at the very end and hence do not

hinder model extendability.

Notice that the given formulation encompasses also the case where the relationship between two traces

is not known: it is sufficient to put those propositions where the two traces are present in both the focal

set and the impossible set of mcomp, and this will automatically result in a void contribution for that

combination of traces during fusion.

The last step of our decision fusion process consists in fusing the compatibility BBA defined above with

the BBA obtained combining evidences from all the available tools, yielding a global BBA mFIN . Notice

that in this last application of Dempster’s rule all the conflict that may arise is due to incompatibilities

between traces. Although this conflict is normalized away by Dempster’s rule, the value of K can be

recorded and used to evaluate how “unexpected” the output of tools were. Very high values of conflict

may indicate that the image under analysis does not respect the working assumptions of one or more

tools. The overall decision fusion approach described so far is summarized in Fig.2 for the case of two

tools.

It is worth noting that, we did not need to introduce a-priori probabilities about an image being original

or forged, or prior probabilities of presence of traces: in a Bayesian framework, this would have been

difficult to obtain.

E. Dealing with many traces: hierarchical modeling

Since the extension to novel traces is based on cartesian product of sets, the number of variables

in the framework grows exponentially with the number of different traces. However, this consideration

holds only if the user is interested in a fusion approach that fully preserves the granularity of information,

meaning that, after fusing several different traces, the user wants to get the beliefs about presence/absence

of each single trace separately. In practice, however, the presence of many traces is probably due to the

fact that the framework is taking into account different classes of phenomena, e.g. traces related to camera
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ToolA reliability

mAtot
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Rule

ToolB output

ToolB reliability

mcomp

mFIN

Possible

 new tool

mXtot

mBtot

Fig. 2. Block diagram of the proposed fusion approach. Notice that, when a new tool becomes available (represented in the

dashed cloud), its BBA directly enters the final stage of the fusion, without needing to recombine information from previous

tools.

artifacts, to JPEG coding, to geometrical inconsistencies, and so on. In such a scenario, it makes sense

to treat each class of traces as a whole, and directly consider the contribution of each class when taking

the final decision. This hierarchical fusion can be easily implemented within the proposed framework

by using belief marginalization (see Definition 5) to collapse the contribution of several traces of the

same class into a single variable, thus reducing the granularity of the information without hindering

performance in terms of splicing detection. In Fig.3 we draw an example of hierarchical fusion applied

to three different kinds of traces. Furthermore, compatibility among classes of traces can be introduced

as well, at the end of the fusion chain.

F. Final decision

We are now ready to define the final output of the fusion procedure: we want to know whether a

given region of an image has been tampered with or not. To do so we consider the belief of two sets:

the first one, T , is the union of all propositions in which at least one trace is detected, the second one,

N , is the single proposition in which none of the traces is found (in the previous example it would be

N = (nα, nβ)). The output of the fusion process therefore consists of two belief values, Bel(T ) and

Bel(N), calculated over the BBA mFIN defined in section III-D. Optionally, we may also consider the

normalization factor K (as defined in section II-B) of the last fusion step, involving the compatibility

table. These outputs summarize the information provided by the available tools, without forcing a final

decision. If a binary decision about image authenticity is required, an interpretation of these outputs has
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Fig. 3. Block diagram illustrating the proposed approach to hierarchical fusion of traces of different kind. The “Trace-Based

Fusion” bubble represents the schema in Fig.2. For the sake of clarity, in the figure we write “Tool data” instead of separately

drawing output and reliability assignments for each tool.

to be made; the most intuitive binarization rule is to classify an image as tampered with when the belief

for the presence of at least one trace is stronger than the belief for the total absence of traces, that is to

say when Bel(T ) > Bel(N). Of course, we will probably want to meet a minimum distance requirement

between the two: a Receiver Operating Characteristic (ROC) curve can thus be obtained by classifying

images according to Bel(T ) > Bel(N) + δ, sampling δ in [-1,1].

It is worth noting that evaluating belief values is a very simple task: only elementary operations among

scalar values in [0,1] have to be calculated (see for example mass assignments in equation (8)), since

the model is built only once for a fixed set of tools, and need to be extended only when new sources of

information become available.

IV. EXPERIMENTAL RESULTS

In order to validate the effectiveness of the proposed approach, we compared it with three other

methods. The first is one of those proposed in [?], where image manipulations are detected by taking
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the logical disjunction (OR) of the outputs of single tools. Logical disjunction is indeed one of the

simplest and most widely used methods for decision fusion, and is quite well-suited to the proposed

case study5. Furthermore, since we know the logical relationships between traces, the second method we

compare with is a rule-based logical disjunction: in this case, only the combinations of binarized outputs

that are consistent with known traces relationships are considered, while the others are discarded. By

comparing with this technique, we want to investigate whether the proposed framework actually yields

some advantages with respect to this simpler hard-reasoning method, based on the same prior knowledge

about trace relationships.

As we mentioned in the Introduction, several methods have been proposed for decision fusion at the

feature level in image forensics [?] [?] [?] [?], but they are typically based on feature selection and are

therefore not directly comparable to the method proposed in this work. On the other hand, since most

methods end up using a classifier (usually an SVM) the best we can do to compare our framework with

them without exiting the measurement level is to train an SVM by using the scalar output of the tools as

input features, and see how the SVM performs in discriminating between tampered and original images.

Finally, we observe that our framework is not comparable with [?], because we are considering a complex

scenario, where tools may search for compatible or incompatible traces, and more than one tool may be

available for the same trace, so applying directly Dempster’s rule would lead to erroneous conclusions.

A. Experimental setup

As already stated, we evaluated the validity of the new DST fusion framework by focusing on the

detection of splicing attacks: a portion of an image (source) is cut and pasted into another image (host),

thus producing a new content that is finally saved. Because most images are stored in JPEG format, a

great deal of research has been carried out for the identification and detection of traces left by splicing

attacks in JPEG images, so several tools are available to search for them. In our experiments we fused

the outputs obtained from five of these tools, searching for a total of three different traces.

1) Selected traces and tools: To explore all the features of the proposed scheme, we chose a set of

algorithms such that some of them search for the same trace, and for which some combination of traces

is not possible. Namely, we are considering the following traces (see Fig.4 for a graphical explanation):

1) Misaligned JPEG compression (JPNA): this trace shows up when the investigated region is cropped

5Actually, taking the OR of binarized outputs is an “abstract level” approach. However, logical disjunction is one of the most

used approaches among the post-classification ones [?], so we decided to compare our method against it.
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Fig. 4. In these schemes three different configuration of cut&paste attacks are reported. The attack in (a) introduces a misaligned

double compression, the one in (b) introduces the double quantization effect in the untouched part of the final image and the

attack in (c) introduces the ghost effect in the pasted region.

from a JPEG image and pasted into the target picture without preserving JPEG grid alignment, per-

forming a final JPEG compression. Therefore, pasted pixels undergo two misaligned compressions,

while others do not.

2) Double quantization (JPDQ): when a portion of uncompressed pixels6 is pasted into a JPEG image,

and the final result is JPEG saved, the untouched region undergoes a double compression. This

causes its DCT coefficients to be doubly quantized, leaving a characteristic trace in their statistics.

3) JPEG ghost (JPGH): this trace is left when a region is cut-and-pasted, respecting grid alignment,

from a JPEG source image into the host one (which has not been JPEG compressed). When the

obtained splicing is JPEG saved, the inserted part undergoes a second compression, while the outer

is compressed for the first time, thus introducing an inconsistency.

Given the above definitions, some combination of traces are not possible. For example an attack that

introduces the JPDQ trace also introduces the JPGH, while the contrary is not necessarily true; but, if

both JPGH and JPNA are introduced, then also JPDQ must be present. These facts are best represented

by using a tabular form (see section III-D) with the compatibility relations, as in Tab. I.

Now that we have introduced the traces considered in our experiments, we list the adopted forensic

tools (see Tab. II). We employed two tools looking for JPNA, namely the one from Luo et al. [?] (ToolA)

and the one from Bianchi et al. [?] (ToolD); two tools looking for JPDQ, the one from Lin et al.[?]

6or pixels that have been compressed according to a different grid.
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TABLE I

DETECTION COMPATIBILITY: EACH COLUMN OF THE TABLE FORMS A COMBINATION OF PRESENCE (Y) AND ABSENCE (N)

OF TRACES. WE SEE THAT ONLY 5 OUT OF 8 COMBINATIONS ARE POSSIBLE.

Trace Possible Excluded

JPNA Y N N Y N Y Y N

JPDQ N Y N Y N Y N Y

JPGH N Y Y Y N N Y N

(ToolB) and the one from Bianchi et al. [?] (ToolE); and the tool from Farid that searches for ghost traces

[?] (ToolC).

TABLE II

COUPLING BETWEEN TRACES AND TOOLS: FOR EACH TRACE, THE LIST OF ADOPTED TOOLS ABLE TO DETECT IT IS GIVEN.

Trace Tools

JPNA ToolA [?], ToolD [?]

JPDQ ToolB [?], ToolE [?]

JPGH ToolC [?]

In section III-A we assumed that each tool outputs a value in [0,1], where values near 1 indicate

high confidence about the analyzed region containing the searched trace. Although not strictly necessary,

normalization of tool outputs is desirable also for other fusion techniques, so we choose to adopt it as

a common step before applying any fusion method in our experiments. In the following we give a brief

description of how each of the selected tools works and define the approach we adopted to obtain a scalar

output from it:

• ToolA searches for misaligned compression by measuring inconsistencies in blocking artifacts in the

spatial domain. Because features are classified by using an SVM (which we trained on a separated

dataset, according to the original work) we train a model supporting probability estimates [?];

• ToolB and ToolE search for double quantization effect employing two different statistical models

to analyze the histogram of the DCT coefficients of the image. Both tools provide a probability

map which gives, for each 8×8 pixel block, its probability of being original (i.e. showing double

quantization) or tampered (not showing double quantization). The final detection value is taken as

the median (over the suspect region only) of the probability map;

• ToolC searches ghost artifacts by re-compressing the image at several different qualities and taking
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the difference between the given image and the re-compressed one. Ghost effect is detected when

the difference is small for the suspect region and not for the rest of the image. To evaluate how

much the two regions are separated the KS statistic is used [?]. We directly take the value of this

statistic as the detection value;

• ToolD searches for misaligned double compression exploiting the fact that DCT coefficients exhibit

an integer periodicity when the DCT is computed according to the grid of the primary compression.

Being the shift of the grid unknown, the algorithm searches among all possible shifts the one that

minimizes a specific metric (see [?] for details). We scale and invert this metric from [0,6] to [0,1].

As mentioned at the beginning of this section, usually the simple presence of a trace does not imply a

splicing attack, but just that a common processing over the image has taken place (for example, cropping

a couple of rows from the top of the image would introduce a JPNA trace). Instead, inconsistencies in

the presence of a trace through the image (i.e. high detection values for the suspect region and low for

the other or vice-versa) are far more suspect. For this reason, each tool7 is run both on the suspect region

and on the remaining part of the image, and the absolute difference between the two outputs (which will

still be in [0,1]) is considered.

Notice that since DST does not require that the masses assigned to propositions have a probabilistic

meaning, we do not need to use more complex approaches to cast the output of each tool.

2) Training procedure: For all the fusion techniques used in the tests we need to run a training phase;

however, in the proposed framework training is performed one tool at a time. The key idea is that if we

can perform training separately for each tool, then we neither need a complicated learning technique,

which would probably overfit on the training examples, nor we need huge datasets, since generating a

dataset representing one kind of forgery is typically not difficult. In the following, the training procedures

for each method are explained:

• DST fusion. The DST based framework requires only to specify the mapping functions (µT , µN and

µTN ) of each algorithm, as defined in section III-B1. We found that it is not necessary to use a fitting

technique for tuning these curves: it is sufficient to qualitatively consider how the output of a tool is

distributed in the range [0,1] when the tool is run on forged and original images respectively8, and

draw trapezoidal functions consequently (see Fig.5). By relying on published results and on our tests

about tools performance, we also defined the reliability of the various tools as follows: for ToolA,

7ToolC is excluded since it already considers inconsistencies over the image.
8In this phase we consider only images that match the working assumptions the tool is built on.
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ToolD and ToolE reliability is a function of quality factor QF2, according to published results (see,

respectively [?], [?] and [?]), for ToolB we experimentally determined a BR=0.4 and for ToolC we

set CR=0.85 according to experiments in [?].

• SVM fusion. A training example for the SVM is obtained from each image. The array of features is

obtained by concatenating the outputs given for the image by each tool and the last quality factor9,

estimated from JPEG quantization tables. We use a RBF kernel with parameters (obtained through

a 5-fold cross validation) γ = 2.48 and C = 0.1. For all the experiments, we repeated 20 times

the training-testing phase, choosing different train- and test- datasets from the available examples

(datasets are described later on).

• OR-based fusion. Since we are going to use Receiver Operating Characteristic (ROC) curves to

compare the various methods, we need to train an aggregate ROC for the five algorithms, which

represents their behavior in terms of probability of detection (pD) and false alarm (pFA) after

being combined with the OR operator. To obtain these curves we uniformly sample (with precision

10−3) the ROC of each algorithm, considering only images that satisfy the corresponding working

assumptions, as reported in Tab. III. For each algorithm we save the threshold associated with each

pFA. During the test phase, given a target overall probability of false alarm p̂FA, we choose for each

algorithm the threshold that gave a probability of false alarm of p̂FA/5, and we use that threshold to

binarize its output. Binarized outputs for each image are combined with the OR operator, giving the

final classification, that allows drawing a point of the overall ROC. Also in this case, the train-test

procedure is repeated 20 times.

• OR-based fusion with Hard Reasoning. The same approach described for OR-based fusion is also

used in the experiment with hard-reasoning logical disjunction (that will be abbreviated with OR-

HR in figures). The difference is that, after binarization, only the combinations of outputs that are

consistent with traces relationships will contribute to classify an image as tampered.

It is worth stressing that, training of the SVM for the considered decision fusion task requires not

only to create a training dataset for each tool: a set of examples must be created for each possible

combination of traces that the system should recognize. As we will show in the experiments, if the SVM

is asked to classify a forgery containing a never-seen combination of traces, misclassifications are likely to

occur. This fact has two consequences: first, the size of the training dataset grows exponentially with the

9We introduce this information because last quantization value strongly affects the reliability of tools. Since this information

is used in the proposed model, not providing it to the SVM would be unfair.
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number of different traces; secondly, only synthetically generated forgeries can be reasonably employed

to create such a dataset. Unfortunately, synthetic examples are not really representative of the real world

forgeries. This necessity is avoided with the DST framework, since determining mapping functions does

not require any cross-tool training: a (usually quite small) dataset suffices to understand the behavior

of the tool when is run on images that show exactly the trace the tool is looking for. The functions

mapping the detection values into BBAs (eq. 6) for the selected tools are reported in Fig.5. These curves

have been obtained considering the histogram of each algorithm outputs on the training dataset (both for

original and tampered images) and mimicking it with trapezoidal functions, thus introducing a sort of

smoothness constraint. Another possibility could be to fit a function to the cumulant of the histograms,

however small variations in the shape of curves do not affects results significantly.

As shown in Fig.5, doubt is used only for regions where few examples from both tampered and

original classes are observed. On the contrary, doubt is not employed when detection values overlap for

a consistent number of examples, because this indicates that, on average, tools are “equally sure” about

those images being tampered or original instead of unsure about both.

3) Datasets: As stated in section IV-A2, each of the three compared methods requires a training

phase, so we created a dataset of 4800 tampered and 4800 original images. We considered four different

tampering procedures (described in Tab. III) that start from an uncompressed image and automatically

produce a forgery by cutting a portion (256x256 pixel) of the image and pasting it into a copy of itself,

exactly in the same position. So doing, the forged image is perceptually above suspicion, and abrupt

changes in content, that could influence the algorithms performance, are avoided. This also mimics the

work of an image editing expert, which would limit discontinuities along the boundary of the tampered

region. In every procedure the created splicing is JPEG compressed and saved. Notice that the four

tampering classes we used cover all the possible combinations of presence/absence of the considered

traces10, as can be seen by comparing Tab. IV and Tab. I. The quality factor of the first compression,

QF1, is chosen randomly from the set {40, 50, ..., 80}, while the quality of the second compression is

set to QF2 = QF1+20. Forgeries of the training set are equally distributed among these classes (1200

images per class).

The original, non-tampered, images are obtained by applying JPEG compression to uncompressed TIFF

images (1024x1024 pixels), choosing randomly the quality factor from the set {40, 50, ..., 100}.

It is interesting to evaluate the performance of the considered decision fusion methods in two different

10Notice also that a generic JPEG spliced image will almost surely fall in one of these classes.
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Fig. 5. For each tool, the histogram of detection values on training dataset are shown on the left image. Right images show

how this histogram is interpreted to define a mapping from tool detection value (x-axis) to mass assignment (y-axis). See eq. 6

for an explanation of each line meaning.

scenarios:

1) in the first experiment, we use the synthetic images both to train and test the methods, of course

with separated test and train datasets. The main goal of this experiment is to check if the training

is effective for each method; we will refer to this dataset as the “synthetic” dataset. To show that

the SVM really needs to have examples of all possible combinations of traces during training, we

also train an “handicap”-SVM, where the handicap consists in removing all images belonging to
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TABLE III

PROCEDURE FOR THE CREATION OF DIFFERENT CLASSES OF TAMPERING IN THE TRAINING DATASET.

Class Procedure Result

Class 1 Region is cut from a JPEG image and pasted,

breaking the 8x8 grid, into an uncompressed one;

the result is saved as JPEG.

Inner region shows JPNA

trace, external region does not.

Only tool A detects this trace.

Class 2 Region is taken from an uncompressed image and

pasted into a JPEG one; the result is saved as JPEG.

Outer region shows both JPDQ

and JPGH traces, inner does not.

Tools B, E and C detect this trace

Class 3 Region is cut from a JPEG image and pasted into

an uncompressed one in a position multiple of the

8x8 grid; result is saved as JPEG.

The inner region shows JPGH

effect, the outer does not.

Only Tool C detects.

Class 4 Region is cut from a JPEG image and pasted

(without respecting the original 8x8 grid) into a

JPEG image; the result is saved as JPEG

The inner region shows JPNA,

the outer shows JPDQ and JPGH.

All tools detect this trace.

TABLE IV

THIS TABLE SPECIFIES WHETHER THE CLASS OF TAMPERING (COLUMN) SHOWS (Y) OR NOT (N) THE TRACE ON THE LEFT

ROW. COMPARING THIS TO TAB. I SHOWS THAT OUR DATASET HAS A CLASS FOR EACH OF THE possible COMBINATIONS OF

TRACES PRESENCE.

Trace Class 1 Class 2 Class 3 Class 4 Original

JPNA Y N N Y N

JPDQ N Y N Y N

JPGH N Y Y Y N

Class 1 from the training set.

2) the second experiment mimics a realistic scenario. A team of students created 70 forgeries using

common photo editing software, respecting only a constraint about JPEG quality factors: the quality

factor of the final compression is always higher than the one of the host image. Students were asked

to provide both tampered images (along with an indication of the attacked region) and original ones,

for a total of 140 images. Although being rather small (creating good forgeries is a time consuming

procedure) this dataset is crucial to understand how well the considered frameworks generalize to

unseen cases. We will refer to this dataset as the “realistic” dataset. According to a realistic scenario,

this dataset is used only for testing, training is still performed on synthetical images.
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The train- and test- datasets we used in our experiments are available at the website http://clem.dii.unisi.

it/∼vipp/index.php/download/imagerepository

B. Results and discussion

We ran the five forensic tools on each dataset, then we combined their responses by the different

fusion methods. To allow a comparison between tool performance we use ROC curves. However, both

the SVM and the DST frameworks have been trained in order to maximize the overall accuracy, given

by the percentage of correctly classified examples11. This urges us to consider only the portion of ROCs

with reasonably low probabilities of false alarm; we fix the limit to 30%, a value that is far higher than

acceptable ones in a standard forensic scenario. For each of the test datasets we report and comment

the ROC curve (averaged over the 20 train-test iterations) obtained with each fusion method along with

the ROC curves obtained by the single tools. Notice that since the proposed method does not require

a training phase, no cross-fold validation is performed for it and we can use all the images to test it.

For the other methods, we also plot uncertainty bars showing the maximum and minimum probability

of detection obtained within the 20 iterations for several probability of false alarms. Values for the Area

Under Curve (AUC) are normalized to the considered interval.

a) Results on the synthetic dataset: Fig.6 illustrates the results of the experiments taken on the

synthetic dataset. Although being trained without cross-tool information (except for the traces compat-

ibility table) the proposed method almost retains the same performance showed by the SVM (Fig. 6a).

Considering that the synthetic test dataset is very similar to the training one, and considering also the

high ratio of examples versus features (9600 images for 6 scalar normalized features), retaining the same

performance of a SVM classifier is an undoubtedly good result. Both the SVM and the DST framework

overcome the logical disjunction method, which nevertheless shows good performance. On the other

hand, performance of the handicap-SVM are seriously hindered by the fact that some of the test images

contain a combination of traces (namely, images belonging to Class 1) that were not in the training set.

We considered the average performance (over 20 experiments) of the SVM in classifying test images

belonging to Class 1: when the handicap is not present, the average accuracy is 77.2%; when the handicap-

SVM is used, performance drops to 18.7%. This fact is extremely important since, as the number of traces

increases, creating datasets with a sufficient number of forgery examples for each possible combination

11A training targeted to obtain a specified false alarm probability would require for the SVM to find an appropriate balance

of the weights assigned to misclassified examples; and for the DST framework to adjust accordingly the mapping functions.
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becomes complicated. On the other hand, the proposed method does not exhibit a significant performance

deterioration. Notice that, in this experiment, the hard-reasoning method (blue curve in Fig.6a) yields

the worst performance, meaning that application of rules from Tab. IV does not provide any help to the

logical disjunction: this is reasonable, since images of this dataset are synthetically generated according

to tool working hypotheses, and will unlikely expose unexpected combination of traces. However, looking

at performance of single tools, in Fig. 6b, we see a clear benefit from the use of each of the decision

fusion techniques.

We also used the synthetic dataset to investigate the sensitiveness of the DST-based framework to

fluctuations of tool reliabilities. We repeated 20 times the classification, perturbing the reliability of tools

with a gaussian error (µ = 0, σ = 0.15), and collecting from each experiment the resulting AUC. We

observed a standard deviation for the AUC of 0.02, thus showing the robustness of the framework against

inaccurate estimation of reliabilities.

b) Results on the realistic dataset: Fig.7 shows results obtained using the realistic dataset. The

inherent difference between synthetic training examples and real-world splicings has a direct implication

on performance of single tools (compare Fig.6b with Fig.7b), and this is not surprising. What is really

important is that performance of decision fusion methods are even more affected: the DST framework now

clearly overcomes the SVM classifier, and also the hard-reasoning logical disjunction method behaves

better than the SVM. This suggests that when knowledge about relationships between traces is available,

we should introduce this knowledge as directly as possible instead of using machine learning methods, that

are more suited to scenarios where knowledge is somewhat hidden in data. In forensics, such relationships

are known most of the times, because they depend on some physical or logical phenomenon (e.g., camera

interpolation or noise, JPEG quantization effects, shadow consistency, etc.) whose compatibility with other

effects can be easily argued or measured with a targeted experiment.

Finally we point out that, except for very low probabilities of false alarms (< 2%), the performance

of the DST method is always better than those provided by each single tool.

We conclude this section discussing the computational time of our system. As stated in previous

sections, framework definition and belief evaluation are two separated and different tasks: the first one

is executed off-line when a new tool enters the system, producing a formula that is stored; this formula

is then used for belief evaluation, which represents the on-line phase of the system and is much faster.
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Fig. 6. Results on the synthetic test dataset both using the decision fusion methods (a) and each algorithm separately (b). For

all methods involving a training phase, we plot the average performance along with uncertainty bars, showing the maximum

and minimum values obtained. AUC values are normalized to the considered interval.

Table V shows the time12 needed to build the framework and to perform belief evaluation for the 5 tools

used in this section. We also show how times would change if two more tools searching for one new

trace enter the system.

TABLE V

EXECUTION TIMES (IN SECONDS) FOR FRAMEWORK DEFINITION AND BELIEF EVALUATION.

Num. of Tools 2 3 4 5 6 7

Definition 0.11 0.27 0.75 0.70 2.7 39.8

Evaluation 0.02 0.03 0.21 0.23 0.81 1.3

V. CONCLUSIONS

In this paper we have proposed a framework and discussed a system for data fusion in image forensics.

The proposed system operates by fusing the output of a pool of forensic tools at the measurement level

thus permitting to retain as much information as possible with regard to the single tool analysis, without

12Values have been obtained running a Matlab implementation of the fusion framework on a laptop computer equipped with

a Pentium Core2 Duo 2.26GHz CPU, 4GB RAM.
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Fig. 7. Results on the realistic test dataset both using the decision fusion methods (a) and each algorithm separately (b). Curves

and AUC values have the same meaning of those in Figure 6.

incurring in the problems typical of feature fusion techniques (curse of dimensionality, training complexity,

redundant features and so on).

The peculiarities of the proposed framework include: i) the use of a soft reasoning approach, based

on Dempster-Shafer theory of evidence, to cope with the lack of a priori-information about the kind of

tampering the image may have undergone, and the possibility that the available forensic tools provide

incomplete and even conflicting evidence, ii) the ease with which new information can be included as

soon as it becomes available, iii) the hierarchical structure of the framework that allows to trade-off

between granularity of the information provided by the fusion system and the complexity of the update

procedure when the information becomes available.

Experimental results are encouraging: the proposed model gives significantly better results than fusion

approaches based on logical disjunction, and outperforms SVM-based fusion when tested against a

realistic dataset.

We believe data fusion is a key ingredient to go beyond the current state of the art in image forensics,

making it suitable to work in a real world setting where the strictly controlled conditions typical of

laboratory experiments can not be enforced. Even more, we are convinced that data fusion can also help

to cope with the proliferation of counter-forensics techniques. As a matter of fact, it is quite easy to fool

a forensic analysis based on a single detection tool, especially if the algorithm the tool relies on is known
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to the attacker; however, facing with a pool of forensic tools, whose output is fused in a clever way, is

likely to be a much harder piece of work, given that hiding a tampering trace may introduce additional

traces whose presence can be spotted by other detectors in the pool.

For this reason in the future we are going to extend our research in several directions including:

considering spatial information in the fusion process, fusion of forensic tools explicitly thought to cope

with counter-forensics, evaluation of the performance of the fusion process on large realistic datasets,

comparison of the Dempster-Shafer framework with other reasoning approaches, including fuzzy theory,

Bayesian inference, imprecise probability.

APPENDIX

In the following, the formal derivation behind the belief discounting principle is given. We assume that

the reliability of ToolA is known through R. We introduce a new variable a, with frame: Ωa = {ra, ua}

where ra is the proposition “ToolA is reliable” and ua is the proposition “ToolA in unreliable”. In our

framework we model information about reliability by using a BBA that has only two focal elements:

mΩa

A (X) =


AR for X = {(ra)}

1−AR for X = {(ua)}

This BBA does not assign a mass to doubt: we are saying that knowing that a tool is unreliable and

ignoring whether it is reliable or not are considered in the same way. Consequently, the most intuitive

mapping from R to this BBA assignment is to choose AR = R.

Being defined on different frames, mΘα

A and mΩa

A cannot be combined directly. We need to extend

them to a common domain: the simplest one is Θα × Ωa, which contains propositions on both ToolA

response and reliability. We use vacuous extension to find mΩa↑Θα×Ωa

A :

mΩa↑Θα×Ωa

A =

{
AR for X= {(tα, ra) ∪ (nα, ra)}

1−AR for X= {(tα, ua) ∪ (nα, ua)}
(10)

while, for extending mΘα

A to mΘα×Ωa

A , we use a different approach, to give a specific interpretation of

what tool reliability should mean: we assume that if a tool is unreliable, its detection should not modify

beliefs when is fused. This can be easily expressed by putting all elements representing propositions in

which the tool is not reliable (i.e. all (·, ua) elements) in every focal element of the combined BBA:

mΘα↑Θα×Ωa

A (X) =

{
AT for X= {(tα, ra) ∪ (tα, ua) ∪ (nα, ua)}
AN for X= {(nα, ra) ∪ (tα, ua) ∪ (nα, ua)}
ATN for X= {(tα, ra) ∪ (nα, ra) ∪ (tα, ua) ∪ (nα, ua)}

(11)
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Now, using the combination rule (section II-B) we can combine BBAs in (10) and (11) to yield

mΘα×Ωa

Atot
, which summarizes all the knowledge we have about ToolA:

mΘα×Ωa

Atot
(X) =


AR·AT for X= {(tα, ra)}
AR·AN for X= {(nα, ra)}
AR·ATN for X= {(tα, ra) ∪ (nα, ra)}
1−AR for X= {(tα, ua) ∪ (nα, ua)}

Notice that in the above formula there is no conflict (K = 0). This agrees with the intuition that

information about the reliability of a tool cannot be conflicting with information about its output.

If we are only interested in taking decisions on the presence or absence of traces (as it is in our case)

it is useless to keep trace of variable a, because it does not bring any direct information about traces.

Therefore, we choose to marginalize mΘα×Ωa

A with respect to this variable, yielding:

mAtot
(X)Θα×Ωa↓Θα =

{
AR·AT for X= {(tα)}
AR·AN for X= {(nα)}
CA for X= {(tα) ∪ (nα)}

(12)

where CA = (1−AR(AT +AN )).
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